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CONFORMAL QUASI HEMI-SLANT RIEMANNIAN
SUBMERSIONS FROM COSYMPLECTIC MANIFOLDS

RAJENDRA PRASAD AND SHWETA SINGH

Abstract: In this paper, we introduce some geometric properties of conformal
quasi hemi-slant Riemannian submersions from a cosymplectic manifold to a Rie-
mannian manifold. We obtain the necessary and sufficient conditions for the inte-
grability conditions of distributions. We also search for totally geodesicity on the
base manifold of the submersions. Finally, we give an explicit example of this type
of submersions.

1. INTRODUCTION

In Riemannian geometry, there are few appropriate maps among Riemannian
manifolds that compare their geometric properties. In this direction, as a gen-
eralization of the notions of isometric immersions and Riemannian submersions,
the Riemannian map between Riemannian manifolds was initiated by Fischer [10],
while isometric immersions and Riemannian submersions were widely studied in [7]
and [25], respectively. However, the notion of Riemannian maps is a new research
topic for geometers. In [29], other prominent basic maps for comparing geometric
structures between Riemannian manifolds are studied by O’Neill. O’Neill defined
a Riemannian submersion, which is the “dual” notion of isometric immersion, and
obtained some fundamental equations corresponding to those in Riemannian sub-
manifold geometry, that is, Gauss, Codazzi, and Ricci equations. This notion is
related to physics and has some applications in Yang-Mills theory [5, 33], supergrav-
ity and superstring theories [12, 16], and Kaluza-Klein theory [6, 11]. On the other
hand, Riemannian submersions were considered between almost complex manifolds
by Watson [32] under the name of almost Hermitian submersions. For Riemannian
submersions between almost-contact manifolds, Chinea [8] studied them under the
name of almost-contact submersions.

As a natural generalization of holomorphic submersions and totally real submer-
sions, B. Sahin introduced the notion of slant submersions [23] and semi-invariant
submersions [22] from almost Hermitian manifolds onto arbitrary Riemannian man-
ifolds. The different kinds of Riemannian submersions between Riemannian mani-
folds endowed with different structures were studied by several geometers [3, 19, 13,
20, 26, 24]. As a generalization of invariant submersions and slant submersions, Park
and Prasad [18] defined and studied the notion of semi-slant submersions from an
almost Hermitian manifold onto a Riemannian manifold. Also, bi-slant submersions
in complex geometry [21] is studied by Sayar et al., 2020. As a generalization of
slant submersions and anti-invariant submersions, B. Sahin introduced the notion of
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hemi-slant Riemannian submersions [28] from almost Hermitian manifolds onto Rie-
mannian manifolds. He gave a decomposition theorem for such submersions. Also,
Sahin gave some main results about Riemannian submersions and an application to
robotic theory [26]. Therefore, a new vision on submersions by applying conformal-
ity conditions was presented by Akyol and Sahin [1, 2]. Riemannian submersions
have many applications, such as texture mapping, remeshing and simulation [15],
computer graphics and medical imaging fields [30] and brain mapping research [31].

The purpose of this paper is to study conformal quasi-hemi-slant Riemannian
submersion from a cosymplectic manifold, which includes the classes of conformal
hemi-slant submersion, conformal semi-invariant submersion and conformal semi-
slant submersion.

2. PRELIMINARIES

In this section, we give several definitions and results to be used throughout the
study for conformal quasi-hemi slant Riemannian submersion.

A (2n + 1)-dimensional C*°-manifold is said to have an almost contact structure
on X, if there exist a tensor field 2 of type (1, 1), a vector field £, and a 1-form 7
satisfying

(2.1) P =-T+n®E QU =0, noQ=0, n()=1.

There always exists a Riemannian metric g; on a cosymplectic manifold ¥, satis-
fying the following conditions:

(2.2) 81(Q2P,QQ) = g1(P, Q) — n(P)n(Q),
where P, @ € TI'(T'Y,,)). The immediate consequence of (2.2) is

An almost contact structure (€,&,7,g1) is said to be normal if the almost complex
structure J; on the product manifold ¥,, x R is given by
d d

B(P,f5) = (@ = f&,n(P) %),
where f is a C°°-function on ¥, x R having no torsion, i.e., Jj is integrable. The
condition for normality in terms of Q, £, and 7 is [©2, Q] 4+ 2dn ® £ = 0 on ¥, where
[, €] is the Nijenhuis tensor of . Finally, the fundamental two-form ® is defined
as (P, Q) = g1(P,QQ). An almost contact metric structure (£2,&,7,g1) is said to
be cosymplectic manifold ([4, 27]) if it is normal and both ® and 7 are closed, and
the structure equation of a cosymplectic manifold is given by

