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1 Introduction

The classical strong limit theorems such as the central limit theorem, the strong law of
large number, the law of the iterated logarithm and so on, play an important role in the
development of probability and statistics, and also they are established under the additivity
of expectations and probability measures. However, in practice, such additivity assumption
is no reasonable and cannot be well modeled in many uncertainty phenomena of applications
such as statistics, finance and economics. The applications of classical limit theorem are

limited to some extent; a growing number of people renounce the traditional tool of additivity
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of probability and instead use the new tool of nonadditive probability measure to resolve
problems with uncertainty. Recently motivated by the super-hedge pricing, the risk measures
and the modeling uncertainty in finance, non-additivity of probabilities and non-additivity
of expectations have been used in a number of papers (see Gilboa [5], Denis and Martini
[3], Maccheroni and Marinacci [11], Peng ([12]-[14]).

Peng [13] introduced the general framework of the sub-linear expectation space in a
general function space by relaxing the classical linear expectation space with the linear
property being replaced by the sub-additivity and positive homogeneity(see Definition 2.1
below). The sub-linear expectation provides a very flexible framework to model uncertainty
problems in finance and statistics and produces many interesting properties different from
those of the linear expectations. Under such frameworks, Peng ([12]-[14]) constructed the
basic framework, basic properties such as central limit theorems, weak laws of large numbers
the under sub-linear expectations and he give a reasonable definition of the independence
through the sub-linear expectations. Zhang ([19]-[23]) studied the exponential inequalities,
Rosenthal’s inequalities, Donsker’s invariance principle, strong law of large numbers and
law of iterated logarithm under sub-linear expectations. This paper considers the general
sub-linear expectations and related non-additive probabilities generated by them.

The concept of complete convergence was introduced by Hsu and Robbins [7] as follows:
A sequence {X,, : n € N} of random variables is said to converge completely to a constant
0 if

0o
> P(IXn—6]>¢€) <oo foralle>0.
n=1

In view of the Borel-Cantelli lemma, the sequence of random variables {X,, : n € N} con-
verging completely to a constant 6 implies X,, — 6 almost sure (a.s.). Therefore the complete
convergence of random variables is a very important tool in establishing a.s. convergence.
There are many complete convergence theorems for sums of independent random variables
(See Gut [6] for a detail survey). For complete convergence in the sub-linear expectation
spaces, Lin and Feng [9] studied complete convergence and strong law of large numbers for
arrays of random variables, Lu and Meng [10] established complete and complete integral
convergence for arrays of row wise widely negative dependent random variables, Yu and
Wu [18] obtained Marcinkiewicz type complete convergence for weighted sums, Xi, Wu and
Wang [17] obtained complete convergence for arrays of rowwise END random variables and
its statistical applications, Liang and Wu [8] established complete convergence of weighed

sums for extended ND random variables sequence, and Feng, Wang and Wu [4] studied
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complete convergence for weighted sums of negatively dependent random variables under
sub-linear expectation.

In this paper we study the complete convergence of weighted sums for widely negative
dependent random variables under the sub-linear expectations. Note that the notion of
widely negative dependence is a weaker condition than some existing concepts, such as
Peng-independence, extended negatively dependence under sub-linear expectations. Our
results extend the corresponding ones of Yu and Wu [18] and Wu [15] for widely negative
dependent random variables under sub-linear expectation. As applications, we present some
corollaries on complete convergence and almost sure convergence for END random variables
under sub-linear expectation.

This paper is organized as follows: in Section 2, we summarized some basic notations and
concepts, related properties under the sub-linear expectations and present the preliminary
definitions and lemmas that are useful to obtain the main results. In Section 3, we give the

main results including the proof.

2 Preliminaries

We use the framework and notations of Peng([12]-[14]). Let (2, F) be a given measur-
able space and let H be a linear space of real functions defined on (€, F) such that if
Xl, )('27 s ,Xn € H then (p(X17X2, s 7Xn) € H for each (RS Cl,Lip(Rn), where Cl,Lip(Rn)

denotes the linear space of local Lipschitz functions ¢ satisfying
[p(x) =) < CO+ X" +]y[™)x -y, Vx, y eR"

for some C' > 0 and m € N depending on . H is considered as a space of "random

variables”. In this case we denote X € H.

