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1 Introduction

Let R be a semiring, the Pochhammer symbol r(z,y,n) is given by

n—1
r(ym) = [J@+ly) = 2@ +y)@+2y)- (@ +(n-1)y).
=0

It defines a function r: R x R x N — R sending (x,y,n) to r(z,y,n), where by
convention 7(z,y,0) = 1. Among the many prominent usages in the literature of

the symbol r(z,y,n) we single out just a few:

a) Factorial numbers: n!=r(n,—1,n)=7r(1,1,n)=1-2---(n—1)-n.

b) Rising factorials: (2)z =r(z,1,n) =z(z+1)(z+2)--- (z+ (n —1)).

c) Lowering factorials: (z), =r(z,—1,n) =z(z - 1)(z —2)--- (z — (n — 1)).

d) Double factorials: (2n—1)!! =r(1,2,n) =r(2n—1,-2,n—1) = (2n—1)---3-1.

e) Pochhammer k-symbol: (), = 7(z, k,n) = x(x+k)(x+2k)- - (x4 (n—1)k).

Our goal in this work is to introduce continuous analogues for the function
r(x,y,n), especially in regard to the third variable m € N. Doing this demands
further properties from the semiring R, thus we work over the reals R. A con-
tinuous extension of r(z,y,n) from the domain Rsg x Rso X N to the domain
(C\R<p) x Ryp x R>( is given by:

T +yz I'(f+= x
T(iL‘,y,Z) = Fy;ya?) = yz (Ig(z)) =Y T(§>1vz)’ (1)

Y




180

Rafael Diaz

where [14] the y-Gamma function T'y for y >0 is given by

oty (ny)
Ty(z) = lim —————

fi 7
noo  r(w,y,m) or z€C\yl<o,

e8] Y
Iy(x) :/0 e dt  for Re(z) > 0.

We actually study a couple of functions 7(z,y,n) and p(z,y,z) that may
be both regarded as continuous analogues of the function r(z,y,n), in the sense
that they solve continuous ”counting” problems analogous to the discrete count-
ing problem solved by r(z,y,n). This work follows the line of research opened in
[9, 13] and further developed by Cano, Carrillo [8], Le, Robins, Vignat, Wakhare
[20], O’Dwyer [22], and Vignat, Wakhare [26]. In a nutshell, the idea is to construct
continuous analogues for combinatorial objects by replacing the operation of count-
ing weighted lattice points in top dimensional convex polytopes, by the operation
of computing integrals on convex polytopes. Since the cardinality of many combi-
natorial objects may be represented as counting weighted lattice points in convex
polytopes, this methodology is expected to have a wide range of applications. The
continuous analogue obtained depends on the choice of such a representation.

The relationship between the discrete and the continuous quantities built with
the methodology above is actually quite subtle and complex. Consider the following
simple but illustrative example. For x > 0 let 002 C R? be the square with vertices
(0,0), (0,2), (x,0), (x,z). We have that area(0J2) = 2? and |Z*ND2| = [z]?, thus

Z2Nn02 Z2n02
li M:l and limM:oo

a0 area([J2) a0 area((J2)
So, in this example, replacing ”counting lattice points” by ”computing volumes” is
not a drastic change for large volume polytopes, but it is actually be quite significa-
tive for small volume polytopes. This line of thinking goes back to Ehrhart [15]; for
further information the reader may consult [4, 5, 11, 20] and the references therein.

For our current purposes, we must consider no just a single polytope, but rather
sums over finite o even infinite families of polytopes; moreover we are forced to
consider polytopes of various sizes, so no straightforward a priori relation between
the discrete and its continuous analogues should be expected.

This work is organized as follows. In Section 2 we describe the Pochhammer
symbol in terms of counting weighted lattice points in convex polytopes; in Section
3 we introduced a first continuous analogue for the Pochhammer symbol proceeding
first by analogy and then by extension; in Section 4 we introduce a second continuous

analogue for the Pochhammer proceeding twice by analogy.
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2 Pochhammer Symbol and Convex Polytopes

