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SUPERIOR TRANSCENDENTAL NUMBERS

HYUN SEOK LEE

ABSTRACT. From the Lindemann-Weierstrass Theorem, we can observe that e
has more superior property than the usual definition of transcendental number.
At this point, we can define the new type of transcendental number, that is, su-
perior transcendental number. In Section 3, we will prove the generalization
of Lindemann-Weiestrass theorem. Moreover, the Theorem 3.1 ensures that the
numerous results of the open problems in the transcendental number theory.

1. INTRODUCTION

In [1], references to the existence of transcendental numbers go back many
centuries. The “transcendental” comes from Leibniz in his 1682 paper where he
proved sinx is not an algebraic function of x. Certainly Leibniz believed that, be-
sides rational and irrational numbers (by “irrational” he meant algebraic irrational
numbers in modern terminology), there also exist transcendental numbers. In [2],
Liouville proved a fundamental theorem concerning approximations of algebraic
numbers by rational numbers in 1853. This theorem gives first example of tran-
scendental numbers.

Theorem 1.1 (J. Liouville, 1853). If o is algebraic of degree d, then there is a
positive constant C(Q), i.e. depending only on a., such that for all rationals g,
C(o
o-=|> ( v )
q q
From this theorem, we can find explicit examples of transcendental numbers.

p

Corollary 1.2. The number

is transcendental number.

In [3], there appeared Hermite’s epoch-making memoir entitled Sur la fonction
exponentielle in which he established the transcendence of e, the natural base of
logarithms. Liouville had shown in 1840, directly from the defining series, that in
fact neither e nor ¢* could be rational or quadratic irrational; but Hermite’s work
began a new era. In particular, within a decade, Lindemann succeeded in general-
izing Hermite’s method and, in a classical paper, he proved that 7 is transcendental
and solved thereby the ancient Greek problem concerning the quadrature of the cir-
cle. The work of Hermite and Lindemann was simplified by Weierstrass in 1885,
and further simplified by Hilbert, Hurwitz and Gordan in 1893. In [4], the tran-
scendence of e was first proved by Hermite in 1873 by using very different ideas
and applying the approximation of analytic functions by rational functions.
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Theorem 1.3 (C. Hermite, 1873). The number e is transcendental number.
Theorem 1.4 (F. Lindemann, 1882). The number T is transcendental number.

In [4], Lindemann stated more general results. One of them is Hermite-Lindemann
Theorem:

Theorem 1.5 (Hermite-Lindemann). If B is a non-zero complex number. Then at
least one of the two numbers B and ¥ is transcendental.

Thus, if B is algebraic, then P is transcendental number. Let o be non-zero
algebraic number, and if A is any non-zero determination of its logarithm, then A
is a transcendental number. Now, we define the set £ of logarithm of non-zero
algebraic numbers, that is the inverse image of the multiplicative group @X by the
exponential map :

L=exp ' (Q)= {k eC:e e@x}.
The theorem of Hermite- Lindemann can be written Qn £ = {0}, thatis, A (# 0) € £
is transcendental number.

Theorem 1.6 (Lindemann-Weierstrass, 1885). If By, ... 13,, are distinct algebraic
numbers, then e Y- 765" are linearly independent over Q.

In 1900, at the International Congress of Mathematicians held in Paris, Hilbert
raised, as the seventh of his famous list of 23 problems, the question whether an
irrational logarithms of an algebraic number to an algebraic base is transcenden-
tal. The question is capable of various alternative formulations; thus one can ask
whether an irrational quotient of natural logarithms of algebraic number is tran-
scendental, or whether aP is transcendental for any algebraic number o # 0, 1 and
any algebraic irrational f3.

Theorem 1.7 (Gelfond-Schneider, 1934). Suppose that o + 0,1 and that B is irra-
tional. Then o, and o cannot all be algebraic.

In particular, 2V2 and " = (1)~ are transcendental numbers. In the same
year, Gelfond published extended his results [5] of the Gelfond-Schneider Theorem
without proof. Actually, he does not published proofs, however in 1948 later he
published weaker statements.

Conjecture 1.8 ([6], Gelfond’s First conjecture). Let By,...,B, be Q-linearly in-
dependent algebraic numbers and if loga.y, ... logoy, Q-linearly independent al-
gebraic numbers. Then the numbers

eB‘,...,eB”, logai,...,logoy,
are algebraically independent over Q.