Definition 2.1. A sub-linear expectation E on H is a function E: H — R satisfying the
following properties: for all X, Y € H we have

(i) Monotonicity: If X >Y then IE[X] > IE[Y];

(i) Constant preserving: E[c] = c;

(iii) Sub-additivity: E[X + Y] < E[X] + E[Y]; whenever E[X] + E[Y] is not of the form
+00 — 00 or —00 + 00;

(iv) Positive homogeneity: IE[)\X] = )x]E[X]7 A>0

Here R = [~00, o). The triple (Q,H, IAE) is called a sub-linear expectation space.
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Given a sub-linear expectation IE, let us denote the conjugate expectation EofE by
E[X] = -E[-X], VX eH.
From Definition 2.1, it is easily shown that
E[X] <E[X], E[X +¢ =E[X]+¢ and E[X —Y]>E[X]-E[Y]

for all X,Y € H with E[Y] being finite. Further, if E[|X|] is finite, then E[X] and £[X] are
both finite, and if @[X] = £[X], then E[X +aY] = IE[X] + aE[Y] for any a € R.
Next, we consider the capacities corresponding to the sub-linear expectations.

Definition 2.2. Let G C F. A function V : G — [0,1] is called a capacity if
V(@) =0, V( =1 and V(A) <V(B) whenever ACB and A,Be€g.

It is called to be sub-additive if V(AU B) < V(A) +V(B) for all A, B € G with AUB € G.
Especially, a capacity V is 2-alternating if for all A, B € F,

V(AU B) < V(A) + V(B) — V(AN B).

Let (2, H, IAE) be a sub-linear space. We denote a pair (V, V) of capacities by

V(A) := inf{E[¢] : [a < &, € € HY, V(A)=1—V(A°), VAEF,
where A€ is the complement set of A. Then
E[f] < V(4) <E[g] and E[f] < V(4) < E]g], (2.1)

if f<Ix<g, f,g9€ H.Itisobvious that V is sub-additive, i.e., V(AU B) < V(A4) + V(B).

But V and € are not. However, we have
V(AUB) < V(A)+V(B) and E[X +Y]<E[X]+E[Y]
due to the fact that
V(A°N B®) = V(A°\ B) > V(A°) —V(B) and E[-X —Y]> E[-X]—E[Y].

Further, if X is not in 7, we define E by E[X] = inf{E[Y] : X < Y,Y € H}. Then

V(A) = E[14].

In this paper we only consider the capacity generated by a sub-linear expectation. Given

a sub-linear expectation space (£2, H, I@), we define a capacity:

V(A):=E[l4, VAeF
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and also define the conjugate capacity:
V(A):=1-V(4A°), VAeF.

It is clear that V is a sub-additive capacity and V(A) = E[I4].

Definition 2.3 ([21]) (1) A sub-linear expectation E:H — Ris called to be countably

sub-additive if it satisfies

E[X] < ZIE[Xn}, whenever X < ZX",X7 X, €H,
n=1 n=1

where X >0,X,, >0and n > 1.

(2) A function V : F — [0, 1] is called to be countably sub-additive if

o0
V(UL An) <> V(A4,), VA, € F.
n=1

Definition 2.4. Let X be a random variable on (2, F). The upper Choquet integral/expectation
of X induced by a capacity V on F is defined by (Cy,Cy) by

oo 0
CV(X):/XdV(x):/ V(X>x)dx+/ V(X >2z)—1)dx,
Q 0 —o0
with V' being replaced by V and V, respectively.
The lower Chogquet expectation of X induced by V is given by Cy[X] := —Cy[—X], which

is conjugate to the upper expectation and satisfies Cy[X] < Cy[X].

Definition 2.5. ([2]) In a sub-linear expectation (Q,#,E), a sequence of random variable
{Xy,n > 1} is said to be stochastically dominated by a random variable X if there exist a

r.v. X and a constant C satisfying

E[h(X,,)] < CE[W(X)] for alln>1, 0<h € CyLip(R). (2.1)

For simplicity, we only consider the upper Choquet expectation in the sequel, since the
lower (conjugate) version can be considered similarly.
Lemma 2.1. ([1]) Let X,Y be two random variables on (Q,F) and let Cy be the upper
Choquet expectation induced by a capacity V, then, we have

(1) Monotonicity: Cy[X] < Cy[Y] for X <Y

(2) Positive homogeneity: Cy[AX] < ACy[X] for A > 0;

(3) translation invariance: Cy[X + a] < Cy[X] + a for Va € R.

257
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The following lemmas show that some important inequalities in classical probability

theory still hold in sub-linear expectation spaces (See [10]).

Lemma 2.2. (Markov’s inequality) For any X € H, we have

for any x >0 and p > 0.

