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AUGMENTED PASCAL MATRIX AND ITS PROPERTY

GONCA KIZILASLAN, TAEKYUN KIM, AND DMITRIY V. DOLGY

ABSTRACT. We define a matrix which has a Pascal matrix block in its Cholesky
factorization. We define augmented Pascal matrix by this factorization and we
present a generalization and another version of this matrix. We obtain some
properties of the generalized augmented Pascal matrix and present a relation
with coefficients of Bernoulli polynomials. We also give a factorization of
augmented Pascal matrix which has a connection with Fibonacci matrix and
also obtain a factorization of the other version and we see that this factorization
has entries related with generalized Stirling numbers.

1. INTRODUCTION

Pascal’s triangle is a very suitable structure for exploring, formulating and proving
mathematical patterns and for doing many interesting experiments. We denote the
Pascal matrix of order n as P, and its form is as following

1 0 0 0

1

; 1

o= ()|
J/ lo<ij<n—1 )

L@ ) G G) ()
This magical structure has many features and deep knowledge that attract the
attention of many researchers, see [1-9,11-19]. Most of the articles in the literature
give generalizations, factorizations and combinatorial properties of Pascal’s matrix.
In these generalizations, authors put some parameters and variables in the Pascal
matrix (1.1) and study some algebraic properties of these matrices. In [3], a matrix
for two variables z and y is defined by removing the columns of Pascal matrix.

In this paper, we examine a symmetric matrix which has a similar construction
with symmetric Pascal matrix for x = y = 1. The Cholesky factorization of this
defined matrix is seen to be related both the Pascal matrix and in some manner
the matrix defined in [3]. We call the lower triangular matrix in this factorization
as augmented Pascal matrix and this matrix has interesting connections with the
Bernoulli polynomials B(n,z) which can be defined by a generating function

tewt > +n
et 1 = ;B(n,x)ﬁ

o O OO

1 0 0
2 1 0
3 3 1
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We are interested in several properties and factorizations of the augmented Pascal

matrix. One of the factorization of this matrix has a connection with the Fibonacci

matrix. The Fibonacci matrix F,,[z] of order n is defined by
Fi_j 27, ifi—5+1>0

Falaliy =14 ST (1:2)

0, otherwise,

where F), is the n—th Fibonacci number. We obtain another interesting matrix

using augmented Pascal matrix and this matrix has some factorizations which has

entries related with the generalized Stirling numbers defined by

k—l—l

(1.3)

The first few terms of these numbers are 07 1, 5,26,154,1044, .. ..

2. AUGMENTED PASCAL MATRIX

In this section, we define a matrix with indeterminate x and obtain some factoriza-
tions and properties of it and the matrices in its Cholesky factorization.

Definition 1. A symmetric matriz Q, of order n + 1 with (i,7) entry Qn{s,j}
defined by Qn{i,j} =1+ (”‘7 2).

The matrix Q,, satisfy the following construction rule for i,5 =1,2,...,n
and for j =0,1,...,n
Qn{oaj} = Qn{]v 0} =1

Example 1. The matriz Qs is as follows

111 1 1 1
1 2 2 2 2 2
1 2 3 4 5 6
1 2 4 7 11 16
1 2 5 11 21 36
1 2 6 16 36 71

Lemma 1. The Cholesky factorization of Qy is given by Qn = An AL where A,, is
a matriz of the form

1 0

|:1 Pn—l:|

with P,_1 is the well known Pascal matriz of order n.

In [3], the defined matrix is obtained by eliminating the columns of the Pascal
matrix, but here we add a column and row to the Pascal matrix.

Definition 2. The matriz A is called as augmented Pascal matriz.

The row sums of the matrix A gives the expansion of

1—ax—a?

(1—-2)1-22)
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and the k—th power of A, is given by

1
B(1,14+k)—B(1,1) 1
B(2,1+k)-B(2,1) Eoo1
2
B(3,1+k)-B(3,1) k2 2k 1 ’

B(4,1+k%7B(4,1)
B K> 3k% 3k 1

for Bernoulli polynomials B(n,z). Let us consider a generalization of the matrix
A,, for one variable x. Let A,[z] be a matrix of the form

[Xi—l Pn_o1 [xﬂ (2.1)

where X,,_1 = [I,LE’Q, .. .,w”]T and P,_i[x] is the generalization of the Pascal
matrix P,_; for one variable . The following theorem gives the multiplication
property of two matrices A, [x] and A,[y].