(2.4) (Vp)Q =0

for any P,Q € I'(T'%,,), where V denotes the Riemannian connection of the metric
g1 on X,,. Moreover, for a cosymplectic manifold, we have

(2.5) VpE=0.
The covariant derivative of  is defined as

(VPQ)Q = VpQQ — QVpQ.
If ¥, is a cosymplectic manifold, then we have

(2.6) QVpQ = VpQQ.
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Let (X,9Q,&,1,81) be a cosymplectic manifold and (X,,g2) be a Riemannian
manifold. Let v : (Z,,,92,&,m,81) = (Zn,8g2) be a smooth map, then the second
fundamental form of v is given by

(2.7) (VY)(P,Q) = Vp1(Q) — 1:(VpQ), for all P,Q € T(T'Ey).

The second fundamental form V+, is symmetric [17]. Here -, is differential map of
~ from tangent space of ¥, at a point x € 3, to tangent space of ¥,, at y(z) such
that vy : T2, — Ty Y-

A smooth map v : (X, Q,&,m,81) = (Xn,82) between Riemannian manifolds is
called a Riemannian submersion, if v has maximal rank and the differential -, pre-
serves the lengths of horizontal vectors. On the other hand, let (¥,,,,&,n,¢1) be an
m-dimensional cosymplectic manifold and (%,,, g2) be an n-dimensional Riemannian
manifold, and let v : (X,,,92,&,1m,81) — (Zn,g2) be a differentiable map between
them and x € ¥,,, then ~ is called horizontally weakly conformal or semi-conformal
at z if either (v,); = 0, or (v,)s is surjective and there exists a number x(x) # 0
such that

(2.8) £2(1:P.7Q) = x(2)g1(P.Q), for all P,Q € ((ker7.)a)™

We say that point z is a critical point if it satisfies (v,), = 0 and we shall call the
point z a regular point if (v, ), is surjective. At a critical point, (v, ), has rank 0; at a
regular point, (v, ), has rank n and ~ is submersion. Furthermore, x(x) is called the
square dilation of  at x, and its square root is A(z) = /x(z) is called the dilation
of v at . The map ~ is called horizontally weakly conformal or semi-conformal on
Ym if it is horizontally weakly conformal at every point on X,,. If v has no critical
point, then it is said to be a (horizontally) conformal submersion [3].

A vector field E on X, is called projectiable if there exists a vector field E' on
¥, such that v.(E,) = E;(x) for any x € %,,. In this case, £ and E’ are called
~v—related. If E is both a horizontal and a projectiable vector field, we say FE is a
basic vector field on ¥,,. From now on, when we mention a horizontal vector field,
we always consider a basic vector field [3].

The fundamental tensors 7 and A defined by O’Neill’s for vector fields E and F' on
Ym such that

(2.9) ApF = HVA o VF + VWA HE,
(2.10) TeF = HVY.VF + VVILHF

where V and H are the vertical and horizontal projections respectively. Note that
the tensor field 7 is symmetric on the vertical distribution [29]. On the other hand,
from equations (2.9) and (2.10) we have

(2.11) VLK = TLK + VK,

(2.12) VP =HVLP+T.P,
(2.13) VpL = ApL +VVpL,
(2.14) VpQ =HVpQ+ ApQ

for all L, K € I'(kerv,) and P,Q € T'(kerv,)*, where VW K = ﬁLK [9]. If Pis
basic, then ApK = HVpK.
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Lemma 2.1. Let v: (X,,,Q,&,m,81) = (Xn,82) be a horizontal conformal submer-
sion, then for any horizontal vector fields P, Q and vertical vector fields L, K [3], we
have

(2.15)  (V3)(P.Q) = P(In M) (Q) + Q(In )y« (P) — g1(P, Q)v«(gradln ),
(2.16) (V)L K) = =7 (TLK),

(2.17) (V1)(P.L) = = (V¥ L) = —7.(ApL).

Here, X\ is the dilation of v at a point x € ¥, and it is a continuous function as
A: X, — [0,00).

