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Abstract. A condition is obtained for the generation of new Mersenne primes from
a combination of Mersenne numbers with prime indices. It is verified that all known
Mersenne prime indices greater than 19 have the form p; + ps — 1, where 2P* — 1 is prime
and 2P2 — 1 is composite. Arithmetical sequences for the exponents of composite Mersenne
numbers are obtained from partitions into consecutive integers and congruence relations
for products of two Mersenne numbers. A congruence condition for a Mersenne number to
be composite is derived. A necessary requirement of a Mersenne prime is the absence of
prime divisors congruent to 1 moduli 8. The characteristic function for Mersenne primes

is described, and the sum over the positive integers is found to be divergent.
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1. Introduction

The perfect numbers, defined by a condition on the sum of the divisors, are represented
by a sequence of integers conjectuted to have connections with the ideal characteristics of
physical systems. After a geometrical proof by Euclid that integers of the form 2P~1(2P —1),
with 2P — 1 being prime, would be perfect numbers [1], it was hypothesized later that all
perfect numbers were even, every even perfect number equals 2P~ (2P — 1) for some prime
2P — 1, annd there are infinitely many perfect numbers [2]. The next perfect numbers were
discovered in the early thirteenth century [3]. After a series of perfect numbers of perfect
numbers verified only until 2'8(219=1) [4], a systematic investigation b™ — 1 began with
the letter of Fermat to Mersenne [5] and the following theorems: 2™ — 1 is composite if n
is composite; if n is prime and p is a prime divisor of 2" — 1, then p — 1 is a multiple of
n. Further primes of the kind 2P — 1 were suggested, and it was demonstrated by Euler
that 230(23! — 1) was a perfect number [6] and the unique form 2P=1(2° — 1) of every even
perfect number [7]. No new perfect numbers were found until 260(26! — 1) [8], whereas
it had been shown that 267 — 1 was not a prime and 2'27 — 1 was a Mersenne prime
[9]. Lucas also proved that every perfect number greater than 6 must end in the digits
16, 28, 36, 56, 76 or 96 [10]. The last result led to the conjecture of Catalan that the
sequence (2P — 1, 22°~1 — 1, ...), consists of primes for p = 2 [11]. The powers increase
very rapidly, and computer tests beyond the fourth term are exceedingly complex. The
first four Catalan-Mersenne numbers for p = 2, {22 — 1, 23 — 1, 27 — 1, 2127 — 1 ..}
are known to be Mersenne primes. The lower limit for the prime divisors of the the fifth
number, 227 ~1 = 1 is currently set at 5 x 10°! [12]. However, the sequences for other
primes have composite numbers generally and the probability of higher terms being prime
is exceedingly infinitesimal and tend to zero. While 28%(289 — 1) was verified as a perfect
number in 1911 [13], the use of computer was found to be necessary for the larger of the

known Mersenne primes and the extent of the sequence remains to be established.

The Lucas-Lehmer test, together with several characteristics of the prime divisors of
Mersenne numbers that are valid for all Lucas sequences, can be used to determine the-
oretically whether the integer 2P — 1 is prime. The congruence s,_2 = 0 (mod 2P — 1),
sp, = s2_, — 2 [10][14], is satisfied by the known Mersenne primes, although the difficulty
of the computation increases for large values of n, Further properties of perfect numbers
include the form of the prime index p being 1+ T,,, where T, is a triangular number [15],
the equality of 23 + 1 and a perfect number only for the integer 28 [16], the integrality of

the harmonic mean of the divisors [17] and the proportionality of the number of divisors
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of a perfect number N to In In N [18]. The conjecture of the existence of infinitely many
Mersenne primes and the problem of establishing the infinite extent of the sequence of
composite Mersenne numbers with prime indices [19][20][21] may be considered without
reference to specific values of the exponent. The generality of the statements is evident in
proofs based on conditions on integers of the same order as the exponents. It is is shown

219 _ 1 have exponents of

in §2, for example, that all known Mersenne primes greater than
the form py + po — 1, where p, is a Mersenne prime index and p, is a composite Mersenne

number index.