Conjecture 1.9 ([6], Gelfond’ Second Conjecture). Let By,...,B, be algebraic
numbers with B; 0, and let loga.,, ... ,loga, be logarithms of algebraic numbers
with logoy # 0 and logoly # 0. Then the numbers
,.-Bn—l"Bn a;%x
P and 0(?2

are transcendental, and there is no non-trivial algebraic relation between such
numbers.
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2. SUPERIOR TRANSCENDENTAL NUMBERS
This theorem is equivalent to the Lindemann-Weierstrass Theorem :

Theorem 2.1 (Lindemann-Weierstrass (revisitied)). If By,...,B, are distinct
algebraic numbers. Then
'Y]eﬁl +"'+%1eﬁn =0
for any algebraic numbers V1, ..., Y, only if all y; = 0.
Theorem 2.1 tell us that the number e has more superior property than the usual

definition of transcendental number. From this point, we can naturally introduce
the concept of superior transcendental numbers

Definition 2.2. A transcendental number o. € C is said to be a ‘superior transcen-
dental number’ if t1,...,t, are distinct algebraic numbers. Then
o', o

are linearly independent over Q. Otherwise, we say that the number o, is ‘inferior
transcendental number’.
From the Theorem 2.1, we can know that the number e is superior transcendental

number. On the other hand, the number V2 is inferior transcendental number,
since

L
1-(2¥2)¥2 —2.(2%) 0.
We can generalize this relation as follows :
If @ and b are algebraic numbers with a # 0,1 and b is irrational number, then

1
1 0
1 -(ab)b -a- (ab) =0.
Thus, the number a” is inferior transcendental number.

Theorem 2.3. A number a. € C, then the following statements are equivalent:
(a) o is superior transcendental number; B
(b) oP is a superior transcendental number for any p € Q\{0};
(c) If B1,-..,Pn are distinct algebraic numbers, and if Y1, . .. ,Y, are algebraic
numbers not all zero. Then
yl(xB‘ +~~+y,,(xﬁ"
is a transcendental number.
Proof. Clearly, (c) = (b) = (a). Thus, we enough to show that (a) = (¢).
Let
8 =yaP 4 y,abr
where By, ...,B, are distinct algebraic numbers, and vi,...,Y, are algebraic num-

bers not all zero. Suppose that § is algebraic number, then p(x) € Z[x] with
p(x) #0 such that p(8) = 0. We say,

p(x) = Zakxk (aoam #0).
k=0

Then .
p(8) =Y axd* = Zak(ZylocB’) #0.
k=0 k=0 1=0
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Since p(8) is a linear combination of algebraic numbers of distinct powers of
algebraic numbers of . Therefore, p(8) can’t be zero, since ¢ is a superior tran-
scendental number. g

Corollary 2.4. For any non-zero o € Q , the numbers
sino, coso, tandl, sinho, cosha, tanhat, and loga

are superior transcendental numbers.

3. GENERALIZATION OF LINDEMANN-WEIERSTRASS THEOREM

In this section, we will prove the generalization of the Lindemann-Weierstras
Theorem.

Theorem 3.1 (Generalization of the Lindemann-Weierstrass Theorem). If g is a
transcendental function satisfying g(x+y) = g(x)g(y) for all x,y and with g(0) = 1.
Let Qy,...,0, be algebraic numbers. Then

g((xl)v ERR) g(an)

are linearly independent over Q.
For the proof of Theorem 3.1, we need the generalization of Hermite’s identity.

Lemma 3.2 (Generalization of Hermite’s Identity). If g is a transcendental func-
tion with g(0) = 1. Also, f € C[x] with deg f = m. Fort € C, define

m 16 = -2 ()

where the integral is along the line segment from 0O to t.
Then

) 1(t,£) =g(t) Y £ (0) = Y F™(0).
n=0 n=0
Proof. Integration by parts by (1), we can get
G I = [0 1= =f(0)+ g0 0) + 11,1

We repeat this (m— 1)-times, then we get the desired result. 0
We can find the upper bound of (¢, f) given by (1) :

4 1(t, f)| <|t] max |g' (¢ —x)| ma .