3. CONFORMAL QUASI HEMI-SLANT RIEMANNIAN SUBMERSIONS

In this section, we define and study conformal quasi hemi-slant Riemannian sub-
mersions from a cosymplectic manifold to a Riemannian manifold.

Definition 3.1. v : (3,,,2,£,m,81) — (X5, 82) be a conformal submersion such that
its vertical distribution ker v, admits four mutually orthogonal distributions D, Dy,
Dt and < € >. Where D is invariant (Q(D) = D), DY is slant (the angle 6 between
Dy and Q(Dy) is a constant) and D+ is anti-invariant (Q(D+) C (kerv.)b), i.e.,

(3.1) kery, = D® Dy ® D < € > .

Then we say v is a conformal quasi hemi-slant Riemannian submersion and the
angle 0 is called the quasi hemi-slant angle of the map.

Here, we have some particular cases:

(2) If the distribution D = {0} then the map ~ is a conformal hemi-slant submer-
sion.

(#9) If the distribution Dy = {0} then the map 7 is a conformal semi-invariant
submersion.

(4i1) If the distribution D+ = {0} then the map ~ is a conformal semi-slant sub-
mersion.
Let v be a conformal quasi hemi-slant Riemannian submersion from a Cosymplectic
manifold (X,,,£,£,7n,g1) onto a Riemannian manifold (X,,,g2), then we have

(3.2) TS = (kery,) @ (ker )L,
A vertical vector field U can be written as
(3.3) U= U+ foU+ f3U +n(U),

where f1, f» and f3 are projections onto D, Dy and D=+ respectively.
For all U € T'(ker.), we have

(3.4) QU = 111U + poU,

where pu1U and psU are vertical and horizontal components of QU respectively.
From (3.3), (3.4) and Definition 3.1, we obtain p iU = 0, p1 fsU = 0 and

(3.5) QU = p1 frU + p1 foU + pa foU + pa f3U.
Hence, we can write

(3.6) Q(kerv,) = D @ puy Dy & poDg & QD).
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Using (3.6), we obtained

(3.7) (ker )™ = paDy & QDY) @ p

where p is the orthogonal complement distribution of Dy @ Q(D1) in (kerv.)~*
and p is the invariant with respect to €. Lastly, for a horizontal vector field P, we
have

(3.8) QP =1 P+ 1P

where 1 P € T'(2 Dy ® (D)) and vo P € T'(p).

Lemma 3.2. Let v be a conformal quasi hemi-slant Riemannian submersion from

a cosymplectic manifold (X, 2, &,m,81) onto a Riemannian manifold (3,,g2), then
we have

(a) Dy =Dy, (b) pD*={0},

(¢) vipsDy =D (d) 1QD+ =Dt (e) poD={0}.
Lemma 3.3. Let (X,,,Q,&,1n,81) be a cosymplectic manifold and (X, g2) be a Rie-
mannian manifold. If v : (L, Q,€,n,81) — (Zn,82) is a conformal hemi-slant
Riemannian submersion, then

X v X = =X +0(X)¢,  pamX + vapeX =0,

i Z +viveZ =0, o Z + 1227 = -7

for all X € T(kerm,) and Z € T'(ker m,)*.
Lemma 3.4. Let vy be a conformal quasi hemi-slant Riemannian submersion from

cosymplectic manifold (X,,,Q,&,n,81) onto a Riemannian manifold (X,,g2), then
we have

(3.9) —u? = cos?0U,
(3.10) g1 (U, 1 V) = cos’0gy (U, V),
(3.11) gl(NQUa ,lLQV) = sin29g1(U, V)

for U,V € T'(Dy).

Lemma 3.5. Let v be a conformal quasi hemi-slant Riemannian submersion from
a cosymplectic manifold (Xp,,Q,&,m,81) onto a Riemannian manifold (3,,g2), then
we have

(i) &1 (Var N, €) = 0,

(i4) &1([M, NJ.€) = 0,
where M, N € (D @ Dy & D4).

Throughout this section, we give necessary and sufficient conditions to be inte-
grability for distributions.