Now we give the definition of widely negative dependence on the sublinear expectation
space. The concept of widely negative dependence is introduced by Lin and Feng [9] as
follows.

Definition 2.6. Let Xj, Xo, -+, X;,11 be real measurable random variables of (2, F).
(1) Xy41 is called widely negative dependence of (Xi,---,X,) under E if for every non-
negative measure function ¢; with the same monotonicity on R and IE[@Z(XZ)} < 00,1 =

1,2,--- ,n+ 1, there exists a positive finite real function g(n + 1) such that
R n+1

E [H %‘(Xi)] <gn+1)E
i=1

(2) {X;}:2, is said to be a sequence of widely negative dependent random variables under E

H@z z:|E[‘Pn+1( Xnt1)] -

if for any n > 1, X,,11 is widely negative dependence of (X1, Xa, -+, X,).
(3) {Xni:1<i<n,n>1} is said to be an array of rowwise widely negative dependent
random variables under B if for any n > 1, {Xp;:1<i<k,} is a sequence of widely

negative dependent random variables

Remark 2.1. For a sequence of widely negative dependent random variables {X; : i > 1},

we have
n n

E|[[e:(X0)| <g(n) [[Elwi(X:)], where g(n H g(i
i=1 i=1

for any n > 1 and every nonnegative measurable function ¢;(-) with the same monotonicity

on R and IE[(,OZ(X»L)] < o00,i=1,2,--+,n, where g(-) is in Definition 2.6(1).
Remark 2.2. Without loss of generality, we will assume that g(n) > 1 for any n > 1 in
the sequal.

The following lemma is introduced by Lin and Feng [9].

Lemma 2.3. Suppose that {X;}°, is a sequence of widely negative dependent random
variable under IAE, and {;(x)};2, is a sequence of measurable function with the same mono-
tonicity. Then {¢;(X;)}2, is also a sequence of widely negative dependent random vari-

ables.
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It is necessary to note that widely negative dependence under sub-linear expectations is
defined through continuous functions in Cj r;, and the indicator function I(|z| < a) is not
necessarily continuous. Therefore, the expression E[I(|X| < a)] does not necessarily exist in
the sub-linear expectation space. So we should modify the indicator function by functions in
I(|z| < a) to ensure that the sequence of truncated random variables is also widely negative
dependence (See Lu and Meng[10]).

We define the function h(z) € Cy 1:p(R) as follows. For 0 < u < 1, let h(z) € Cp rip(R)
be a nonincreasing function such that 0 < h(z) < 1 for all  and h(z) = 1 if |z| < g,
h(z) =0 if |z| > 1, then

I(|a] < p) < he) <I(le| <1),  I(je] > 1) <1=h(z) < I(|z] > p). (2.2)

Throughout this paper, let {X,, : n > 1} be a sequence of widely negative dependent
random variables in (€2, H,I/[*i) C will signify a positive constant that may have different
values in different places. a, = O(b,) denotes that for a sufficiently large n, there exists

C > 0 such that a,, < Cb,, and I(-) denotes an indicator function.
3 Main Results and Proofs

Theorem 3.1. Suppose that {X, X, : n > 1} is a sequence of widely negative dependent
random variables in (Q,’}-LIE) which is stochastically dominated by a random variable X,
and let V be a countably sub-additive capacity. Let g(x) be a nondecreasing positive function

on [0,00) such that

g(x) = g(n) when x =n, §0)=1 and 9(=) L for some 0 <71 <1 (3.1)

x‘l’

Assume that {an, : 1 < k <n,n > 1} is an array of real numbers satisfying

nk| = e 2
max - |an| = O(n"") (3.2)
and
cp = Zaﬁk = o(log~'n), (3.3)
k=1

where 0 < o < 1. Further assume that and

E[|X|*] < Cy(|X|*) < 00 (3.4)
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where § > —a, p=(1+a+ 8)/a > 1. Then we have

ZV <Z Ank (Xk - I/E\J[Xk]) > e) < oo, Ve>D0. (3.5)
=1 k=1
and
o0 n N
v (Z s (Xk - S[Xk]) < e> <00, Ve>O0. (3.6)
n=1 k=1
In particular, if {X, : n > 1} is a sequence of widely negative dependent random variables

in (Q,H, IE) and E[Xk] 5[Xk] , then

nZlV ( > ann (Xk - Xk})

Proof. Note that a,, = a*k —a,,, where a:k = max {0, apr} and a_;, = max {0, —anz}.

e) < oo, Ve>0. (3.7

Without loss of generality, we may assume that E[X,] = 0,E[X2] = 1,an; > 0 for all
1<k<nmn>1 Fora>0,set p=a?/(a+1),and then p > 0. Let N be a positive
integer such that N > (a + 1)/ for some 8 > —a. Sincen ™ — 0asn — oo, for any € > 0

and for some N > 0, there exists a positive integer Ny such that n > Ny = n” <¢/N.