“ 1) < Il max g’ (1 =) ma )|

Proof of Theorem 3.1. Suppose that

Q) Brg(o) +-+Pug(ot,) =0

for some distinct algebraic numbers o.y,...,d,, and By,...,B, are algebraic num-
bers not all zero. We can clearly assume, without loss of generality, that the s are
rational integers. This can be done by

[T (c(Bglem)++o(Bag(e))
oeGal(By,....Bn)
and then multiplying by a common denominator. Now, we claim that the set of ¢;
are ac complete set of conjugates, and then we have if o; = o; are conjugates, then
Bi =B;. We can check this by choosing p(x) € Z[x]\{0} such that p(a;) =0 for
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each 1 <i<n. Now, Qty1,...,0u be the other roots, and we put 3,41 =--- =By =0.
Cleary, we have

[T (Bi&(eta) + -+ Brg(aowm) ) =0
GEeSy
There are N! factors in this product, by expanding this product, that is a sum of
terms of the following form
gUna1+~~+hNaN)

with integral coefficients, and h; +---+ hy = N!. Note that the set of all such expo-

nents forms a complete set of conjugates. Also, this product is not identically zero.

Lastly, we can order in order that the conjugates of a particular o; appear together.
Now, the rest part of the proof, we can assume that

Brg(ou)+-+Pug(0,) =0

where [; are rational integers, and that there are integers 0 =ng<n; <---<n,=n
chosen such that

(xnﬁ-l PR 7(X‘Vl,+]
forma complete set of Galois conjugates for each 7. Also, we put

Bnr+l = Bﬂr+2 == B"Hl

Now, let d be a signify positive inteer such that da.y,...,da, and dfy,...,dp, are
algebraic integers, and set

_ g (x= 0ty )P+(x— 0 )P

fi(x) (r—0y)7 , 1<i<n,
where p denotes a large prime. Now, we define
©) Ji= Y Bid(ok, f;), (1<i<n),
k=1

and I(ay, ;) is defined by the Lemma 3.2. From (2) and (6), we have

@ g- kzl Bk(gmk) 5 £ (0) - iof,-(ock)) - k'ilﬁk io £ (o)

n=0
where m = np— 1. The last equality holds by our assumption. The rest part of the
proof, we compute the derivatives of f;. If j #k

0) _ 0 ifl<p-1,
/i (ak)_{zo(modp!) if 1 > p,

andif j=k
0 ifl<p-2,
£ (o) =1 d""(p- !0 -)? i i=p-1,
=0 (mod p!) if[>p,

Thus, we can note that each J; is an algebraic integer divisible by (p—1)! but
not by p!. Moreover, by the initial our assumptions, we have

m r—1

Ji == Z Z an+1 (fz(]) ((x"lt+1) +e +fi(j)((x’1r+1 ))?

j=01=0
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Clearly, since o,..., 0, is a complete set of Galois conjugates, the coefficient of
fi(j )(x) can be expressed in this form. Thus, J;---J, is rational. Since we assume
that d was large enough to cancel all denominators, hence we have
®) | 2 (p=1)1.
However,
Vi <.
for some ¢, independent of p. Therefore, we have
(p-D<|dy < CP

for some constant C. This inequalities are inconsistent if p is sufficiently large. [

Now, we takes g(z) = **, g(z) =n* and g(z) = (loga)?. Then we get the fol-

lowing results. The below examples are restatement of the Lindemann-Weiestras
Theorem.

Proposition 3.3. The following numbers are transcendental numbers :

(ii) e* is superior transcendental number for every o € Q\{0}.

(i) P is superior transcendental number for every B € Q\{0}.

(iii) logy is superior transcendental number for everyy € Q\{0}, for any deter-
mination of the logarithm.

. 2 3 4
It is not known that whether the numbers e, e, e, ¢¢ are transcenden-
tal numbers. There are a few of results known that at least one of the numbers

2 3 4 ., . .
e, e, e, e istranscendental by the Six Exponentials Theorem.

Theorem 3.4 (Six Exponentials). If x1,...,xq are complex numbers which are lin-

early independent over Q, and if y1,...,y; are complex numbers which are linearly

independent over Q. Suppose that dl > d +1, Then one at least of the dl-numbers
exp(xiyj), (1<i<d, 1<j<li)

is transcendental number.
By taking g(z) = ¢%” or g(z) = ¢, then we can get the following corollaries.