Theorem 3.6. Let vy be a conformal quasi hemi-slant Riemannian submersion from
a cosymplectic manifold (X, 2, &,m,81) onto a Riemannian manifold (X, g2), then
the distribution Dy is integrable if and only if

g2((Vy) (N, 1 f12), v (2 M) — g2((VYi) (M, p1 [12), 74 (p2N))
= Nei(VNufiZ + TwnafsZ, M) — g1 (HV srpa f3 Z, paN)
+e1(HY Np2fsZ, uaM) — g1(Vap fLZ + Tarpa f3Z, i N) }
for M,N € T'(Dy) and Z € T'(D & DV).
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Proof. We have, from Lemma 3.5 g;([M, N],£) = 0. Thus Dy is integrable if and
only if g1 ([M, N],Z) = 0. Since ¥, is a cosymplectic manifold, we have

g1(VuN, Z) = —g1(VuQZ,QN) for M, N € I'(Dy) and Z € T(D @ D).
So, we get from (2.11), (2.12), (3.3) and (3.4)
—81(VuQZ,QON) = —g1 (Vi f1Z + Vpa f3Z, pu N + paN)

(3.12) = —a1 (Vi f1Z + Tarpia f3Z, i N)
—e1(Tmm fLZ + HV mpa f3Z, poN).

Changing the roles of M and N in (3.12), we have second part of g;([M, N], Z).
Hence from (2.16) we obtain
(3.13)

g1(IM, N1, Z) = g1 (VN 1L Z + Tapa f3Z, in M) — g1(V s f1Z + Taspa f3Z, pa N)
+81(HV npafsZ, poM) — g1 (HV ppe f3Z, paN)

+ g 8 (V1) (M, 11 /12), 3 (12N)) — 22((V3) (N, 1 1 2), 7 (02M)}.
The proof is completed from (3.13). O

In a similar way, we have the following theorem.

Theorem 3.7. Let v be a conformal quasi hemi-slant Riemannian submersion from
a cosymplectic manifold (Xy,,Q,&,m,81) onto a Riemannian manifold (3,,g2), then
the distribution D is integrable if and only if

AV foZ + TarpaZ) =0 and  fL(VypifoZ + TnpaZ) = 0
for M, N € T(D) and Z € T'(Dy ® D*).

Proof. We have, from Lemma 3.5, g1([M, N],§) = 0. Thus D is integrable if and
only if g1([M, N], Z) = 0. Using (2.4), (2.11), (2.12) and (3.5), we have

g1(VuN,Z) = —g1(Vu(p foZ 4 pofoZ + paf3Z),QN)
= —a1(V i f2Z + TarpafoZ + Taapa f3 2, QN),

for M, N € I'(D) and Z € I'(Dg ® D*). Using us(foZ + f32) = u2Z and equation
(3.14) we obtain

(3.15) g1([M, N1, 2) = g1 (Vs foZ+ T pa Z, QM) — g1 (Varpa fo Z + Taspia Z, QN).

Since D is an invariant distribution, we have QM, QN € I'(D). Therefore, we obtain
the proof from (3.15). O

(3.14)

Here, integrability condition of the anti-invariant distribution D+ is same as the
condition for hemi-slant Riemannian submersion in [14]. In addition, we know that
the vertical distribution of a submersion is always integrable. Hence, we lastly give
integrability condition for the horizontal distribution (ker ,)=.

Theorem 3.8. Let v be a conformal quasi hemi-slant Riemannian submersion from
a cosymplectic manifold (X,,,,&,m,81) onto a Riemannian manifold (X, g2), then
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the distribution (ker~, )" is integrable if and only if
82((V7)(P,11Q) — (V) (Q, v1P) + V7 (12P) — Vi (12Q), 7 (122))
= )\Q{gl(VvalQ —VVouiP,2) + )\2g1(ApV2Q — AguoP, 11 Z) — 12Q(In g1 (P, poZ)
+r2Z(InA)g1 (P, 12Q) + v2P(InA)g1(Q, p2Z) — p2Z(InA)g1(Q, v2 P)
for P,Q € T'(kerv,)* and Z € T'(ker ,.).
Proof. Firstly, from (2.13), (2.14), (3.4) and (3.8), we have
(3.16) 2¢1(VpQ,Z) = g1(Ap1rQ + HV p1oQ, u2Z) + g1(Apre@ + VVpinQ, umZ)

for P,Q € T'(kerv.)* and Z € T'(ker+.). Now, changing the roles of P and @ in
(3.16), we get

g1([P,Q], Z) = g1(Apr1Q + HV p1rQ — Aqui P — HV g P, 12 7)
+g1(ApaQ + VVp11Q — AgraP — VVoui P inZ).