Let
1) = XpI(aneXr <n7?)+ agklnfpl(anka >n~r),
Xnk:)_(Xk_ankn )I(|Xk‘>E/N)7
X(3) (X -1, —p —p (38)
= ( k= QT )I(n < X < E/N) ,
Tp = amXp =T + T + T,
where
n
X=X+ X0+ xQ) and 7O =3 auxl), i=1,23
k=1
Since
{T > 3¢} C {T}Ll) > e} U {T,(LZ) > e} U {TS’) > e} ,
to prove that > >, V(T,, > 3¢) < oo, we only need to show that
v (T,EU > e) < 0, (3.9)
n=1
o0
ZV( T >e) < o0, (3.10)
o0
v (T,@ > e> < . (3.11)

3
Il
—
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For n > 1, let u, = min{e/(2Ccy,n"}, where ¢, = Y)_;a2,. It is easily checked from
Lemma 2.10 that for any fixed n > 1, {ankXﬁi), 1<k< n} are still widely negative depen-
dent random variables, and {exp (unankXSC)) 1<k <L k} are also widely negative depen-
dent random variables. Hence, it follows from Definition 2.7 that

ﬁ exp (unankXSc))}

k=1

E [exp (unT,(Ll))} =E

! (3.12)
< g(n) H B [exp (unankaLl))} .
k=1
Note that unanngc) <1lfor1<k<n,n>1, we have by Lemma 3.1
~ ~ ~ 2
E {exp (unankXSg)} < exp (unankE [XS” +ua?,E [Xr(lm > , (3.13)
~ ~ ~ 2 ~
which together with E [Xr(jj} <B[Xu] =0and B [X,ﬂ < B[X)2 = 1 yields that
E {exp (unankXSC))} <exp (uZaZ,), (3.14)
and thus by (3.4)
E [exp (unTT(Ll))} < g(n)exp (uicn) . (3.15)
Since X is a random variable with X <1 a.s., then
Blexp(X)] < exp (B[X] +E[x?))
(See [8]). By Markov’s inequality and (3, 10), we get that
v (T,El) > 6) < exp (—eu,) E [exp (unT,(ll))}
(3.16)

< g(n)exp {—eun + u%cn} .

Let Ny = {n:¢/(2¢,) > n} and Ng = {n:¢/(2¢,) < n’}. If n € N1 & €/(2¢,) > n, then
by definition of w,, we have u, = n” and —eu, + u%cn < —§nf. For any € > 0, we have

en” /2 > logn? for sufficiently large n, it follows that

o0
Z \Y% (Tfll) > e) < Zg(n) exp (—enf/2) < cc. (3.17)
neN; n=1

Ifn € Ny < ¢/(2¢,) < n”, then by definition of u,,, we have u,, = ¢/(2¢,) and —eu, +u2c, =

_

1o - Since ¢, < ¢?/(81logn) for sufficiently large n from ¢, = o(log™!n), we have

Z v (Tr(ll) > e) < Zg(n) exp (—62/(4Cn)) < 0. (3.18)

neNy

261
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Therefore, we have from (3.11) and (3.12)

iv (1> &) = S V(T > €) + 3 V(T > ) < . (3.19)

n=1 neNy neENy

Next, note that for any ¢ > 0

Oy (|X|2/a) _/OCX\IO(OXF/‘x >x) dm:/ooov(m >xa/2) dz
:cQ/a/O OOV<|X >cya/2) dy
:20%/0 V(X > ) dz,
then
v (IXP7) <00 iV(|X|>cn"/2) < o0

n=1

o0
& ZnV(|X\ > en®) < oo.

n=1

Since p = (1 + o+ B8)/a > 1/a, we have from Proposition 2.5(1)

Cy (\X|2/“) < Oy (|X|2”) < . (3.20)
By (3.3), we have
(2) n ea;kl n a -1
(Tn > e) C Uy ( Xe > 2 ) C U, (X0 > en®(eN) 7)), (3.21)

it follows from (2.1), (2.2) and (3.1) that

V{Tr(f) > e} < Zn:V (Xk > en®(eN)™H)
k=1
2 (1 ()
2 (1 (o)) o

V(X > pen®(eN)™)

M=

£
Il

IN
Q
?s-Mi

3l

[N

IA
Q
i

< COnV (|X| > pen®(eN)™).