We proceed to describe the Pochhammer symbol r(z,y,n) in terms of counting
weighted lattice points in convex polytopes. For n > 1 let Pg[0,n — 1] be the set
of subsets of {0,...,n —1} with k elements. We have that:

n—1 n
rwyn) = [[atly) = 3 rgallynlal = Z( ) m)xkyn-h

1=0 AC[0,n—1] k=0  AeP.[0,n—1]

where 14 = H i for ACI0,n—1].
i€AC

Therefore the following well-known result holds.

n
Proposition 1. Let (z,y,n) € R x R x N, then r(z,y,n)= Zrmk zhynF,
k=0

where 7199 =1, and for n >k >0 we have that r,o=0, and

Tk = Z 81 Sp—k with

(81,...,Sn,k)EZ"_kﬁAn_k’*

n—1

_k —k
Asz* = {(Slvmasn—k) e R F ‘ 0<s1< - <spp<n— 1}.

Example 2.

a)n!=r(1,1,n) =37 ok

b) (2)7 =r(z,1,n) = Y} rarr®.

c) (@)n = (2, —1,n) = 3o (=1)"Fropa = 370 snpat.
Furthermore ™ = Y ;o Sppr(z, —1, k).

d) 2n— D! =7r(1,2,n) = > _ k2" "

The coefficients 7, are the unsigned Stirling numbers of the first kind, they

count the number of permutations of a n-element set with k cycles. The Stirling

n—k

numbers of the first kind are given by s, = (—1)"""r,k ; the Stirling numbers of

the second kind S, are defined via the identities

§ Sp1S1E = Ok = Z SniS1k;

k<I<n k<I<n

the number |Sy, | counts partitions of a n-element set with & blocks.
Note A7 ~k* - AZ:’f = {(81,..ySn—k) € Rk |0<s51 < - <$pp <n—1}

n—1
By Proposition 2 the Pochhammer symbol r(z,y,n) is a finite sum where each

summand is itself a weighted sum over the lattice points on the convex polytope

AZ:]f, excluding some boundary points. Integrals of continuous functions over

AZ:]f do not change if some boundary components are removed, thus to introduce
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our continuous analogues we work with A}~ k instead of A~ k, .

Next result is key for the rest of this work. For k € N5y and = € R>g set

A’;:{(sl,...,sk)ekagsl§~--§sk§1‘} and ai’kz/ksl---skdsl---dsk.

x

Lemma 3. For x € R>q, k € N, setting vol(A2) =1 and a;o =1 we have that:

k 2k 2k

€T T
vol(AF) = = and Qg = vol(A]%) = oF = (2k — 1)!!(2k)!.

Proof. The results follow from the recursions

S2 x
vol(AF) / / / dsy---ds = / Vol(A’;IZl) dsy. ;
0 0
x Sk 52 x
E = / / / 81"'Sde1"'dSk = / Sk gy, k—1 d5k~
o Jo 0 0 '

3 Continuous Analogue - First Approach

We are ready to introduce our first continuous analogue for the Pochhammer symbol;
in this approach we proceed first by analogy and then by extension. In accordance
with the methodology outlined in the introduction, Proposition 1, and Lemma 3, we
replace the numbers 7, ; by their continuous analogues 7, given for n>%k >0

by 7o0=1, 7or =0, and

n—1 ( —1)2(n=k)
rnk—an lnk—/ / / S1° " Sp— kdsl dSnk: on— k( k?) .

Therefore we introduce the function 7: R x R x N — R given by
r(z,y,n Zrnk xk ek (2)

as a continuous analogue for the Pochhammer symbol. So 5, ; = (—1)"~ krn L give
analogues for the Stirling numbers of the first kind. Analogues §n’k for the Stirling
numbers of the second kind are defined by the identities

§ Sn Sk = Ong = § S 151 k-

k<I<n k<I<n

Since T, k, Snk, Snk are rational numbers, we search for a combinatorial

interpretation of them in terms of finite groupoids [6, 12].
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A finite groupoid is a category with a finite set of morphisms, all of them in-
vertible. The cardinality |G| of a finite groupoid G is the rational number given
by

1
Gl= >
acob(G)~ |Ga,a)]
where ob(G)~ is the quotient of the set ob(G) of objects in G by the rela-
tion ~, where two objects are related if and only if they are isomorphic; G(a,a)
is the set of morphism from object a to itself, and |G(a,a)| its cardinality. If
group G acts on the finite set X, we let Xg be the groupoid such that
ob(X¢g) = X, and the set Xg(a,b) of morphisms from a to b in Xg is
given by Xg(a,b) = {g € G | ga = b}. Composition of morphisms in X¢g is given
X

by the product on G. We shall use the well-known fact |X¢g| = %

Let us introduce finite groupoids Gy, Gy, 1. Gy 5o Set [n—k] ={1,....,n—k},
—[n—kl={-(n—-k),...,—1}, Zy={-1,1}, and

Sn—r ={0:[n—k] = [n—k] | o bijection}.
Let Z’Q’”C X S,_r be the group with the semidirect product
(a,0)(b,7) = (ac(b),07) with o(b); = by-1(3;).