Hence, using equations (2.7), (2.15) and (2.17) in (3.17), and since u is orthogonal
to oDy @ (DY) therefore, we obtain

0=g1(VVpriQ+ Ap1oQ — VVoui P — Ague P, i1 Z)

+ 352(T1)(QnP) - (V1) (P Q) (122)

(3.17)

(3.18) + 158 (V1 (2Q) — Vyu(aP), 7(127)
— 12Q(In N)g1 (P, p2Z) + p2Z(In A)g1 (P, 12Q)
+ 12 P(InA)g1(Q, p22) — p2Z(In A)g1(Q, v2 P).
One can see the proof from (3.18). O

4. ToTALLY GEODESICNESS ON DISTRIBUTIONS

In this section, we present conditions for certain distributions and the map v to
define totally geodesic foliations on 3,,.

Theorem 4.1. Let vy be a conformal quasi hemi-slant Riemannian submersion from
a cosymplectic manifold (X, 2, &, m,81) onto a Riemannian manifold (3, g2), then
the distribution D defines totally geodesic foliations on X, if and only if

(i) Ng1(ViQN, 1 oY) = g2((V3:) (M, QN), 7 (1Y),

(i) Ng1(VMQN, 11 Z) = g2((V7:) (M, QN), 7. (122))

for M,N € T(D) ,Y € T'(Dg @ D*) and Z € T'(ker v,)*.
Proof. Firstly, from (2.11), (2.16), and (3.4) we have

g1 (VuN,Y) = g1 (TaIN, p2Y) + g1(VarQIN, 1Y)

(4.1) 1 <
= —3382((V2) (M, QN), 7. (12Y)) + g1 (VM ON, i Y)

for M,N € I'(D) and Y € I'(Dy® D+). On the other hand, from (2.11), (2.16) and
(3.8) we have

g1(VuN, Z) = g1 (TN, 15.2) + g1 (Vs QN, 11 Z)
(4.2) 1 ~
= _ﬁgQ((V’Y*)(Ma QN)a rY*(VQZ)) + gl(vMQNa VIZ)'
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for M, N € T(D) and Z € T'(kery,)*.
We obtain (7) and (i7) from (4.1) and (4.2), respectively. O

Theorem 4.2. Let vy be a conformal quasi hemi-slant Riemannian submersion from
a cosymplectic manifold (X,,,92,&,m, 1) onto a Riemannian manifold (X, g2), then
the distribution Dy defines totally geodesic foliations on X, if and only if

(i) = X*{cos” 0g1(Var oV, Y) + g1 (HV arpia foN, i f3Y )} = g2((V72) (M, Y), %a (g f2IN)
+82(Vr) (M, i1 /1Y), v (p2 f2N)),

(i1) N {g1(HV mpop1 foN, Z) + g1 (HV mpafoaN, 122)} = cos? 0ga (V) (M, faN),7.(Z))
— 2((VY%) (M, 11 Z), v (p2 foN))
for M,N € T(Dy), Y € T(D @ DY) and Z € T'(ker v,)*.

Proof. From equations (2.11), (2.12), (2.16), (3.9) and skew-symmetric properties of
T we have

81(VuN,Y) = cos® g1 (Var faN,Y) + g1(Tarpapn f2N, V)
+ g1 (TapafoN, p1 1Y) + g1t (HVarpa foN, pa f3Y)
= cos” 0g1(VarfoN,Y) — g1(Ti Y, piapir f2N)
= g1(Tupr /1Y, p2foN) + g1 (HV mp2 foN, pa f3Y)
= cos” 0g1(Va foN,Y) + g1(HV arpa faN, pa f3Y')

+ %gQ((V'y*)(M,Y),’V*(MQNUCZN))

1
+ 5282((V) (M, i 1Y), 7 (p2f2N))
for M,N € T'(Dy) and Y € I'(D @ D). In a similar way, from (3.8) we have

g1(VuN, Z) = cos? 0g1(Var foN, Z) + g1 (HV arpapn foN, Z)
—g1(Tu1 Z, pafoN) + g1(HV prpa faN, 12 Z)
= cos® 0g1(Tar f2N, Z) + g1(HV sprpigpa foN, Z)

(4.4) + %gg((V%)(]\/L 1 2), (2 foN)) + g1(HV yp2 foN, 12 2)

(4.3)

= — c05? 03382((V2) (M, o), %(2)) + 81 (HV sgpapn o, 7)
+ 58T (M1 2), 7 (122 N) + 81 (K aspa o, 127)

M,N € T'(Dg) and Z € T'(kervy,)*. We obtain (i) and (i) from (4.3) and (4.4),
respectively. O