Theorem 1. Fori,j > 1, the (4,) entry of the matriz A,[z]Anly] equals the (i, )
entry of the matriz A,[x + y| and the entries in the column zero of the product is
given by [,z +y, 2% +y(z +y),2* +ylz +y)*,...,a" +y(z + y)"‘l}T )
Proof. The matrix A, [x] is given in (2.1). Using the definition of multiplication of
two matrices and the relation satisfied by Pascal matrices

Ppa[z]Poalyl = Poalz + 9y,
we get the result. O

The inverse of the matrix A,[z] is given as follows.

Theorem 2. For i,j > 1, the (i,j) entry of the matriz A,[z]™! equals the (i,7)
entry of the matriz An[—x] and the entries in column zero of the inverse matriz is

given by [1, —z,0,.. .,O]T.

Proof. By Theorem 1, the column zero of A, [x]A,[—x] is given by [1,0,0,..., O]T.
Since

Poafz]Poa[=2] = I,
we obtain that A,[z]™! = A,[-x]. O

Let Ry, be a lower triangular matrix of order n with entries,

Rn{i,0} = [1,1,0,0,1,4,11,26,57,...]

.. i —1 1 —1 t—1 .
Ru{i,J} _<j+1>_( j >+(j—1) fori,j=1,2,...,n.

Here, one can see that the numbers {0,0,1,4,11,26,57,...} in the zeroth column
are the Eulerian numbers. Let F} be a lower triangular matrix of order n defined
by the entries

F:{i,0} = [1,0,1,0,1,0,...]
Fi{i,j} = Fu[1){i,j} fori,j=1,2,... n.

Then we have the following result.
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Theorem 3.
A,_1[1] = R, F.

Proof. By the definitions of the matrices A,[1], R,, and F}, we can easily prove that
A, 1[1)(FD) L =R,. |

Let Y, [z] be the matrix with entries Y, [z]{¢,7} = 1 for i > 0, Y, [z]{%,0} = —@
for i > 1 and all others are 0. Let Y, [z]A,[z] = A, [z]. Then we have that

~ 1 0
Azl = |2
2 [Xn—l Pn—l[ﬂi]]
where X,,_; = [x,22/2,2%/3,. .. ,:r"/n]T
Pascal matrix P, _; for one variable z. B
Now, we investigate the properties of the matrix A,[z]. The proofs can be done
similary as in the proofs of Theorem 1 and Theorem 2.

and P,_i[z] is the generalization of the

Theorem 4. Fori,j >0, we have Ay[z]A,[y] = A, [z + ).
The inverse of the matrix A, [x] is given as follows.
Theorem 5. Fori,j >0, we have A,[z]~! = A,[~x].

We will present some factorizations of the matrix A,[z]. Let U,[z] be a lower
triangular matrix defined by

Un[l‘]{i,O} = An[x]{la 0}

, a(i —2)zt=t
U,[z]{2,1} = 0and U,[z]{i,1} = fwfor i>3,
Unlz]{i,j} = a7 for j > 2,

where a(n) is the n—th generalized Stirling number defined in (1.3), B, [z] be the

matrix of the form
1 0
0 A,[z]|’

and F,,[z] be the matrix of the form

L Infmfl 0 _ _ R
Flz] = [ 0 Um[ﬂﬁ]} form=1,2,...,n—1, and F,[z] := Uy,[z].

Lemma 2. Form > 1, Uy, [2] By _1[z] = Ap[z].

Proof. For m = 1, we have Bm_l[x] is the identity matrix and A,, [x] = Up[z]. Let
m > 1. One can see that U,,[z] has a block matrix which is equal to the matrix
Sm[x] that corresponds to the Pascal matrix P,,[x]. The proof follows from the
matrix product and properties of the matrices Sy, [x]. U
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Example 2.
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The following theorem is an immediate consequence of Lemma 2 and definition of

the matrices F),[z].

Theorem 6. The matriz Ay,[x] can be factorized by the matrices Fy[x] as

F,[z]F1]x]..