The group Z3 % % S,y actson —[n—k|U[n—k] via (a,0)(%i) = Faq ;o (i)
for (a,0) € Z3 " %S, 1, i € n—k]. Welet G, for n >k >0 be the groupoid
given by

Gn,k = Map(f[n - k] U [TL - k]7 [n - 1})2;171"%5”,;6’

i.e. an object in Gpp isamap f:—[n—k]U[n—k] = [n—1], and a morphism in
Gp from f to g is an element (a,0) € Zg_k X Sp_i such that (a,0)f =g, where

((a,a)f)(ii) = f((a,a)fl(ii)) = f((ail(a),afl)(ii)) = f(xa;o1(3)) for i € [n—k].

By definition we have that

(n _ 1)2(n7k:)

|Gkl = 2R~ R

Let the groupoid Gf ;. for n >k >0 be given by Gy, | = (X7 1 )yn—r, o o where
, ) k)23 e

an element of X, 1s an ordered tuple (A1, ..., A f) such that [ >1 is an even

number, {A4j,...,A4;} is a partition of [n—k|, and f:—-[n—kJ]U[n—k] = [n—1]

is a map such that

f(£s) Dbelongs to HAj Un-—k+1,n—1] forall seA,.

J<i

183



184 Rafael Diaz

For o € S,—p welet ¢ € S,_1 Dbe the permutation given by (i) = o(i) if
ic€n—Fk, and 6(i) =i if i €[n—k+1,n—1]. The group Z3 % xS,  acts

on X/ k as follows
(a,0)(A1,..., A f) = (U(Al),...,U(Al);ﬁf(a,a)_l), where

Gf(a, o) (£i) = 5 (f(£aio~ 1 (1))).
By definition we have that

n—=k
Gkl = 5= 2n—k(n — k)! Z > (a al> (ar+k—1)%" - (a4 - Fa+k—1)*".

=1 a;+—-+a;=n—k Lyeees
| even a; >0

The definition of G7 , follows the same patter as the definition of G7, ;; the
only change is that in Gy, ; we only include tuples (A, ..., Aj; f) with [ an odd

number. It follows that

n—=k
|Gkl = 5z 27—k — k)l Z 2 (a >(“1+k*1)2a1"'(a1+"'+al+k*1)2a’-
l 1 a1+-+a=n—k Lo @
od a; >0

Theorem 4.
a) For n >k >0, we have that 3,5, = (=1)" %Gkl
b) 5070 =1, §n70 =0, gnn =1, and for n >k >0 we have that

Smk: = ( )n k(|G k|_|Gnk|>

Proof. Item a) is clear. Item b) follows by Mé&bius inversion [12, 17]:

n—k
= Z(_l)l Z §i17i171 T gilﬂ'o =
=1

10<--<14g
o=k, ij=n
ST S e e U e 1V
=1 i< <14 2” " 1(”_” 1) 2 10(21 _ZO)'
o=k, 1

—k n—k - . o
2n k k)! Z Z ( ) n k ' >(i171)2(z1720) e (i171)2(2l71l,1) _
(n—k

. 11 — 10y +eey 0] — 21—
o< <iy 1 0y -9 0 -1
’L():]C7 ilz’n

_1\n—k n—k n—
%Z(_Dl > <a y )(al+k—1)2‘“---(a1+---+al+k—1)2w =

ey Q,
=1 ar1+--+a;=n—~k L
a; >0

(=)™ M(IG5 Kl = 1G5 4]).-
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Corollary 5. For n >k > 0, we have that

(n—1)2=k)S, 1 (n—k)

|Gkl + 1GhEl < 9n—k (1 — k)! )

where Si(n) = 1% 4 - +nF.

