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Abstract

This article is involved with the solvability to fractional integral equations concerning
Riemann-Liouville on a Banach space C([0, b]) arising in some engraining problem.
The key findings of the article are based on theoretical concepts pertaining to the frac-
tional calculus and the measure of non-compactness (MNC). To find this purpose, we
utilize the Petershyn’s fixed-point theorem (PFPT) in the Banach space. In addition,
we deliver numerical examples to show the applicability of our results to the theory of

fractional integral equations.
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1 Introduction

Fractional calculus is a famous mathematical tool for the characterization of abnormal and
non-local diffusion concurrently with physical exploration and has also found applications
in different fields from physics and engineering to the analysis of natural phenomena and
financial analysis. The domain of fractional calculus recreates a major role in mathematical
analysis which analyses the derivatives and integrals of any real or complex order by utilizing
the Euler gamma function[27, 37]. The theory of integral equations play an important role
to study the real life problems. It has a significant contribution not only the field of

mathematics but also the other branches like engineering, physics, mechanics, modeling,
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etc [15, 32, 36]. Here, we study the solvability for the following FIE

1 20 p(r, s, u(u(s)
u(rt) = 7,u(7),u(a(r)), 2 ds
@) = () g [ RS
o(r)
<a(rutr) (o). [T atrsulo(s)ds). &)

forr €I, =10,0], 0 <h<1.
We have found the following integral equations as particular type of the equation (1).
e Darwish [18] analyze the solvability for FIE

ur) = f(ruam), F(lh) /0 p((:’_s:)ll(f)h) ds)

1
xg (. u(9()), u(T)/O a(7,s,u(s))ds), 7 € [0,1], 2)
e Bana$ and Rzepka [8] analyze the solvability for FIE
ur) = Ar) + L) [TH g 7 e o) ®
e Bana$ and Regan [10] studied the solvability for FIE
ulr) = Atr) + L) [THES a1 e .00, (W

e Darwish and Henderson [19] studied the solvability for FIE

f(ru(r) /T p(7, 8, u(s))
0

(1 —s)l-h

u(r) = f(r,u(1)) + ds, 7€ 0,00). (5)

e Balachandran et al. [2] analyze the FIE

ulr) = f(rutar)) + HEE D (PO 0. (o)
e Darwish [17] analyze the solvability for FIE
ur) = A + i [ s, e ")

e Deepmala [26] analyzed the following FIE

T

u(r) = <f(T,U(T))+f(T, / p(r,s,u(s»dau(a(r))))

X (g (T, /Obq(T, s,u(s))ds,u(d)(ﬂ))), T € I (8)

e Bana$ [5] as well as Maleknejad et al. [39] analyzed the following FIE

b

e = 1(r. [ ptros. s utalr) o [ atros.uvis)ds uor)). < 1 (9)



Application of fixed point theorem to solvability for fractional integral equations in Banach Space 225

e Caballero et al. [12] analyzed the following FIE
T b
u(r) = /(. / prys.u(e)ds.ula(r))) x o7 [ u)a(r,s,u(s))ds. u(o(r). 7 € 1.(10)

0

e Hu and Yan [31] examined the solvability for FIE

u(r) = f(T,U(T%/O p(T73au(s))dS>7 7 € [0,00). (11)
e Maleknejad et al. [40, 41] examined the solvability of FIEs
u(r) = f(T,u(T)) + f(T, /OT p(T,s,u(s)ds,u(a(T))) (12)
ur) = f(r.u(a() [ plr.sulsds, 7€ 0 (13)
0
e Banas$ [6, 11] analyzed the following FIEs
ur) = frutr) [ ot suls)is, (14)
u(r) =c(r) + f(T,u(T)) /Tp(T7 s,u(s)ds, T €0,00). (15)
0
e Cakan [13], Ozdemir et al. [43], Ozdemir [44] analyzed the following FIE
R B(7)
u(r) = f(r,u(e(r)) + f(7, u(@(T)))/ p(7,8,u(p(s)))ds, (16)
0
u(r) = f(T u(a(r)) + f(T /5(7) (7, s, u(p(s))ds u(a(T))) 7€ I (17)
b b O ) 9, ) )

e Aghajani and Jalilian, [1] have studied the equation

B(T)
u(r) = f <T7U(Oz(7)),/o P(T,&u(u(s)))dS) , 7 €0, 00). (18)
e Cichon and Metwali [16] have studied the equation

