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GROUP OF ONE-DIMENSIONAL BOUNDED PURE
PSEUDOREPRESENTATIONS OF A SIMPLE LIE GROUP

A. 1. SHTERN

ABSTRACT. We continue the study of the group of one-dimensional bounded
pure pseudorepresentations of a group (see [1], [2]). This group is computed

here for simple connected simply connected Lie groups.

§ 1. INTRODUCTION

For the definitions, notation, and generalities concerning pseudocharac-
ters, quasicharacters, pseudorepresentations, and quasirepresentations, and
also for the definition of the Guichardet—Wigner pseudocharacter on a con-
nected simply connected Hermitian symmetric simple Lie group, see [3]-
[5]. The groups of one-dimensional bounded pure pseudorepresentations of a
group were introduced in [1] and studied in [2].

Recall that the (tensor or, equivalently, ordinary pointwise) product of
two one-dimensional pseudorepresentations of a group is a one-dimensional
quasirepresentation. Indeed, if 7 and p are one-dimensional pseudorepresen-
tations of G with |7(g)| < C for all g € G and |w(gh)—n(g)m(h)| < ex (e is
the defect of m) and if |p(g)| < C, for all g € G and |p(gh) — p(g)p(h)| < €,
then C; = 1, since the restriction of m to every cyclic subgroup is an
ordinary character of the subgroup, and a direct calculation shows that
A< Cre,+Chep +exep =€p + Ex + ExEp.

This means that the set of bounded one-dimensional pseudorepresenta-
tions of a given group G is a group with respect to the ordinary pointwise
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product, whose identity element is the identity character t(g) = 1 € C,
g € G, and the inverse one-dimensional pseudorepresentation to a given
bounded one-dimensional pseudorepresentation 7 is the pseudorepresenta-
tion 7! given by the formula 7=1(g) = 7(¢7 '), g € G. As in [2], denote
this group by BODP(G).

Note that the additional condition that the restriction of a pseudorepre-
sentation to every cyclic group is an ordinary representation is obvious both
for wp (since the product of ordinary characters is a character) and for 7=}
(since the inverse of an ordinary character is a character).

§ 2. PRELIMINARIES

The group BODP(G) of bounded one-dimensional pseudorepresentations
of a group G contains the subgroup BODPP(G) introduced in [1]. An addi-
tional information can be found in [2], and a description of one-dimensional
pure pseudorepresentations of almost connected Lie groups was obtained
in [3].

As follows from the results of [4] (Lemma 3.3.10), for a semisimple Her-
mitian symmetric Lie group G, every element of BODP(G) belongs to the
subgroup GBODP(G) of BODPP(G), and thus BODP(G) = BODPP(G) =
GBODP(G).

The group BODP(G) obviously contains the group G of ordinary charac-
ters of G as a subgroup. The subgroup BODPP(G) coincides with G if G is
amenable, see Corollary 3.3.8 of [4].

—_—

The universal covering group SL(2, R) has nontrivial bounded one-dimensional
pseudorepresentations [4-6] but has no nontrivial characters.

Let us describe the group BODP(G) for simple connected simply con-
nected Lie groups.

§ 3. MAIN THEOREM

Theorem 1. Let G be a simple connected simply connected Hermitian sym-
metric Lie group. Then the group BODP(G) consists of the one-dimensional
pseudorepresentations of G of the form fi: g — expitx(g), g € G, where
t € R and x stands for the Guichardet—Wigner pseudocharacter of G.

Thus, the group BODP(G) is isomorphic to R.

Proof. The one-dimensional pseudorepresentations of a simple connected sim-
ply connected Hermitian symmetric Lie group are described in [2], where



Group of one—dimensional bounded pure pseudorepresentations of a simple Lie group 165

the explicit form of these pseudorepresentations is given in terms of the
Guichardet—Wigner character on G.

Since the product of these pseudorepresentations corresponds to the addi-
tion of the values of the parameter ¢, it follows that BODP(G) is isomorphic
to R, which completes the proof.

The group G has no nontrivial ordinary characters, and thus the subgroup
G of ordinary characters of G is the identity subgroup.

Theorem 2. Let G' be a simple connected Lie group with finite center Z.
Let G be the universal covering group of G, let Z be the center ofG

(i) If Z is finite, then the group BODP(G) is the identity group.

(i) Let Z be infinite, and let zg be a generator of the subgroup NNZ = N,
where N stands for the kernel of the canonical mapping G — G. Then
the group BODP(G) consists of the one-dimensional pseudorepresentations
of G of the form fi: g — expitx(g), g € G, where t € R is such that
expitx(zo) =1 and x stands for a Guichardet—Wigner pseudocharacter of G
(defined uniquely up to a nonzero real factor). Thus, the group BODP(G) is
1somorphic to 7.

Proof. The assertion (i) is obvious. Let us prove (ii).

By [3], every one-dimensional pseudorepresentation of G is an exponential
of a Guichardet-Wigner pseudocharacter on G. This pseudorepresentation
of the group G is automatically pure [3].

This pseudorepresentation can be regarded as a pseudorepresentation of G
if and only if it is equal to one on the kernel N of the canonical mapping
G — G. Indeed, this means that the pseudorepresentation is an exponential
of a Guichardet—Wigner pseudocharacter which is trivial on N, and thus is
defined by a pseudocharacter on G/N ~ G [4].

This completes the proof of the theorem.

§ 4. CONCLUDING REMARKS
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