2(n—k) "=k

. 0 (n—1) n—Fk
PT’OOf. |Gn,k| + ‘Gn,k S on— k IZ Z < ) -

A1,y ..., Q4
=1 a1+--+a;=n—k Ly @

(n _ 1)2(n7k) n—k lnfk _ (n o 1)2(n7k)5n7k(n _ k)

2=k (n —k)! P 2n—k(n —k)! ’
where Si(n) = 1% + ... 4 nk.
|
T merl
Remark 6. The function S(z,y) = / tVdt = ) arises as a continuous ana-
0 Y
nk+1 1
logue of the k-power sum Zlk = T + — Pl ZB k=i for
ke N>1, where the Bernoulli numbers B € Q are defined [2} via the identity
nk+1
T ZB . The difference between Si(n) and S(n,k) = P is a
polynomial of degree k, so
nk+1 —1
m im0 S et Ea i Bt 1
n—>oo f thdt n—oo S(n, k) n—o0 nkt! ’

k+1

no_k
For n €N set en(a:)zz%.

Theorem 7. For each n € N, the function 7(x,y,n) : R x R — R is continuous.
We have 7(x,y,0) =1, 7(z,y,1) ==a; for n >0 we have 7(z,0,n) = 2" and
7(0,y,n) =0; for n>0, z#0 we have

Fon) = e (2 ),

Proof. 7(x,y,n) is an homogeneous polynomial of degree n, thus continuous.
By (2) we get 7(z,y,0) =700 =1, 7(z,y,1) =71z =u2; for n>0, we get
7(0,y,n) =0 and 7(z,0,n) = ap—1,02" =2z™. For n >0, z#0, we have

n n (n _ 1)2(n—k)
77(95,3/7”) = ZFn,k l’kyn_k = Z — xkyn—k =
k

k _ |
= — 2n—k(n — k)!

n (ym—1)%*\n—k _1)\2
n ( 2z ) xnen_l(y(n 1) )

R AV ey 5 2z

Pt (n—k)!

185
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Example 8. We list some properties of 7(z,y,n). Let n € Nyg and a # 0.

a) 7(1,1,n) = en,l(@).z b 7(1,2,m) = enr ((n=1)%).

c) ™(x,1,n) = x”en,l((n;xl) ). d) 7(z,—1,n) = 2"ep_1( — (n;—;))
e) F((n—1)%2y,n) = (n—1)*en1(y).  f) 7(2,2(n—1)"%n) =a2"en1(z7).
g) 7(ax,ay,n) = a"r(z,y,n). h) F(z,y,n) = y”?(%, 1,n).

Corollary 9. From properties e) and f) of Example 8 we get:

7((n—1)2,2 ~
lim M =eY and lim 2" 7z~ 1, 2(n —1)72,n) = €%
n—00 (V’L — 1)2n n—00

The Pochhammer symbol satisfies r(z,y,n+ 1) = (z + ny)r(z, y,n),

|
—

n

or . . )
%(xvyvn) = gr(x,y,z)r(x + (Z + 1)y7y7n — 1= 1)7
or = . : ,
8_y(xay7n) = Z’I’(.I?,y,Z)’f‘(l? + (Z + 1)3/,?,/777/ — 1= 1)

=1

Proposition 10.

a) For n € N> the function 7(z,y,n) satisfies the recursion

_ _ ’I’L2 nQnIyn
Fz,y,n+1) = z7(x, myﬂl) + ]
b) For n € N>3 we have that
or _ —1)%y . —1)?
fa*;(w,y»n) = nr(wayvn) - (n 2 ) yT(‘x’ EZ_ Q;Zy’ni 1)
c) For n € N>3 we have that
or (n—172%_, (n—1)2
i = —1).
oy ™) 57 () (n 22" )

Proof. Since ep(z) = ep—1(x) + %l, item a) follows from the identity

2 2 1 2
e, (U2) gt (W) 4 T ()"
2z 2z n! 2z
. . . . d€n+1(l‘)
Items b) and ¢) follow from the rules for derivatives and the identity 0

en(z).

n 2k
For n e N set 2coshy,(z) = Z %
k=0 '
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Theorem 11. Let y € Ryo, n € N> and X be a random variable with standard
normal distribution. The expected valued of 2coshy(,_1)((n —1),/yX) is equal to
7(1,y,n):