1
u(r) = f(r,u(a(7)) + f(ﬂU(T))/O p(7, 5, u(p(s)))ds, 7 € [0,1]. (19)

e Vetro and Vetro [48] have the studied the equation

B(7)
u(r) = f(7,u(a(7))) +/O p(7,s,u(pu(s)))ds, 7 € [0, 00). (20)
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e Hashem and Rwaily [28] have the studied the equation
. . 8(7)
u(r) = f(7,u(a(7))) +f(7,u(a(7)))/ p(7,8,u(pu(s)))ds, 7 € [0, 00). (21)
0
e Bana$ and Dhage [9] have the studied the equation

B(7)
u(r) = f(r,u(a(7)) +/O p(7, 5, u(p(s)))ds, 7 € [0,00). (22)

Further, some famous equations of first order, Volterra equation, Urysohn equation, Abel

equation and Chandrasekhar type [15] have the form

u(t) = f(7r,u(a(7))) (23)
iy L [Trsus),
u(r) = A(r) + ) /0 (r = s d (24)
u(r) = A(r) + /OT p(7, 8, u(s)ds (25)
b
u(r) = A(1) +/O (T, s,u(s)ds (26)
b
u(r) =1+ u(r) /0 T lsyuts)ds, (27)

It should notice that equation (1) is additionally standard than equations (2)-(27) and so
on. Numerous authors have examined the various types of integral equations by the ideas
of MNC with fixed point theorems in the Banach function spaces, we refer [4, 7, 14, 20, 21,
22, 23, 24, 25, 26, 29, 30, 33, 34, 35, 40, 41, 46, 47] and reference therein.

The paper is organized into 4 sections with the introduction. In section 2, we recognize
preliminaries and establish the concept of MNC. Section 3 is applied to state and prove a
theorem for equation (1) including densifying operators by Petryshyn’s fixed point theorem.

In the previous section, we offer some examples that test the facts of this class of FIE.

2 Preliminaries

First, we recognize the concept of the fractional integral of order h for the u(7)

Definition 2.1. [37] Let v € Cla,b] and a < 7 < b, then

1 T u(s)
I"u(r) = 0) /a o= s)l_hds, h>0

is known as the Riemann-Liouville fractional integral of order h. I' the gamma function is
defined as

F(h):/ sh=lesds.
0
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Let E be a real Banach space and B,, denote closed ball with center at 0 and radius 7.
0By, = {u € E : ||u]| = ro} for the sphere in E around 0 with radius 7o > 0. The MNC is a

helpful tool to apply fixed point theory in non-linear analysis in Banach space F.
Definition 2.2. [3] The Kuratowski MNC

n
O(F) = inf{e >0:F= UFl with diamF; <e, i = 1,2,...,n} .
i=1

Definition 2.3. [3] The Hausdroff MNC
(F) =inf {e > 0: 3 a finite e-net for F in E},

where a finite e-net for F' in F it means, it is a set {uy, ug, ..., un} C F such that Bc(F,u1), B(E, u2),

eoey Be(E, up,) over F. These MNC are respectively similar in the sense that
P(F) < O(F) < 29(F),

for any bounded set F' C E.

Theorem 2.1. Let F,F C E bounded and A € R. Then

(1) Y(FUF) = max{p(F), p(F)};

(i) FCF = §(F) <o(F);

(i) ¢ (coF) = (F);

(iv) ¥(F) =0 if and only if F is relatively-compact;

(V) D(AF) = [A[p(F);

(vi) Y(F +F) < (F) + 3 (F).