It was hypothesized by Euler [22] and proven by Lagrange [23] that 2P —1 is a composite
Mersenne number if the prime p has the form 4k+3 and 2p+1 is a prime. An infinite number
of Sophie Germain primes congruent to 3 modulo 4 would imply the existence of an infinite
number of composite Mersenne numbers with prime exponents. The Mersenne numbers
also have a geometrical representation which may be used to derive congruence relations for
compositeness based on the partition of the array representing 2 — 1. The solutions to the
congruence relations yield arithmetical sequences for the exponents. However, the greatest
common denominator of the initial term and the difference can be equated to ordam (k)
for some m, k, such that none of the integers in the sequence are prime. Nevertheless,
this allows a characterization of the set of exponents greater than 6 of composite Mersenne
numbers [25]. The congruence relations for 2P1+P2~1 provide a further indication of the

existence of infinitely many composite Mersenne numbers with prime exponents.

The conditions for a prime factorization of a Mersenne number 2P —1 is examined in §3.
By comparing the coefficient of the prime p derived from the congruence 2? —1 = 1 (mod p)
with that resulting from the product of the prime divisors, a congruence relation that
includes the Fermat quotient Fs(p) is found. The conditions for a Mersenne prime then

may be deduced. These include the absence of a prime factor congruent to 1 modulo 8.

The existence of a finite number of prime solutions to af (™ — /(") =0 (mod n), when
f(z) does not have a zero at = 1, may be used to develop an algorithm for locating the
next Mersenne prime based on the intersections of polynomials at prime arguments. A
theoretical foundation for the investigation of the extent of the sequence of even perfect
numbers is given in §4. A characteristic function can be defined for the function 2¥ — 1,

and the sum over the integers is proven to be infinite.
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2. The Exponents of Mersenne Numbers and Arithmetical Progressions

There are two infinite sequences, of Mersenne primes of odd index, and primes, in
the arithmetical progression 6n + 1, n € ZT, and the coincidences of these two sequence

determine whether the set of even perfect numbers continues indefinitely.

Since 6n + 1 can be factorized only if n has the form 6xy + (z + y), with z, y € Z*
[25], the Mersenne number 2P — 1 is prime only if it equals 6n + 1, n = 6zy + (z + y) + z,
z # 0, with 62y + (z +y) + z # 62’ £ (2/ + ') for any integers =/, y'. Given the condition
2P —1 = (6x £ 1)(6y £ 1), consider two prime p; and ps such that

2P (621 + 1) = (6:61 + 1)(6y1 + 1) =6h; +1 hy = 6x1y1 = (.’El + yl)

(2.1)
2P2 — (62:2 + 1) = (61’2 + 1)(6:1/2 + 1) =6hy +1 hy = 622y * (.%'2 + y2)

Multiplication of these two integers gives
oP1tP2 _ (621 + 1) (622 + 1) — (621 + 1)(6]11 + 1) — (62’2 + 1) (6h1 + 1) = (6h1 + 1)(6h2 + 1) (22)

or equivalently
2p1 +p2 —1=[B(h1 + 21) +1][6(h2 + 22) + 2] (2.3)

If 27 # 0, and 2P* — 1 is prime, while 25 is set equal to zero, 2P2 — 1 is allowed to be

composite,

2714 2L [6(1—1) 21+ (1=72)ha +(1—73) ha) +1] = 6(3(h1+21)ha+7121 +72h1 +y3h2) +1

(2.4)
for some fractions v1, 2, 3 with 3(hy + z1)ha + Y121 + Y2h1 + Y3he = 62"y’ + (' +¢/'),
2', y' € Z. The Mersenne numberr 2P1P2=1 is prime if there is no solution to Eq.(2.4)
with 17 = 79 = v3 = 1. If p; is a given Mersenne prime index, it can be conjectured
that p; — 1 may be expressed as the difference between two primes p and po, since an
even integer equals p — py if 2(N + po) is given by the sum of the two primes p, ps. The

estimated number of prime pairs (p,p + 2N ) with p < z [26] is conjectured to be

T p—1
man (@) e (log x)? pos P 2’ 25)

p|N

where C» is the twin-prime constant [[ ., (1 — ﬁ) [27][39], and

T log log x
< 6. —|1 _— . .
ma(x) < 6.836 Co (log 7)° { +0 < log > } (2.6)
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The conjecture holds for primes of the form 4k — 1, since there would exist a prime 4k’ + 1

with the difference 2(2k” + 1) being an even number.

Theorem 1. Every finite even positive integer 2N can be expressed as the difference

between two primes if the Goldbach conjecture is valid.