_ 1 [ B
7(1,y,n) = E/ 2coshy(n—1)((n — 1)y/yt)e

Proof. We have that

n—1
1 00 2 1 o) V’L—l \/_t)2l> 2
— | 2coshyy, 1y ((n—1)/gt)e Tdt = —— dt =
= [ 2ot (1) e %/w(; ;

7 L () -

n n_l\/—Qn 2k
kz—:l 2n—2k \/271'/

2
t2n—2ke—%dt _

iww%*m -yl by

P (2n — 2k)! 2n—k(n — k)

—
el
Il
—

n ((nfl) )Qn_Qk n ((n=1)>2y\n—k B
ZW% = Z((;_,f). = m(Ly,n).

O

Next we introduce an extension of 7(z,y,n) : Ryso X R>0 X N>; — R to a map
7(z,y,2) : Ryp X R>9 X Ry defined as follows:

(z—1)2
~ _ z y(z B 1)2 _ z 77’(27,1)2 F(Z7 yT)
r(r,y,2) = x ez—l( 5 = zfe 2 T0) (3)

where for z>0 weset e,_1(z) =e”

I‘(z):/ t*~Letdt, F(z,m):/ t* e tdt, ’y(z,x):/ t*~Letdt.
0 T 0

The fact that formula (3) gives an extension follows from the identities

<z F(n L(n,z)
. = >
en—1( E k‘ F(n) for n>1,

o

which can be shown by iterated integration by parts.
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Theorem 12. The function 7(z,y,n): Ryso X R>p X N>y — R admits a smooth
extension 7(z,y,2) : Ryo X R>9 X Ry — R given by the following formulae

o0

N('T ) o 67-1(221 Z 1)2k
T, Yy,z) = x* Qkkj'l‘k k) )

=0

7 (=1 2z —1)%% & k(, _ 1)2k
Moy, 2) = are 2t _ Y (2-1) ki(z ) .
e e MCRSEY

Proof. The function 7(z,y,z) given by (3) is smooth on Rys¢ X R>g x Rsg. The

desired identities follows from the following formulae [19]:

FI(‘z,x) _ F(z)_j‘l;tzfleftdt _ 17 e i % R o i $];€ -
) ) Pt S P Y
T(z,x) 7 o= (—1)F k > zk
d T — (1= L N R
R A ) e( F(z);(z+k)k! ct %F(z—l—k—i—l)’
by first replacing = by w, and then multiplying by z?*.

Example 13. We list some properties of 7(z,y, 2).

(z2—1)2 1)2k
a) F(1,1,2) =e = (1- [‘(z) 2 he 0 Qkk' Zz+k)) )-
)

(z=1)2

: e 1)2k
b)7(1,1,2) =e 2 — (2 —1)? > e m
c) 7z, 22(z — 1)72,2) = ex® — * > ko F(z+1k+1)'

d) 7"(.1’ Y,z )—y ’f’(y,172)

yE=1? |
e) 7(x,y,2) <xfe 2= since I'(z,z) <T(2).
We use the symbol ~ to denote asymptotic equivalence. Stirling’s formula
yields I'(z) ~ v2me *z*~ 2 as z— oo. Therefore

1

V2 z_1
r(x,y,z) ~ F(;;yze—zzfry 2

as z — 00, since by (1)

Yy
LG +2)
T(l’,y,Z) =Y T( 7172) =Y F T ~
E)
\/27[' T +£,l \/27'[' _ +,,l
F(&)yz z y(—-l-Z)Z ¥y 2 A F(E)yze ZZZ ¥y 2
Y Y

A complete analysis of the asymptotic behaviour of 7(x,y,z) is left open,

however we study some interesting cases.

Theorem 14.
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z

~i(, _ 1\2 -~  N\2z/,y Y
a) 7((z—1)%2y,2) (z—=1)**(e 71“(,2—}—1)) as z — oo.
z—1 _12,2
b) 7((z —1)%,2y,2) ~ % as Yy — oo.
) (L, o 2) ~ e -
c) (=, —— ~et———— as z .
v a:’(z—l)Q’Z T(z+1) > >
.1 2 1
d) mr(;,m,z) ~ m as T — 0.
2 1
e) ?(1,#,2) ~ 562 as z — oo.