Further, Banach space C[0, b] is the set of all real valued continuous function on [0,b] with
the sup norm
lu]l = max{|u(7)| : T € [0,b]}.
Also, space E = C[0, b] is the formation of Banach algebra.
Suppose a fix set H € C[0,b]. For € > 0 and u € H, the modulus of continuity of u defined
by
w(u, €) = sup{|u(re) — u(r1)| : 72,71 € [0,0], |72 — 71| < €}.

Further,
w(F,e) = sup{w(u,€) : u € F}, wo(F) = liII(l)(F, €).
e—
Theorem 2.2. [33] The Hausdorff MNC is equivalent to

Y(F) = lim sup w(u,€) (28)

=0y F

for all bounded sets F' C C|0, b].
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Definition 2.4. [42] Suppose T': E — E be a continuous mapping of E. T is said a k-set
contraction if for all G C F with G bounded, T(G) is bounded and 6(TG) < k0(G),k €
(0,1). If 6(TG) < 6(G), ¥V 6(G) > 0, then T is called the densifying or condensing mapping.

Theorem 2.3. [45] Assume T : By, — E is a condensing mapping, which satisfied the
boundary condition if T'(u) = ku, for some u € 0By, then k < 1. Then F(T) (the set of
fized points of T') in By, is non-empty.

3 Main results

We analyze the equation (1) under the following conditions:

1) f,ge C(Iy,x RxRxR,R), pe C(I x [0,C1] x R,R), g € C(I x [0,C2] x R, R),
and 8,0 : Iy = RY, u:[0,C1] = Iy, v: [0,Co] = I, o, ¢ : I, — I are continuous,
B(1) < C1,0(1) < Cy for every T € I,.

(2) 3 constants h;, hy + he <1 and hy + hs <1 for i = 1,2,...6 such that

|f(7,u1,u2,u3) — f(T,v1,v2,v3] < hilur — v1| + haluz — va| + haluz — v3l,

lg(7, u1,ug,us) — g(T,v1, v2,v3] < hglur — v1| + hslua — ve| + hglus — vs|.

(3) 3 ary> 0 such that the following bounded condition satisfied

sup ({I(H) x (H2)1}) < o,

here

- ) ]\/[10{7' M1C{L
sup Hi —sup{\f(T,ul,u27u3)| : for all ¢ € I, u1,uz € [—ro,70] and us € | F(h+1)’1"(h+1)] ,

sup Hy = sup{|g(7, u1,uz,us)| : for all 7 € Iy, u1,us € [—ro,ro] and ug € [—M2Cs, M2Cs]},
M, = sup{|p(7,s,u)| : for all T € I;;,s € [0,C1] and u € [—ro,70]},
Mo = sup{|q(7, s,u)| : for all 7 € I, s € [0,C2] and u € [—70,70]}.

Theorem 3.1. Using the assumptions (1) — (3), the equation (1) has at least one solution
n E = C(Ib).

Proof. Define f,g: By, = E in the following form

1 BT p(r, s, u(p(s
(fu)(r) = (f(num,u(a(m, ol st))

o(7)
(gu)(r) = <g(nu<r>,u<¢<r», / q<ns,u<u<s>>ds)>, for 7 € [0,0].
0
Further, setting operator T" such that

Tu = (fu)(gu).
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Now, we show that f is continuous on B,,. For this, ¢ > 0 and any u,z € B,, such that
|lu — z|| < e. Then,

[(fu)(r) = (f2)(7)]

e L P prsulu(s) )N ol oy oo L A0 p(r s a(u(s)

= | (rtorutatn. i [ B R as) = (ot stetr gy [ G52 )
B p(r, s, u(p(s 7,8, z(u(s

sh1|u<7>—z<r>|+h2|u<a<r>>fz<a<r>>|+h3%h) R

< (1 + ) u(r) = () + gy O (o)

where
w(pa 6) = Sup{|p(7—>sau) *p(T,S,Z)| ‘T E Ib75 € [0,01],’&72 € [771077‘0]7 "U/ - Z| < 6}'