Therefore, we have by (2.1), (3.15), (3.16) and (3.17)

iV{T,@ > e} < CiV (1X| > pen®(eN)™Y) < oo, (3.23)
k=1

n=1
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Next, we prove that y -7, V(T,S,?’) > ¢€) for any € > 0. It follows by the definition of Xr(jc)
that if a,x X ¢ (n"7,¢/N], then ankX(:;;) = 0; if apxXg € (n7?,¢/N], then ankXS;) <e€/N.

n,

hq ank X, T(jc) > ¢, there must exist at least a positive integer

So in order to ensure T,(lg) =3
N indices k such that n™? < a,;, Xy < ¢/N. Hence by (2.1), (2.2), (3.1), Definition 2.7 and

Markov’s inequality, we have that
(12
- {there exists at least IV indices k such that n™" < a, X < e/N}
- {there exists at least N indices k such that a,; X > n_P}

-1 - -1 -
< Z V(Xkl > gy T ”,---,XkN>anan ”)
1<ki1<-<kny<n

IN

> E

1<k1<--<kn<n

TI(1-n (ankinpxk))}

i=1

© Y GIIE[( - h (X))
1<k <-<kn<n i=1
< g(N) Z HV (X > ua;klin_p) (3.24)

1<k1<--<kny<ni=1

G STV (IX] > pagin=)] "

<
k=1
" N
< g(n) V(1X] > ,uanklnp)}
k=1
~ N
_ ~ E[IX[*]
<Cgn) > (pa=tn-—ry2
k=1 nk
~ N
| EIXPP] & o
= C9n) | oy 2 ok
k=1
nT
= CnZN(a(Pfl)*pp)'
Note that
1+a+p l4a+8 a2 Jl4a
o> [o(LE0E8 ) s o ]
l+a+pBa\1l+a
=1 -
( +h 1+a B
1—a?
=1+ >1
B

for 0 < a < 1, it follows from (3.1) and (3.18) that

iV (T,(Lg) > e) < Cinf(%ﬂ < 0. (3.25)
n=1

n=1
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Together with (3.13), (3.19), (3.20) and V being the countably sub-additivity, we obtain
(3.8). This completes the proof of (3.6).

Furthermore , if {X,,,n > 1} a sequence of widely negative dependent random variables
in (Q,F, IE)7 then {—X,,,n > 1} is also satisfying the conditions of Theorem 3.1 and consid-
ering {—Xp,,n > 1} instead of {X,,n > 1} in (3.6), we can obtain by E (—X3) = & (Xp)

iv (i Ank (—Xk — IE[—X]C]) > E)
k=1

k=1
— s v (iank (X;C —EA[XkD < —e> < oo, Ve>0.

k=1 k=1
That is, (3.7) is established.
In particular, if E (X)) = & (X}), then for any € > 0

I\
)
<
oY
Q
S
o
>
|
J<)
|
e
Na’
\V2
N

k=1 k=1
+ Z (Z Qnk (Xk — ]E[Xk]) < —6> < 00,
k=1 k=1

which completes the proof.
We can get the following corollary immediately.

Corollary 3.1. Let {X,X,,n > 1} be a sequence of END random variables in (Q,?—LI@)
which is stochastically dominated by a random variable X satisfying (3.4), and let V be
a countably sub-additive capacity. Assume that {ank,1 < k <n,n > 1} is an array of real

numbers satisfying (3.2) and (3.3). Then (3.5) and (3.6) hold.

Corollary 3.2. Let {X,,n > 1} be a sequence of identically distributed END random
variables in (2, ’H,JE) satisfying (3.4) and ]E[Xl] = EA[Xl] =0, and let V be a countably sub-
additive capacity. Assume that {ank, 1 < k < n,n > 1} is an array of real numbers satisfying
(3.2) and (3.3), then we have

n
Zanka — 0 as. V asn— oo.
k=1

If we take a,,, = n~“ in Corollary 3.2, we can get the Marcinkiewicz’s strong law of large

numbers under sub-linear expectations ([23]).
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Corollary 3.3. Let {X,,n > 1} be a sequence of widely negative dependent and identically

distributed random variables in (0, H,E) satisfying (3.4) and E[X1] = E[X1] =0, and let V

be a countably sub-additive capacity, then we have

"X

k

E — — 0 as. V asn— oo,
n

k=1

where 0 < o < 1.
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