Theorem 4.3. Let v be a conformal quasi hemi-slant Riemannian submersion from
a cosymplectic manifold (X,,,Q,&,m,81) onto a Riemannian manifold (X, g2), then
the distribution D+ defines totally geodesic foliations on X, if and only if

(1) =Ng1(HVMON, 2 oY) = g2 (V) (M, j1Y ), 7 (QN)),

(i) —\2g1 (HV \v2 2, ON) = ga((V7.) (M, 11 Z), % (QN))
for M,N € T(D1),Y € T(D @ Dy) and Z € T'(ker v,)*.
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Proof. Since the distribution D is invariant. Hence, from (3.3) and (3.4) we have
QY = Y + pefoY. So, we get using skew-symmetric properties of 7, (2.12) and
(2.16)

g1 (VuN,Y) = g1 (TN, 1Y) + g1 (HV yQN, pa f2Y)
(4.5) = —g1(Tarp1 Y, QN) + g1 (HV 1 QN, po f2Y)

= %&((V%)(M, 1Y), 1 (QOAN)) + g1 (HV QN pip f2Y)

M,N € F(DJ-) and Y € T'(D @ Dy). Similarly, from (2.11), (2.12), (3.4) and (3.8)
we get

gl(VMN, Z) = *gl(TMmZ + HV pyioZ, QN)

(4.6) 1
= ﬁgg((VW*)(M, Z),%(QN)) + g1(HV y1eZ, QN)

for M, N € T(D') and Z € T'(ker~,)*. We obtain (i) and (i) from (4.5) and (4.6),
respectively. O

Theorem 4.4. Let ~y be a conformal quasi hemi-slant Riemannian submersion from
a cosymplectic manifold (X, 2, &,m,81) onto a Riemannian manifold (X, g2), then
the vertical distribution ker v, defines totally geodesic foliations on 3, if and only
if

N {e1(HV mpafoN + Tarpia fsN, 12 Z) — g1(HV arpopn f2N, Z)

+ g1 (Va fiN + Tarpa foN + VVarpa fsN, 1 Z)}

= cos? Oga (V) (M, f2N), 74(2)) + g2 (V) (M, i1 f1 N ), 74 (12.Z))
for M,N € T'(kerv,) and Z € I'(ker v,)*.

Proof. We calculate the case of g1(VyN,Z) = 0 for M, N € I'(ker~,) and Z €
['(ker ,)*. So, from (2.11), (2.12) and (3.5) we have

g1(VuN,Z) = gi(Vu(u fiN + prfoN + pa foN + p2 f3N), QZ)
= g1(Tupr fiN + HV ppa foN + Ty pa fsN, veZ)
+ a1 (Varm fiN + TarpafoN + VVarpa fsN, 11 Z)
— g1(Vupd foN + Vi piopa 2N, Z).
Here, we use equations (2.16) and (3.9) in (4.7). Hence, we obtain
0=g1(Tupm fiN +HV ypafoN + Taupa fsN,ve2)
+ g1 (Varu AN + Tarpa faN + VVarpa fsN, 1 Z)
+ cos?0g1 (Tar faN, Z) — g1 (HV prpopir fo N, Z)

1
(4.8) = —3282((V3) (M, 1 fiN), 7 (12 Z))

+ g1(HV mpa foN + Tarpa fsN, v2Z)

+ g1 (Varut AN + Tarpz foN + VVarpa f3N, 11 Z)}

— 3 €05 08a((V1) (M, oN),72(2)) — 1 (HV aapopn N, Z).

The proof is completed from (4.8). g

(4.7)
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Theorem 4.5. Let y be a conformal quasi hemi-slant Riemannian submersion from
a cosymplectic manifold (X,,,Q,&,m,81) onto a Riemannian manifold (X, g2), then
the horizontal distribution (ker~y,)* defines totally geodesic foliations on L, if and
only if

1

2 182((V) (M, 11N), 7 (22)) = g2((V3) (M, 1.2), 7 (v2N)) }

= g1 (VV]W/lN, ulZ) + I/QN(ID A)gl(M, ,MQZ) — ,UQZ(IH )\)gl(M, VQN)
for M,N € T'(kerv,)* and Z € T'(kerv,).
Proof. Using equations (2.4), (2.13), (2.14) and (3.4), we get

g1 (VMuN,Z) =gi(VuriN + VyvaN, i Z + pe2)
(4.9) = g1 (AN + HV yva N, us Z)
+g1(VVuviN + AyveN, i1 Z)

for M, N € T'(kerv,)* and Z € T'(ker~,). Here, we apply (2.15), (2.17), (3.8) to

(4.9) and from skew-symmetric properties of A, we obtain

81(VarN, Z) = = 558a((T7) (Mo N), % (12 2)) + vaN (I s (M, 122)