Proof. We use three known facts [18, 19, 24] on the asymptotic behaviour of the

regularized incomplete gamma function:

['(z,y) y*e Y

\=Jd) L= .
T(2) T +1) as  z — 00;

L(z,y)  y*leV
I(2) I(2)

as Yy — oo;

['(z,2) %efzzzfé
I'(z) \/27re—zzz_%

‘We obtain the desire results as follows.

0 T = 12.205) = (o= VPO 1 -
b) T((z—1)22y,2) = (zfl)gzeyrg,;)j) N yz—l(rz(z)nzz
) Tt = el ey

2 Tz 1.

e) F(l,m,z) = e T(2)
4 Continuous Analogue - Second Approach

Note that formula (2) may be written for n > 1 as follows

_ (n—1)*k
m(z,y,n) = Z kTl LI NTY
keZN[1,n] 2 F(n —k+ 1)

189
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so 7(xz,y,m) is a weighted sum over the lattice points in the convex polytope
[1,n] C R, with weights given by evaluation of the continuous function

S, Z2—S

(Z _ 1)2(275)

_— f 1<s< 2.
2275F(278+1)xy or <s<z

Thus, according to the methodology outlined in the introduction, a continuous ana-
logue for r(x,y,n) may be defined as follows:

z (Z _ 1)2(2—5) . s
= — 7 7% ds.
p(z,9,2) /1 2—Iz_st 7/ @

Note that p(z,y,1) =0 while r(z,y,1) = x; this discrepancy is expected as we
are trading a sum over a point by an integral over an interval of length 0. Setting
t =z — s in the above formula we get

-1 (y(zfl)Q)t 12
z 2z z y(z 1)
= ~——=L = dt = rE(——,2—1 4
pas) = o [ E e = Ry W)
z CEt
where E(z,2z) = / ———dt for x>0, z>0.
o T'(t+1)
" gk zk
Remark 15. Since e,(z) = Z i Z ThT1) we see that E(z, z) arises
k=0 keZ[o,n]
as a continuous analogue of e,(x). Letting n — oo in this analogy the exponential
00 $t
function €% is replaced by v(z) = — dt.
p y v(z) /0 T+ D)
Ui a1
Remark 16. The geometric sum polynomial S,,(z) = Z:ck =7 for
T —
k=0
AR
x> 1, admits a natural extension Sy(z) = for y € R. Furthermore the
T —

¥ —1

In(x)

For y > 0 it turns out that G(xz,y) is negligible in comparison to Sy(z) as

y
function G(z,y) = / zldt = arises as a continuous analogue of S, (z).
0

x — 00, indeed

Y tdt Y _
g Cly) foff oy @ D@1
z—o0 Sy (x) T—00 Iyz—f z=o0 (¥t — 1)In(x)

To understand p(x,y,z) we study the function

oo .’L‘t o) xt
E(z,2) = /0 mdt — /Z mdt = v(z) —v(z ).

o0 T o0
The functi = —dt d ,2) = ————dt h
e functions v(x) /0 T+ and v(z,2) /Z T+ ave a

quite long history, see [3, 16] and the references therein; they are often studied as

CL‘t
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instances of the so called p-function of three variables given by

00 xa+t tﬁ
w(z, o) = /0 T(a+t+1)I(B+1) .

Indeed v(z) = u(x,0,0) and v(zx,z) = u(x,0,2). Note that

v(e™®) :/0 mdt

similarly E(e™*,z) is the cut-off of the

1
is the Laplace transform of ——;
T(t+1)
Laplace t f f ———— at level z.
aplace transform o T+ 1) at level z
The reciprocal gamma function is entire. Wrench in [27] provides a representation

of it as an absolutely convergent power series:

[ - C(k) & S C
T ~ z exp(yz — g(fl)kT Z 1)k+t ) (5)

k=1

(Lj — 1) drx ~ 0.5772

1
—k are the integer values of the

n
. 1
where v = TLIEEO ( E i

8 |

is the Euler-Mascheroni constant;

[e.e]
Riemann zeta function for k& > 2; and ﬁnally {( ) =~ and C(k) = ((k) for

ke Nzg.