By uniformly continuous of p = p(7, s, u) on I, x [0, C1] X [—79, o], we refer that w(p,e) — 0
as € — 0. From the above inequality f is continuous on B,.
Further,

()~ (92)(7)]
~|o(rutrr o). [ " s uto)as) (2,060, [ sttt

o(7)
< halu(r) = 2(7)| + hs|u(o(T)) — 2(&(7))[ + hs/o lq(7,5,u(v(s)) — q(7, s, 2(v(s))|ds
< (ha + hs)|[u(7) = 2(7)| + heCow(g; €),
where
w(q,€) = sup{|q(7,s,u) — q(7,8,2)| : 7,8 € Iy, u, z € [—ro,r0], |u — 2| < €}.

Using uniformly continuous of ¢ = ¢(7, s,u) on I x I x [—rg, ro], we refer that w(q,e) — 0
as € — 0. By above inequality g is continuous on B,,. Hence, T' is a continuous operator on
B,,.

Next, we prove that the f satisfy the condensing condition on B,, with respect to 1. Take
F of By,. Select € > 0 and 71,72 € I, such that 7 — 7 <e. We get

|(fu)(72) = (fu)(m)]

1 B(m2) p(r s,u(p(s
= f(rg,u(Tg),u(oc(Tg))T(h)/0 (((2 ) (5)1 )hds)
(

1 B(r1) T1, S, u(p(s
_f(T17U(7'1)7U(Oé(7'1))7F(h)/O ?5(1 = (SN)( )}3ds)

1 B12) p(19, 5, u(p(s
f (mu(m),u(a(m))am/o %dé’)

IN
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f<72,u(72),u(a(rg))7r(1h) /Oﬂ(m 7, & ululs) ds>
+'f <T2,u(7'2),u(a(7'2))7ﬁ/{)ﬁ(ﬁ) BT, &, “S ) ds>|
_f<TQ,U(T2),U(Q(T1)),P(1h) /Oﬁ(n) Tl’“‘ (s) ds>
+'f <T2,u(72),u(a(ﬁ)),r(1m/Oﬂ(m %, “S 9) ds>
_f(Tg,u(ﬁ),u(a(ﬁ))7r(1h) /Oﬁ(ﬁ) pm1, 5, u(u(s) ds>
+'f (m,u(ﬁ),u(a(ﬁ)),ﬁ/Oﬁ(n) ptn, o, “S ) ds>

B(11) 7— s, u 5
—f <Tl’“(71)v“(o‘(ﬁ))’ F(lh) /o 1 ds)

P plry,sulp(s) ) plrysulls)
A (Blra) — )" / @) — sy

+ hifu(re) — u(m1)] + helu(a(rz)) — u(e(m))| + wr (I, €)
< hiw(u, €) + how(u, w(o, €)) + we(lp, €)

~T(h)

. B(r2) B(r2)
L / p(72, 5, u(ﬂls)h ds—/ p(71, 5, u(u(IS)h ds
L) || Jo (B(r ) ) 0 (B( 2) — )
B(r2) 7'1 s, u(p Br2) p(ry, s, u(p
+ d
/0 /0 Br) — )
B(r2) 7—1 s, u B(r Tl,s 'LL S
+ /(; B0r) = 9) 1 h /0 ds

< hlw(uv 5) + hQW(ua ( )) wf(Ib7 )
h3 ) |p(ra, s ( (S)) (7178 u(p(s))
/ d

(k)

P02 p(r, s, u(u(s)
-

B(12) h— h— )
+A |mm&mmmmm@ww>l—wmwﬂ>”“+Am><<> aih

h

< hiw(u, €) + how(u, w(e, €)) +wy(lp, €)