Ay x]

Example 3. Since

N M 0
— 8 8 8 88

bl latallannl el el

we can factorize this matriz as

o o o
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o o
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Let V,,[x] be the lower triangular matrix defined by
Valzl{i,i} = 1

Volz]{i,0} = —A,[z]i,0fori>1
2 n—1 T
Vael{21} = [0,1,0,%,.., 25
Volel{i+1,i} = —azfori>2,
Volz]{i,i} = 0 otherwise.

It is easy to see that U, [] ! = V,,[z]. Then for the inverse of the matrix A, [z], we
get

Lemma 3.
Apz]™t = Ffz] Rzt Fu2] 7t
= Gi[2] 7 Gzt Gl2] !
where
G|z == [In*(;nfl V;[m]} form=12,....n—1, and G,[z] := V,[z].

By Theorem 5, we have A, [z]~'{i,j} = (=1)""7A,[2]{i,5}, we get the following
result.

Theorem 7. For a diagonal matriz J, = diag [1, -1,1,-1,..., (—1)”] , we have

Aplz]™t = Au[—z] = JLAu 2] ]
In the following result, we give another factorization of the matrix A, [z] with

separating the variable z.
Theorem 8. Let D, [x] = diag [1, z,x2, 2, ... ,x”} be a diagonal matriz. For any
positive integer n and any non-zero real number x, we have

Aplz] = Dylz]A,[1)D,[x] 7t
Now, we give a relation between the augmented Pascal matrix A,[z] and the Fi-
bonacci matrix. Let F,[x] be the matrix of order n + 1 defined by

o 7ol

where F,,[z] is the matrix given in (1.2). For Y,y = [—z,2?/2,—23/3,...,(-1)""a"/n

which is also the i—th term of the vector X,,_; times (—1)*!, let L, [z] be the ma-
trix of order n + 1 defined by

s e

Y1 Lnz]]’

where £, [z] is the Fibonacci Pascal triangle read by rows
Lolz){i,i} = 1

Lnzl{i,i—1} = —(—-1a
Lo[x){i,0} = L,[x]{i —1,1}2*
Lolzl{i, k} = Lulzl{i—1,k—1}—Lyzl{i —1,k}x for0<k<i—1.

Then we have the following result.

]T

)
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Theorem 9.
F,lz] = Ap_q[z] L]

Proof. By the definitions of the matrices A,[z], L, ]x] and F, 2], we can easily prove
that A, [z]71F,[x] = L,[2]. O

The analogous of the classical exponential function can also be defined as a matrix
function for square matrices. This function is called matrix exponential. In other
words, for any square matrix S , the exponential of S is defined to be the matrix
52 Sd Sk
S —_— —_— _ —_
e TR THR R v i

In the last part of this section, we will present the exponential of a special matrix
and show a relation with A,,[z]. Let S,, be the matrix defined by

00 O 0 - 0
1 0 0 0 e 0
01 0 0 e 0
00 2 0 - 0 (2.2)
00 0 3 0
00 -+ -+ n—1 0]

Lemma 4. For every nonnegative integer k, the entries of the matriz S¥ are given
by

o T2 Se{m+ i+ 1,m+j5}, ifi=j+k
(Sn)’le_ .
0, otherwise.

Proof. The proof will be done by induction on k. The case k = 0 follows straight-
forward. Let us assume the inductive hypothesis on Skt! = S, S¥. It is not hard
to see for i # j +k+1, (S1), ; = 0. For i = j + k + 1, we have

k—1

S5y = [SuSE] (6,4} = Sulj +k + 1, j+ k) [ Salm +j+ 1m+ 5}
m=0
k
= JIselm+i+tm+j}
m=0
and the proof is completed. O

Theorem 10. Forn € N and x € R, we have

Ay [z] = e,

Proof. Suppose that there is a matrix L, such that A,[z] = e“»*. Then we have

%An (o] = Lneb® — LA, [a]

and so

d -~
%A”m le=0= Ln.
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Thus there is at most one matrix L, such that <L A, [z] = ef»®. It can be easily
seen that L, = S,,, where S,, is the matrix given in the definition 2.2, by calculating
%An [7] |s=0. We conclude that S*¥ =0 for & > n + 1, thus

n k

Spx __ L
k=0 ’