Remark 17. According to the terminology used in this work the logarithmic func-
X

tion In(x) = / Edt arises as a continuous analogue of the harmonic sum H, =
1

>

k=1

. The difference between H, and In(n) approaches v as n — oco.

?rl»—*

Proposition 18. The entire function may be written as a absolutely

1
T(t+1)

convergent power series as follows:

1 = k+1C
= At 6
i - ol - 5 0

The following properties hold.

a) co=1 and for n € N we have that (n+1)cp41 = Z(—l)kg(k + 1)ep—g-
k=0

b) For n € N>; we have that

B ()" k1) (k)
=) T

ki+-+k;=n
ki>1, 1>1
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) =~ exp((n@) + e+ -1 Sy
c N exp((In(z) + v 2 . .
2t __—— . ~ In® (z)
d) m Zc t Z ()" where ¢, (z) = ch,kT.
n=0 n=0 k=0

@t > K] gt 2 epp(T)
— = —Cn, n dtlFl — LA
dET(t+ 1) g(ml)kc +r(@)t" and / T(t+1) nz:;c ()i

f) E(z,2) = A F(t " 1 ch 1(z)— is smooth on Rsy x Rg.
oFE >

g) W(m,z) = Z(n + 1)—gcngr—1(x)2" for ke Nyi.
n=0
dep(z)  cp—1(x)

B deo(x)
h) e . for n € N>y, and i

= 0. Furthermore c¢,(1) = ¢,.

i) ( ;) E(JZZ Z Cn—k— 1(97)— for k€N>1
n=k+1

e " -1
(z) —

Proof. Identity (6) follows from the following facts:

j) E(,2)<z and FE(z,z2) <———— for x#e€.

x*
In
. 1
1) —
It+1)
1
function as it is the composition of the entire functions —— and ¢+ 1; ii)

I(#)

oo
k
exp(Z(—l)k“%zk) is an entire function since it is a power series that con-
k=1

is an entire

1
verges to ﬁ for z # 0, and to 1 for z = 0; iii) identity (6) holds for
2I'(2

Re(z) >0 by (5) and I'(z+ 1) = 2I'(2).

Ttem a) follows from (6) taking a derivative. Item b) follows from (6) developing
the exponential function as a power series. Items ¢) and d) follow from (6) and the
identity 2! = e™@), Ttems e), f), g), h) follow from the rules for the derivatives
of polynomials and power series. Item i) is obtained by iterated applications of item

h). For item j) we use [1, 21] that T'(t+1) > for t > 0. We have that

z e'yt z z
E(,z) = / —dt < / eVte Mt = / dt = z.
(€.2) o I'(t+1) 0 0

If ©#¢7, then

z oln(z)t z eV — 1
E = ———dt < (In@=Ntgp — -~
w9 = fnt < e ) 7
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1
A recursive formula for the Taylor coefficients at ¢t =0 of —— was introduced

I(t)
by Bourgubt [7]. Sakata in [25] gives a formula for these coefficients using ~ and
1
the multiple zeta values ((ki,...,kr) = Z TR with k; > 2.
O<ni<--<ng 01 T

Theorem 19. The following properties hold for p : R5o x Rsg X Rs1 — R given by
(4).

a) p(x,y,z) = ﬁE(M’ _ — ch ) zfl) )(zfl)n

2x 2x n

is a smooth function.

b) y@p :$20n2 z—l))(z—l)”.

2x n

ap dp
c) Tor + ya—y = zp.

oo 5 2
) % = In(z)p + %@ + xZch(u) (z—=1)™

e) ple 7, ﬁ, z) <(z—1)e

2 z% — xe(172)
f  — < .
) p(.’l', (271)272) > 1H($)+’y or .T?ée
. . dp Op Op
Proof. Item a) follows from Proposition 18f. For items b), ¢), d) compute 3y 9z 02
x’ Oz
using Proposition 18f and Proposition 18h. For items e), f) apply Proposmon
18j. O

The function I'(t+1) is strictly convex on R>g. Since I'(0+1) =1 =T'(1+1),
its unique minimum its achieved at a point a € (0,1). It is known [10] that
a =~ 0.4616, while the minimum value of T'(¢+1) is m =T(a + 1) ~ 0.8856.

Proposition 20.

a) If x>1 and [z] > 2, then

é(ew(ﬂc)—l) < E(z,2) < z(em_l(ﬂc)—kl_Tm).