+ 7F(hhi 1y p (b &) (B(m))" + %Mﬂ(ﬁ(m))h — (B(r))"]
< hw(u, €) + how(u, w(a, €)) + wy(Iy, €)
+ F(hhi 1)wP(Ib7€)(B(7—2))h + %Mﬂ(ﬁ(m)) — (5(7—2))]’17
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where

wt(ly, €) = sup{|f (7o, w1, uz, u3) — f (71,1, uz,us)| : 72,71 € I,
mlC{’ MlC{’
I'(h+ 1)’ I'(h+1)
wp(Ip, €) = sup{|p(72, s,u) — p(11,s,u)| : |72 — 71| < €, 72,71 € Ip,u € [—r0, 70,5 € [0,C1]},

]7”17“2 S [—1"077‘0]7 |T2 - 7_1‘ S 6}7

ugE[—

w(a,e) = sup{|a(r) — a(m1)| : 72,71 € I, |72 — 11| < €},

w(B,€) =sup{|B(2) — B(11)| : 72,71 € Ip, |2 — 71| < €}
From above estimate
W(fF,€) < hiw(u,€) + haw(F,w(a,€)) + ws(lp,€)

+ pr(fb, e)(Cl)h + %Mﬂww, e)]h‘

I'(h+1)
Apply limit as € — 0, we obtain

wo(fF < (h1 + hg)wo(F).

We get

Y(fF) < (b + ho)p(F).
Hence f is a condensing map.
Similarly,

(gu)(72) = (gu)(m1)]

= 'g(n,u(m),u(qﬁ(m)),/w(m) q(12, s, u(v(s dsds) g Tl,u(n),u(qﬁ(n)),/j(n) q(n,s,u(y(s))dsds)

(
72, u(T2), u(p(12)), o q(72, 8,u(v(s))dsds ) — g( 72, u(r2), u(¢(72)), s q(71, s,u(v(s))dsds
<o I o

(1)

w(11) ¥
+ |g( 72, u(m2), u(P(12)) /0 q(71, s, u(v(s))dsds g( 72, u(m2), u(d(m) /0 q(71, s, u(v(s))dsds

0

o )= )
+ ‘g(r (72), u(d(71) /MT q(T1, 8,0 v(s))dsds) g(T (11), u(p(71) /so(n) q(‘rl7s7u(v(s))dsds)
+ ‘g(m,u(n) u(¢(r1)) /OW( q(T1, s, u(u(s))dsds) g<r1,u(7'1) u(op(71) /OW(T” q(ﬁ,s,u(u(s))dsds)

#(72) (1)
/0 q(m2, s,u(v(s))ds — /o q(11, s,u(v(s))ds

< hg

+ halu(r2) — u(r)| + hslu($(12)) — w(d(m1))| + wy (I, €)
< haw(u, €) + hs(u, w(p, €)) + wq (I, €)

©(T1) p(T2)
+ he / a2, 5, u((3)) — a1, 5, u(w(s))lds + he / la(r, 5, u(v(s))lds
0 @(T1)

< haw(u, €) + hs(u, w(e, €))
+ haCQu)q(Ib, 6) + ha]\fgw((p, E)7
where

wg(Iv, €) = sup{|g(T2, u1,u2,u3) — g(T1,ur, uz,us)| : 72,71 € I,

231
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ug € [—CaMyz, CaMys],u1,uz € [—ro,70], |72 — 71| < €},

€

q(Iv, €) = sup{|q(72, s,u) — q(11,8,u)| : |72 — 71| < €, 72,71 € Ip,u € [—70,70], s € [0,C2]},
w(¢, €) = sup{|¢(r2) — d(T1)] : 72,71 € Loy |72 — | S e},
w(ip, €) = sup{lp(r2) — @(m1)| : 72,71 € I, |72 — 11| < €}
From above estimate
w(gF,€) < haw(u, €) + hs(F,w(¢, €)) + heCawq(Iy, €) + he Maw(p, €).