(4.10) — p2Z(InA)g1 (M, 1v2N) + g1 (VV i N, pn Z)
1
+ ng((vv*)(Ma MlZ)7 P)/*(VZN))
The proof is completed from (4.10). O

Note that, a horizontally conformal submersion v : (X,,,Q,£,n,81) — (Xn,82) is
said to be horizontally homothetic if the gradient of its dilation A is vertical, i.e.,
H(gradX) = 0 at regular points. Hence, we have the following.

Corollary 4.6. Lety be a conformal quasi hemi-slant Riemannian submersion from
a cosymplectic manifold (X,,,Q,&,m, 1) onto a Riemannian manifold (X, g2), then
the horizontal distribution (ker ) defines totally geodesic foliations on %y, if and
only if

(i) v is a horizontally homothetic map,

(i) g2((V) (M, 1N, i (12.2)) =2 (V) (M, 1. Z), 7 (v2N)) = N1 (VV i N, 11 Z)
for M,N € T'(kerv,)* and Z € T'(kerv,).

Proof. Since ~ defines totally geodesic foliations on X,,. Hence, we have (4.10).
Suppose that ~ is a horizontally homothetic map, so we have from (4.10)

(4.11) 0=voN(InN)g1(M, u2Z) — poZ(IlnXN)g1 (M, vaN)

for M, N € T'(kerv,)* and Z € T'(ker+,). Here, if we take M = psZ in (4.11) we
get

(4.12) 0=1voN(In\)g1(u2Z, po2).

In (4.12), we get 0 = 1o N(In A\) and it means A is a constant on u. Similarly, if we
take M = 19N in (4.11) we get

(4.13) 0= —,U,QZ(ID )\)gl(l/QN7 Z/QN).
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In (4.13), we get 0 = poZ(In\) and it means \ is a constant on psDg & Q(D4).
Therefore, from (4.12) and (4.13) we say that A is a constant on horizontal distri-
bution. So, (i) is satisfied. Now, if (i) is satisfied in (4.10), we obtain

1
0= —Fgg((VV*)(M, NN, Y (p2Z)) + g1 (Vi N, i Z)
(4.14)

1
+ ng((V’}/*)(M, 1112),7: (v2N)).
From (4.14), (ii) is satisfied. The proof is completed. 0

A horizontally conformal submersion v : (X,,,,&,7,81) — (X5, g2) is said to be
totally geodesic if second fundamental form of the map (V~.)(P,Q) =0 for P,Q €
I['(TX,,). Hence, we have the next theorem.

Theorem 4.7. Let vy be a conformal quasi hemi-slant Riemannian submersion from
a cosymplectic manifold (X,,,9,&,m,81) onto a Riemannian manifold (X, g2), then
the map ~y is totally geodesic if and only if
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(7) cos? OTrrfoN = HVM/LQ/MfQN-‘rl/Q{TM,LL1le—i-HvM,ugN}-‘rMQ{ﬁM/A1f1N+TMM2N},

(ZZ) 0= Vg{.AplulM + HVP,LLQM} + MQ{VVP,U,1M + AP/JQM},
(7it) v is a horizontally homothetic map,
for P,Q € I'(ker v,)* and M, N € T'(ker~,).

Proof. Firstly, we examine (V~,)(M, N) for M, N € I'(ker~.). Because of pafoN +
p2fsN = paN we have from (2.4), (2.7) and (3.5)

(V) (M, N) = 7(QVar (1 f1N + pa faN + paN))
for M, N € I'(kerv,). Then, using equations (2.11), (2.12) and (3.9), we have
(V) (M, N) = . (QTarpn 1N 4 QV a1 f1N)
+ (Vi f2N + Varpgpn f2N)
+ Y (QTarpe N + QHV prpeN)
= Y (o Tarpr fi N + p2Varpn f1N)
(4.15) —c08? 07 (Vs foN) + v (HV arpiopr f2N)
+ s (2 TarpoN + voHV a2 N)
= (Ve { T AN + HV ppa N}
+ 2 {Varp fi N + TarpaN'})
— c08” 07 (Tar faN) + e (HV prpiapir fa V).