Corollary 3.5. The following numbers are transcendental numbers :

(i) The numbers ¢ are superior transcendental numbers for all a € Q.
. 23 . =y .
(i1) The numbers €™ are superior transcendental numbers for all o € Q with
p
o+l

. 2, .
In particular, the number ™ is a superior transcendental number. Now, we can
prove the transcendence of the number 7. The transcendence of ¢ is one of the

important open problems in this area. By considering the g(z) = plore )2, where
o, B €Q, then we have

Corollary 3.6. The numbers 1 (@+¢) yhere o, B € Q are superior transcendental
numbers.

Now, we denote G the set all Gelfond-Schneider type of transcendental numbers,
say,

G={af:acQ\{0,1}, p cQ\Q}.

Theorem 3.7. A number ¥ is superior transcendental number if and only if Y ¢ G.
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1 . .. . . =
Proof. Let Y€ G. Since y¥ —ay® = 0 is a non-trivial linear combination of @,
so we can see that 7y is not superior transcendental number. Conversely, if 7y is
transcendental number with ¥ ¢ G. Then the function

,Yz — ezlogy

is a transcendental function with g(0) = 1. By the Theorem 3.1, let o, ..., 0, be
distinct algebraic numbers, then

O

VY

Oy

are linearly independent over Q. Thus, we can get the desired conclusion that y is
superior transcendental number. ]

Now, we introduce the following definition.

Definition 3.8. A complex number is said to be ‘inferior’ if this number is either
an algebraic number or the type of Gelfond-Schneider transcendental number. A
complex number is ‘superior’ if it is not ’inferior’.

Now, we denote by 7 is the set all ‘inferior complex numbers’ and by C its
complements. From the definition, we can get

Z=QUJG.

Also, the set of superior complex numbers conicides to the set superior transcen-
dental numbers. Thus, we can get the following theorem.

Theorem 3.9. A complex number is either inferior complex number or a superior
transcendental number. The complex number field C is disjoint unions of Q, G,
and C, that is,

c=QUgc.

Note that the set G is inferior transcendental numbers is countable, so is the set
7 =Qug. Therefore, most complex numbers are superior transcendental numbers.
Now, we denote the set

Lg:= {Blogoc caeQ\{0,1}, B e@\@}.

If § ¢ Lg, then g(z) = €7 is a transcendental function such that g(0) = 1. We can
get the following theorem. The converse also holds.

Theorem 3.10. Let d ¢ Lg, then the number deS.

The results of Theorem 3.10 ensure that the following more stronger result :

. i
Corollary 3.11. If o and B are non-zero algebraic numbers. Then ¢* € S.
. 2N )
In particular, the number e (=¢€' ) is a superior transcendental number.

Proof. We enough to show that o # B’loga’ for every o/, € Q\{0}, since the
left hand side is a inferior complex number, however the right-hand side is a supe-
rior transcendental number. By the Theorem 3.9. we can get that the number e
is superior transcendental number. O
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4. LINEAR INDEPENDENCE OF THE SUPERIOR TRANSCENDENTAL NUMBERS

In this section, we will derive the linear independence of superior transcendental
numbers. These results provide seminal open problems in transcendental number
theory.

Theorem 4.1. If o and B are non-zero algebraic numbers, then the numbers P
and log . is linearly independent over Q.

Proof. Suppose that they are linearly dependent over Q, say
yleﬁ +(-12)loga =0

where v;,7Y, are non-zero algebraic numbers. Then we have,

n
an =e .
. - . oo B . .
It is a contradiction, since o™ is a inferior complex number, however ¢ is superior

transcendental number. U

Theorem 4.2. Let ., B be non-zero algebraic numbers, then the numbers 7P and
loga are Q-linearly independent

Proof. Suppose that
811P + (=8;)loga =0
for some non-zero algebraic numbers 8;,d,. From this, we can get
OL% =

However, it is contradicts the fact that the number e’EB is superior transcendental
38

%2
number, however the number o %1 is inferior transcendental number. O
In the same way, we can prove the following results:

Theorem 4.3. If E is non-zero algebraic numbers, then {n,lognB} is linearly
independent over Q.