Apply limit as € — 0, we get
wo(9F) < (ha + hs)wo(F).
This gives the following estimate
Y(gF) < (ha + hs)Y(F).
Hence g is a condensing map. So, T is also a condensing map. Now, let v € 9By, and if Tu = ku then,
[|Tu|| = k||ul| = kro and by (3),

BT p(r, s, u(p(s
ITu(r)l = (f(w(ﬂm(a(m i/, W”)

X <g(7,u(7),u(¢(r)),/0¢(7) q(r, s,u(l/(s))ds))

ST[J, V1 €l.

Hence || Tul] < 7o ie., k<1 ]

4 Examples

In this section, we provide some examples of equations to illustrate the usefulness of our

results.

Example 4.1. Let the following fractional integral equation

0= (3 gt D+ +s;n<|u<1ﬁ>|>>r<§> e )
x (% cos(u(l — 7)) + m /OT [6*2"‘ (eT + 7 cos(s) + cos (1 z(zzs)» ]ds),
relo,1]. (29)

Here f,g:[0,1]] x RxR xR =R, «, 8, p, 0, 0,0 : [0,1] = [0,1],p,¢:[0,1] x [0,1]] x R = R
and comparing (29) with equation (1), we get

1
a(f)=p(n) = n=v1,6=B=1,h= 5,01 =Cy=1 forall 7 €][0,1],

1 _ o 74 z 1 T (T, s, u(p(s)))
= —e 7T — In(1 - =
flr,u1,uz,2) v 53 n(1 + |ug|) + 5T ()’ z I )/o d

3

w= /T q(r, s,u(v(s)))ds,
0

w

1
g(7,u1,ug, w) = 3 cos(ug) + m’

Pl s, u(u(s))) = 7 (€ reos(1+ )+ 5 ((VE), ol s ] Se+ 1+ glul

u(s)

q(7,s,u(v(s))) = 6_27—4(67— + T cos(s) + COS(Tu(S)

)s la(r,s,u)] <e+2
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for all 7 € [0,1]. Above functions fullfil the assumptions (1) and (2). Now, we review that
(3) too holds. Assume ||u|| < 79,79 > 0, then,

1 4
)l =| (377 + g 0+ )

1 T 6*37’2(67 +7cos(l1+4s)+ %(u(\/E))) .
i (5+Sin(|u(ﬁ)|))r(§)/o (r—s)3 ! >
1 1 ™o S u(s)
X <§ cos(u(l — 7)) + (e T Tcos(a(m)]) /0 [e™2" (™ 4 T cos(s) + cos(m)]ds>‘

IN

ro, for all 7 € [0, 1].

Hence (3) holds if,

L L L (1 +e+1) 1+1(+2) <

-4+ -ro+ —5=(5r0+e —+ —(e To.

4737 sr(3)'s° 34 =0

Thus, (3) holds if ro > 4.2796. Hence, from Theorem 3.1, (29) has at least one solution in
C1o,1].

5 Conflict of interest

The authors declare no conflict of interest.

References

[1] A. Aghajani, Y. Jalilian, Existence and global attractivity of solutions of non-linear functional integral
equation, Commun. Non. Sci. Number. Simul. 15(2010) 3306-3312.

[2] K. Balachandran, J. Y. Park, M. D. Julie, On local attractivity of solutions of a functional inte-
gral equation of fractional order with deviating arguments, Commun. Nonlinear Sci. Numer. Simul.
15(2010), 2809-2817.

[3] J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York,
(1980).

[4] J. Bana$, M. Lecko, Fixed points of the product of operators in Banach algebra, Panamer. Math. J.
12(2002) 101-109.

[5] J. Bana$, K. Sadarangani, Solutions of some functional integral equations in Banach algebra, Math.
Comput. Model. 38(2003) 245-250.

[6] J. Bana$, B. Rzepka, On existence and asymptotic stability of solutions of a nonlinear integral
equation, J. Math. Anal. Appl. 284(2003) 165-173.