We obtain () from (4.15). Second fundamental form of map is symmetric . So,
we have (V7.)(M, P) = (V~,)(P, M) for P € T'(kerv,)* and M € T'(ker+,). From
(2.7), (2.13), (2.14) and (3.4) we obtain

(VY:) (P, M) = 7, (QV puy M + QV po M)
=7 (QApp M + QVV pui M)
(4.16) + 7 (QApua M + QHV pusM)
= Yu(v2Appr M + 12V ppy M)
+ V(2 Appa M + voaHV puoM).
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We obtain (i7) from (4.16). Lastly, from (2.15) we have
(4.17)  (V3)(P, Q) = P(In A)%(Q) + Q(In M)y (P) — g1 (P, @)y (grad(In X))
for P,Q € T'(ker~.)*. For P in (4.17) we obtain

0= Q(In A)ga(7+(P),7+(P))

(4.18) 0= X2Q(In\)g (P, P).

In (4.18), we get Q(In \) = 0. It means A is a constant on horizontal distribution. So,
the map is horizontally homothetic. (#4¢) is satisfied. Hence the proof is completed.
O

5. EXAMPLES

The canonical example of a cosymplectic manifold is given by the product B** xR
Kaehler manifold B%*(.J, g1) with the R real line. Now we will introduce a well-known
cosymplectic manifold example of R?*+1,

We consider R?"+! with cartesian coordinats (u;, v;,t)(i = 1,2, ...,n) and its usual
contact one-form 1 = dt. The Reeb vector field £ is given by % and its Riemannian
metric g1 and tensor field €2 are given by

n 0 &; O
g1 = (dt)* + ) ((du)* + (dv;)*), Q= [—=6; 0 0
i=i 0 0 0

this gives a cosymplectic manifold on R?"*!. The vector fields e; = %, enti = %,f
form a -basis for the cosymplectic structure. On the other hand, it can be shown
that (R?"+1,Q €, 7m,g1) is a cosymplectic manifold.

Example 1. Using above example, let R? have a Cosymplectic structure. Define a
map from R? to R® by,

V3us + ug )
1777?}3 b

2
y(u1, w2, us, ug, v1, V2, V3, V4, W) =€ (u 5

where go is Euclidean metric on R3.
Then, the Jacobian matrix of 7 is

1 0 00O0O0O0OO0OTO
0¥ 1000000
0 0 000O0OT1O0O0
Since, the rank of above Jacobian matrix is 3, therefore the map vy is a submersion.

After computations, we obtain

o o0 o0 0 1

0 0 0
(kerye) = span{ s . 5 5 90 2 <aT - ﬁa?) ¥

o 0 1 0 0
ker )t = span{——, 2+ _
(ker 5s) Sp‘m{aul’ Ovs’ 2 <\/§6uz + 8u3>}
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Then it follows that,

0 0 o 1/ 0 0 i
’8—1)4}’ D _span{a—w,§<8—w—\/_au )} and D _span{—},

Thus the map v is conformal quasi hemi-slant Riemannian submersion with the

quasi hemi-slant angle 0 = 5 and dilation A = e

D = span{ (9iU4

Example 2. Let R? have a Cosymplectic structure as in above example. Define a
map from R? to R® by,

7 -
v(u1, ug, ug, ug, v1, Ve, V3, V4, w) = €' (ug, uy sin a — vo COS @, v3) ,

where gy is Euclidean metric on R3.
Then, by direct calculations, we obtain the Jacobian matriz of v as

0 10 00 0 0 0 O
sinae 0 0 0 0O —cosaa 0O O O
0 0 0 0O 0 1 00

Since, the rank of above Jacobian matrix is 3, therefore the map vy is a submersion.
After computations, we obtain

(ker v4) = span{=— 0 0 9 osai—&-sinozi i}
V) = 5P au Ouy’ Ovy’ Ovy’ Ouq Ovy’ Ow”’

(kerv,)t = spcm{a—uQ, %,Sinozaiu1 —cosag
Then it follows that,
i} DY = span{ ,COS Qv — 0 —I—bané } and Dt = span{—}
T Ovy on Juy '
Thus the map ~ is conformal quasi hemi-slant Rzemanmtm submersion with the
quasi hemi-slant angle § = « and dilation A = €.

D = span{ W
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