Now, we can answer that one of seminal conjecture in this area. The transcen-
dence of e- and 7.
Theorem 4.4. The numbers «t -e, % are transcendental numbers

Proof. First, we can suppose that ¢-T = o is algebraic number. Then Tt = a-e”!

and €™ = (eef1 )a. From the Theorem 3.10, we can get ¢! ¢ Lg. So, ¢ Lg, and
-1\a . . P o e
consequently (ee ) is a superior transcendental number. This is contradiction,
since e* is an inferior transcendental number. Secondly, we suppose that % =B is
algebraic number. Then T =3 -e and " = (ee)B. By the Theorem 3.10, e ¢ Lg.

Thus, e ¢ Lg, and hence (ee)B is a superior transcendental number. It is contradict
the fact that the number e” is inferior transcendental number. O

The next theorem claim that the similar conclusion can be stated if in the above
theorems, if we can places the distinct powers of e with just distinct superior tran-
scendental number.

Theorem 4.5. LetM1,...,M, be distinct superior transcendental numbers, then the
numbers 1,M1,...,M, are linearly independent over Q.
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Proof. Assume that
©) do+dmy+-+dm, =0

where d,...q are algebraic numbers not all zero. Now, we remove for all i such
that d; = 0, we can assume that all coefficients are different from zero. Observe that
if d; # 0, then we can multiply by d; ! to obtain equation same form of (9). Also,
we can assume that dy # 0.

Now, we consider the polynomial

F(x) =x"(x=1)P--(x—n)P.
Then for 0 < x < n, we have
|f ()| <ntP7t,
Fort=1,...,n, we set

I(t,f)::/ (logn) (¢ x)f(x)dx

Integration by parts, we have

16.0)= [ 1@a(-nf) = =5 0) s ) 1.1,

By repeating this procedure, we have

np+p+1 ) np+p-1 )
1.f)=n, 3 r20- Y 90
j=0 j=0

Also, we can note that

(10) |I(l f)| / | 10g1‘|t n, b(t x)f(x)‘dx< |10gT] ’e|blogﬂt‘ n(p+1)- l
Now, we define
(11 Ji=diI(1, )+ +dyI(n, f).

Then, we have
(12)
n np+p—1

n np+p—1 np+p-1 np+pl
- Zdi(r,- > 00 f<f>(i)) o Y S-S FO)
i=1 j=0 j=0 j=0 i=1 j=0
where the last equality follows from d|t; +--- +d,T, = —dp. The rest part of the
proof, we compute the derivatives of f. Note that £(/)(0) =0 for j<p—1; f»~1(0) =
(~=1)"(p-1)!(n!)? is not divisible by p! for p>n and £(/)(0) is an integer divis-
ible by p! for j > p. Also, (i) =0 for j < p and fU)(i) is an integer divisible by
p! for j > p. Therefore, it follows that if p > i i i
by (p—1)! and

V> (p-1)!
From the (10) and (11), it follows that

(13) ] < Z \di| |1 (2, £)] < n"P+D! ( Z |d,-||lognt|e|bl°g“’) <CP.
t=1 t=1

for some independent p. From (12) and (13) are inconsistent for sufficiently large
prime p, and we get the contradiction. 0
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From the our results, we can know that the numbers e and T are superior tran-
scendental numbers. Using the Theorem 4.5, we can prove that the long-standing
conjecture of transcendence of e+ and e —T.

Corollary 4.6. The numbers e+ T and e — T are transcendental numbers.

We note that ¢* and ©tf are superior transcendental numbers for non-zero al-

o

@ B .
gebraic numbers o and B. Assume that ¢* = P, then ¢f = 1 and e’ = e Ttis

contradict the fact the number e" is inferior complex number, however eF is supe-
rior transcendental number. We apply Theorem 4.5 to the set {¢*, P}, then can
get the result of the long-standing conjecture of the algebraic independence of the
numbers e and .

Corollary 4.7. The numbers 1, e* and TcB_is linearly independent over Q for non-
zero algebraic numbers o,B. Also, any Q-linear combination of the numbers e*
and TP is transcendental number.

Now, Gelfond’s First and Second conjectures are proved by the Corollary 3.5,
Corollary 3.11, Theorem 4.1 and Theorem 4.5.
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