1, . 1-m
b) If x> 1, then E(e -1) < v(z) < (e +T)

c) If 0<z<1 and |z] >2, then

1—m
elo)(x) =1 < E(z,2) < epa(2) + ——.
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1—
d) If 0<az<1, then ¢ -1 < y(z) < e+ —
m

Proof. Ttems b) and d) follow from a) and c), respectively, taking the limit z — oo.

[2] 2t 1
< _— = <
as) B(z,7) —/0 e+ /0 t+1)dt + Z/ t—l—l =

[2]-1 [Ei+1 1—

X m
R"‘ ; mdt = x(em,l(m)—l—T).
lz) 2t lz]—1
E > ——dt = —dt >
az) E(x.2) */0 T(t+1) /0 t+1) + Z/ t+1 =
L)1 7 [2]-1 i+l

T 1 1

M, R [21-1 i1 2t
< T T <
c<) E(z,2) < /0 F(Hl)dt /0 r(t+1)dt * ;/Z F(t—i—l)dt -

x 1—-m
E + ; m = em,l(x) + T

=) gt 1t l=]— 2t
E > L gt = dt >
cz) Blz,2) 2 /O T(t+1) /0 )" 21/ T+ =

lz]-1 Litl
gt = 1
T+ ; F(i+2)dt ez (z)

Next result follows from Proposition 20.
Theorem 21.
a) If y(n—1)2>2x and n >3, then
2 _ —-1)2 1-
m(r(xayvn) - wn) S p(l'ay7 TL) S %(T(x,y,n) + ml‘”)
1 . p((n—1)%,2y,n) 1-m

c) If yin—1)2 <2z and n >3, then

_ - 1-—
Fa,yon) — " < plw,yn) < @ y,n) + ——a,
m
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. p((n—1)%2y,n) 1—-m
v_1 < AT Z 20 gy -
d) If y<1, then e 1 < nhﬁngo n—1) < e¥Y+ .
oy . -1 2
Proof. Ttem a) follows from Proposition 20a using p(x,y,n) = x”E(y("Qz ) ,n—1)
and
n—1)2 n—1)2 nfln_12(n71) n—1)2
eniz(y(i)) — en71(y( ) ) — Yy 71( - ) < enfl(y(i)).
2z 2z n—lgn=l(n —1)! 2z

Item b) follows from Proposition 20b and the fact that

p((n_ 1)272y7n) (n_ I)QnE(yvn_ 1)

i
Item c) follows from Proposition 20c. Item d) follows from Proposition 20d. O

Our final result provides asymptotic bounds for p(z,y,n) in some interesting

cases.
Theorem 22. Let n € N>3.

a) If (n—1)%y>2z>2, then zp(z,y,n) < n’yr(z,y,n).
b) If y > 1, then p((n—1)%2y,n)=0(n>") as n — oco.

c) p(l,(n2_7n1)2,n):0(ne") as n — oo.

. 2 < 1
Proof. For item a) note first that

y(n —1)°

5 )>2" and m~0.8856 >
€T

F(Ia Y, ﬂ) =a"en 1 (

DO —

From Theorem 21a we get

X
—p(.n Y, n) <
Y

(n—1)

- Fayym) =

(7(@,y,n) + 1=

(n—1)%_ 2+, 2~
) 7“(337%") < (TL - 1) T(x,y,n) <n T(xay7n)'
m

Items b) and c) are obtained from item a) and Theorem 14 as follows:

b) y > 1 implies the conditions of item a) hold, thus

(n—1)2p((n —1)%,2y,n) < 2n%y7((n —1)%,2y,n), and by Theorem 14a



196

Rafael Diaz

p((n—1)%2y,n) = O(m(n —1)*"2y(e¥ — )=

O((n—=1)*") = O(n*").

¢) Conditions of item a) hold, so

2n omd 2n
PG = e B ™

thus by Theorem 14e we get that

2n . 2n e

71)2771) -

p(1, =

d) We have that

A (1, (n—172 ooV 2(n — 1)2

[e @]
1
lim F(l,n—1) = 1) = —— = 2.2665.
im E(Ln—1) = u(1) /OMH)

n—oo
See [23] for the approximated value of v(1). O
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