For i < j, we see that (e5»*){i,j} = 0 and we also have (e°"®){i,i} = 1. Now,
suppose that ¢ > j and let ¢ = j + k.

o ok ok i , . - o
(¥ )i, 5} = ()i g = 77 I1 Suim+i+1,m+ 4} = Au[2){i, 5}
: " m=0
Hence the proof is completed. 0

Example 4. We obtain the matrix %/15 [x] by taking the derivative of each entry
of the matriz As[z] with respect to x. Thus

0 0 0 0 00
1 0 0 0 00
d - T 1 0 0 00
i Sl PSS S S
3 322 6z 3 00
xt 4z’ 1222 122 4 0
Hence we have
00 00O 0O
1 0 00 00
d - 01 0 0 0O
S5 = gp sl l=0="10o 2 ¢ 0 o
00 0 3 0O
00 0 0 40
and
0 0 0 0 0 0
0 0 0 0 0 0
g2 _ 1x1 0 0 0 0 0
57 0 1x2 0 0 0 0|’
0 0 2x3 0 0 0
0 0 0 3x4 0 0
[0 0 0 0 0 0]
0 0 0 0 00
g8 — 0 0 0 0 00
57 l1x1x2 0 0 0 0 of”
0 1x2x3 0 0 0 0
| 0 0 2x3x4 0 0 0]
[ 0 0 0 0 0 0]
0 0 0 00 O
gh 0 0 0 00O
57 0 0 0 0 0 0]’
1x1x2x3 0 0 00 O
i 0 Ix2x3%x4 0 0 0 0]
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0 00 0 0 O

0 00 0 0 O

g5 0 00 0 0 O
57 0 00 0 0 O
0 00 0 0 O
I1x1x2x3x4 0 0 0 0 O

At the end of this section, we will find the explicit inverse of the matrix R, [z] =
[I, — AA,[x]]! for all numbers | A |< 1. So, we need the following result.

Lemma 5 ( [10], Corollary 5.6.16). A matriz A of order n is nonsingular if there

is @ matriz norm || - || such that ||I — A|| < 1. If this condition is satisfied,
AT =3 (T - A
k=0

Theorem 11. The matriz R,[z] is defined for all numbers | X\ |[< 1. The entries
of the matriz are

- 1
(Rn[2]){i, i} = 1
and
(Rnl2])i = (An[2]){, 5} Lij—i(N)
for i > j, where Li,(2) is the polylogarithm function

o0 Zk:
Lin(2)) =Y 1o
k=1

Proof. The statement in Lemma 5 gives us that if ||-|| is a matrix norm and if ||A|] <
1 for a square matrix of order n, then I — A 1is invertible and
(I—A)~' =377, A" Then for [\ < 1, we can write

(Ru[e){i, 3} = D (An[a)) PN =Y " (An[wk])i A = (Anfa]){i, 5} Y Aok
k=0 k=0 k=0
We obtain the desired result by writing the sum for ¢ = j and i > j. O
Example 5.
A 0 0 0 o0
. T A 0 0 0
I —Mylz] = I,— %AxQ Ar A 0 0
?\x?’ Ax? 2\ A0
Z)\Ji4 Az 3z 3Az A
1—A 0 0 0 0
—zA  1-—2A 0 0 0
= |=ix? -z 1-2) 0 0
— Az Az? 22 1—-X 0

—Z)\m4 Az —3X\z? -3\ 1-—)\
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The inverse of this matriz equals

1
e ! ’ N
(IQ_A)Qx = 0 0 0
ATHA 2 A 1
g(lf,\z)sm (124)295 T—x 0 0
APHarT4A 3 A24X 2 A 1
L BI=NT 295 (=X ER AP 2 T—x 0
M EA 4 AP 3 A4 g0 A3, 1
1(1=2)° (=YL (=23 a-—x2 —x

3. CONCLUSION

In the present paper we define a symmetric matrix and in its Cholesky factorization
we see a matrix which has a connection with Pascal matrices. Based on the matrix in
this factorization, we introduce two new matrices related to the Pascal matrix. We
obtain several factorizations of these matrices and see the relations with Fibonacci
matrices, Bernoulli polynomials and Stirling numbers.
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