[7] J.Banas$, A. Martinon, Monotonic solution of a quadratic integral equation of Volterra type, Comput.
Math. Appl. 47(2004) 271-279.

[8] J. Banas, B. Rzepka, Monotonic solutions of a quadratic integral equation of fractional order, J.
Math. Anal. Appl. 332 (2007) 1371-1379.

[9] J. Banas, B. C. Dhage, Global asymptotic stability of solutions of a functional integral equation,
Nonlinear Anal. 69(2008) 1945-1952.



234

(10]

(11

(12]

(13]

(14]

(15]
(16]

(17]

(18]

(19]

[20]

(21

(22]

(23]

(24]

25]

[26]

27]
28]

29]

(30]

Deepak Dhiman, Rakesh Kumar and Vishnu Narayan Mishra

J. Banas, D. O. Regan,On existence and local attractivity of solutions of a quadratic Volterra integral
equation of fractional order, J. Math. Anal. Appl. 345 (2008) 573-582.

J. Banas, B. Rzepka, On local and asymptotic stability of solutions of a quadratic Volterra integral
equation, Appl. Math. Comput. 213(2009) 102-111.

J. Caballero, A. B. Mingarelli, K. Sadarangani, Existence of solutions of an integral equation of
Chandrasekhar type in the theory of radiative transfer, Elect. J. Diff. Egs. 2006(2006) 1-11.

U. Cakan, 1. Ozdemir, An application of the measure of noncompactness to some nonlinear functional
integral equations in C[0, a], Adv. Math. Sci. Appl. 23(2013) 575-584.

U. Cakan, I. Ozdemir, An application of measure of noncompactness and Darbo’s fixed point theorem
to nonlinear integral equations in Banach spaces, Numer. Func. Anal. Opt. 38(2017) 641-673.

S. Chandrasekhar, Radiative Transfer, Oxford Univ. Press, London, (1950).

M. Cichon, M. M. A. Metwali, On monotonic integrable solutions for quadratic functional integral
equations, Med. J. Math. 10(2013) 909-926.

M. A. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl. 311 (2005)
112-119.

M. A. Darwish, On solvability of some quadratic functional integral equation in Banach algebra,
Comm. Appl. Anal. 11(2007) 441-450.

M. A. Darwish, J. Henderson, Existence and asymptotic stability of solutions of a perturbed quadratic
fractional integral equation, Fract. Calc. Appl. Anal. 12(2009) 71-86.

A. Deep, Deepmala, J. R. Roshan, Solvability for generalized non-linear integral equations in Banach
spaces with applications, J. Int. Equ. Appl. 33(1) (2021) 19-30.

A. Deep, Deepmala, M. Rabbani, A numerical method for solvability of some non-linear functional
integral equations, Appl. Math. Comput. 402 (2021) 125637.

A. Deep, Deepmala, R. Ezzati, Application of Petryshyn’s fixed point theorem to solvability for
functional integral equations, Appl. Math. Comput. 395 (2021) 125878.

A. Deep, D. Dhiman, S. Abbas, B. Hazarika, Solvability for two dimensional functional integral
equations via Petryshyn’s fixed point theorem, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat.
115, 160 (2021).

A. Deep, Deepmala, B. Hazarika, An existence result for Hadamard type two dimensional fractional
functional integral equations via measure of noncompactness, Chaos, Solitons Fractals 147(2021)
110874.

A. Deep, A. Kumar, S. Abbas, B. Hazarika , An existence result for functional integral equations via
Petryshyn’s fixed point theorem, J. Int. Equ. Appl. 34(2) (2022), 165-181.

Deepmala, H. K. Pathak, Study on existence of solutions for some nonlinear functional integral
equations with applications, Math. Comm. 18(2013) 97-107.

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, (1985).

