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CONTINUITY OF LOCALLY BOUNDED
HOMOMORPHISMS OF SOME EXTENSIONS
OF PERFECT CONNECTED LIE GROUPS

A. 1. SHTERN

ABSTRACT. We obtain sufficient conditions for the automatic continuity of
locally bounded homomorphisms of some extensions of perfect connected Lie

groups into connected Lie groups.

§ 1. INTRODUCTION

In this note, we obtain sufficient conditions for the continuity of every
locally bounded homomorphism of some extension of a perfect connected Lie
group G into a Lie group.

§ 2. PRELIMINARIES

Let us recall some information needed below.

A (not necessarily continuous) homomorphism 7 of a topological group
G into a topological group H is said to be relatively compact if there is a
neighborhood U = U,,, of the identity element e in G whose image m(U) has
compact closure in H. Obviously, a homomorphism into a locally compact
group is relatively compact if and only if it is locally bounded, i.e., there is a
neighborhood U, whose image is contained in some element of the filter U
of neighborhoods of ey having compact closure.

Let us also recall the notion of discontinuity group of a homomorphism
7 of a topological group G into a topological group H, see [1] and [2]. Let
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i = $lg be the filter of neighborhoods of eg in G. For every (not necessarily
continuous) locally relatively compact homomorphism 7 of G into H, the set

DG(r) = () 7(0)

Uecu

is called the discontinuity group of m. Here and below, the bar stands for
the closure in the corresponding topology (here the closure is taken in the
topology of H). (See Definition 1.1.1 of [1].)

The discontinuity group of a homomorphism has some important prop-
erties. Under the above conditions, the set DG(7) is a compact subgroup
of the topological group H and a compact normal subgroup of the closed
subgroup m(G) of H. Moreover, the filter basis {7(U) | U € 4} con-
verges to DG(w), and the homomorphism 7 is continuous if and only if
DG(w) = {en}. (See Theorem 1.1.2 of [1].) If G is a connected Lie group,
then DG(7) is a compact connected subgroup of H. (See Lemma 1.1.6 of [1].)

Recall that a connected Lie group G is said to be perfect if the commutator

subgroup of GG coincides with G in the group-theoretic sense.

8 3. MAIN REsSULT

Theorem. Let G be a connected Lie group containing a connected perfect
Lie subgroup H and a closed supplementary central subgroup K such that
G = HK (i.e., every element g € G admits a representation in the form
g = hk, where h € H and k € K). FEvery locally bounded homomorphism
of G into a Lie group is continuous if and only if its restriction to K is
contINUOUS.

Proof. Let m be a locally bounded homomorphism of the connected Lie group
G into a Lie group H. Obviously, if a homomorphism of a group is continuous,
then it is continuous on each subgroup of the group, so it is sufficient to prove
the “if” part.

Let H be a perfect Lie group, let K be an Abelian Lie group, and let
the connected Lie group G be included in a split short exact sequence of
the central extension {¢} — K - G % B — {e} with continuous embed-
ding ¢ onto a closed subgroup of G and the canonical epimorphism p of the
group G onto H, isomorphic to the quotient group G/K. Then the com-
mutator subgroup G’ of the group G is mapped by an epimorphism p onto
the commutator subgroup H’ of H. Moreover, G’ is in a natural one-to-
one correspondence with H’. Indeed, for any kq,ks € K and b,c € G we
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have bkycka(bky) ™ (cks)™ = beb e Ykik 'koky ' = [b,c] and, therefore,
the commutator of bK and cK is equal to [b, ¢|K for any b, ¢ € Z. Thus, the
commutator subgroup of the group G is naturally isomorphic to the commu-
tator of the group H. However, H is perfect, which means that H' = H.
Hence, the subgroup G’ of G coincides with the isomorphic image of the
group H in G under a split mapping and is thus closed, and every element
of G is the product of an element of G’ and an element of K.

Now the statement of the corollary follows from Theorem 5 of [7], which
was proved using the properties of the discontinuity group of a locally bounded
homomorphism that are listed above in Sec. 2. This completes the proof of
the theorem.

§ 4. DISCUSSION

As a rule, a locally bounded homomorphism between Lie groups is con-
tinuous only under additional conditions (for example, see [3-6].
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