H. H. G. Hashem, A. R. Al. Rwaily, Asymptotic stability of solutions to a nonlinear Urysohn quadratic
integral equation, Int. J. Anal. (2013)

B. Hazarika, R. Arab, H.K. Nashine, Applications of measure of non-compactness and modified
simulation function for solvability of nonlinear functional integral equations, Filomat, 33 (17)(2019)
5427-5439.

B. Hazarika, H.M. Srivastava, R. Arab, M. Rabbani, Application of simulation function and measure
of noncompactness for solvability of nonlinear functional integral equations and introduction of an
iteration algorithm to find solution, Appl. Math. Comput. 360(1)(2019) 131-146.



Application of fixed point theorem to solvability for fractional integral equations in Banach Space

(31)

(32]

33]

(34]

(35]

(36]

37)

(38]

39]

(40]

[41]

[42]

(43]

[44]

[45]

[46]

[47]

48]

X. Hu, J. Yan, The global attractivity and asympototic stability of solution of a nonlinear integral
equation, J. Math. Anal. Appl. 321(2006), 147-156.

S. Hu, M. Khavanin, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl.
Anal. 34(1989) 261-266.

M. Kazemi, R. Ezzati, Existence of solutions for some nonlinear Volterra integral equations via
Petryshyn’s fixed point theorem, Int. J. Anal. Appl. 9(2018) 1-12.

M. Kazemi, On existence of solutions for some functional integral equations in Banach algebra by
fixed point theorem, Int. J. Anal. Appl. 13 (1) (2021) 451-466.

M. Kazemi, A. Deep, A. Yaghoobnia, Application of fixed point theorem on the study of the existence
of solutions in some fractional stochastic functional integral equations, Math. Sci., (2022), 1-12.

C. T. Kelly, Approximation of solutions of some quadratic integral equations in transport theory, J.
Int. Equ. Appl. 4(1982) 221-237.

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of Fractional Differential
Equations, Elsevier Science B.V., Amsterdam, (2006).

R. Kumar, S. Kumar, M. Sajid, and B. Singh, On Solvability for Some Classes of System of Non-
Linear Integral Equations in Two Dimensions via Measure of Non-Compactness, Axioms 11 (11),
(2022).

K. Maleknejad, R. Mollapourasl, K. Nouri, Study on existence of solutions for some nonlinear func-
tional integral equations, Nonlinear Anal. 69(2008) 2582—2588.

K. Maleknejad, K. Nouri, R. Mollapourasl, Existence of solutions for some nonlinear integral equa-
tions, Commun. Nonlinear Sci. Numer. Simulat. 14(2009) 2559-2564.

K. Maleknejad, K. Nouri, R. Mollapourasl, Investigation on the existence of solutions for some
nonlinear functional-integral equations, Nonlinear Anal. 71(2009) 1575-1578.

R.D. Nussbaum, The fixed point index and fixed point theorem for k set contractions, Proquest LLC,
Ann Arbor, MI, 1969., Thesis(Ph.D)-The University of Chicago.

I. Ozdemir, U. Cakan, B. Ilhan, On the existence of the solutions for some nonlinear Volterra integral
equations, Abstr. Appl. Anal. 2013, Article ID 698234, 5 pages.

I. Ozdemir, U. Cakan, On the solutions of a class of nonlinear functional integral equations in space
C[0,a], J. Math. Appl. 38(2015) 115-124.

W.V. Petryshyn, Structure of the fixed points sets of k-set-contractions, Arch. Rational Mech. Anal.
40(1970-1971) 312-328.

M. Rabbani, A. Deep, Deepmala, On some generalized non-linear functional integral equations of
two variables via measures of noncompactness and numerical method to solve it, Math. Sci. (2021)
1-8.

P. Saini, U. Cakan, A. Deep, Existence of solutions for 2D nonlinear fractional Volterra integral
equations in Banach Space, Rocky Mountain J. Math., 53(2023) 1965-1981.

C. Vetro, F. Vetro, On the existence of a least a solution for functional integral equations via measure
of noncompactness, Banach J. Math. Anal. (2003).

235