Proof. By the Goldbach conjecture, every even integer 2N, N > 3, equals g1 + ¢2, where
¢1 and g9 are odd primes [27][28]. The integer 4 clearly also equals the difference between
two primes. The magnitudes will be selected such that ¢; > ¢2. Then 2N = q; — ¢o,
with N = N — ¢o. This property for the integers 1 < N < N may be demonstrated.
By the existence of a Goldbach partition for even integers greater than or equal to 4,
2N — 20 = q1¢ + g2¢ for two primes q1¢, go¢ and for each integer £ less than or equal to
N —2 and

2N —2(€ + g20) = que — qoe. (2.7)

This equality between a positive even integer and the difference of two primes requires
{ + go¢ to be less than N — 1. The set of integers of the form ¢ + g2 can be enumerated
as ¢ ranges over all integers between 1 and N — 1. Since go¢ > 2, £ 4 go¢ > 3. Fixing N,
the set of primes gy would be limited and ¢ + g2 would cover only a restricted subset of
integers between 3 and N — 2. However, beginning with a set of primes {go¢} less than
N — 1, it is possible to add other primes to equal even integers less than 2N — 2. As qqp
is selected to be one of the addends in a Goldbach partition, it follows that £ 4+ g2 must
range over values between 3 and N — 1. The set of pairs {qas, £ + 2¢2¢} covers the entire
range between for this addend from 2 to N — 2.

Given that go > 3, N < N — 3, and every integer 2N, with 1 < N < N may be
represented as the difference between two primes. Furthermore, this condition can be

hypothesized for a proof by induction.

Now consider the even integer 2N + 2. Since
IN+2=q —q@2+2=2N+2—2¢ 28)
=@+q—20p=(—¢+k —(2—qu+k)
when g3 > ¢1 and g4 < g2 +20r 1 > g3 > G2, @4 > g1+ 2. When g3 = ¢1 and q4 = g2 — 2,
2N — 2 = ¢q3 — q4. Otherwise, it remains to be shown that there is an integer k such that
g3 — Go + k and G2 — q4 + k are primes. Then all even integers less than or equal to 2N

would be the differences between two primes.
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Suppose that the first set of inequalities holds. Adding an extra variable to adjust the
subtahends, let
AN+2=(gs—Q@+k+k)—(@—au+k+k). (2.9)

The second subtrahend equals
G2—qit+k+k =@+k+E — (g k) (2.10)

where k1 + ko = k. The integers k1 and ko may be altered while preserving the sum. The

integer k' also is a free parameter. Then ki, ko and k' may be selected such that
qq — ko :(ferk’lJrklfﬁg (2.11)

with @ + k1 + k' and P, being prime, since g4 — ko < 2N. The difference between the two
primes fixes k1 + k' only, there is enough freedom in k' to adjust g3 — g + k + k' to be
prime. Then Eq.(2.4) is equivalent to

2N +2= (g3 — @2+ k+k)— Do (2.12)
which is the difference between two primes.
When the second set of inequalities is valid,
N4 =1 —p+2=(@1+q@u+k+k +2)—(a— @+ k+k). (2.14)
The lesser subtrahend equals
G~ G+ k+E =(qa+k+k)— (@ — ko). (2.15)
Since ¢o — kp is an even integer less than 2N for odd ks,
Bo—ky=q+k—1+F —ps, (2.16)

where ki + k' is adjusted for both g4 + k1 + &’ and p3 to be prime. The integer &’ then
may be chosen such that ¢ + g4 + k + k' + 2 is prime. Again 2N + 2 is the difference
between two primes. By induction, every positive integer is the difference between two
primes given existence of a prime partition of every integer greater than or equal to 4.

Given a prime py, the pair (p,ps), with p—ps = p; — 1 would exist. It is not feasible to

consider a Mersenne prime index equal to p; + ps — p3, for an odd prime p3, because the
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relation (2.3) yields fractional terms. Therefore, p has the form p; 4+ py — 1, This property

can be verified for the following pairs of prime indices (p1,p2)

(3,11);(7,11); (3,29); (19,43); (41.59); (61, 47); (61.67); (89; 433); (61; 547);,
(607, 673); (607, 1597); (2203, 79); (2281; 937); (2281, 1973); (2203, 2221); (4253; 5447);
(4254, 6961); (2281; 17657); (89.21613); (2281, 20929); (3217, 41281); (9941, 76303);
(607, 109897) : (44492, 87553); (23209, 192883); (132049; 624791): (19937; 839497):
(132049, 1125739); (86243, 1312027); (86243, 2889979); (21701, 3049677);
(3071377,3901217); (216091, 13250827); (110503, 20885509); (1257787, 22778797);
(110503, 253874449); (3217, 303999241); (3021377, 29561281)

The prime pairs (p1, p2) with 2[p; — 1, 272 — 1 and 2P t72~1 prime, {(2,2);(2,3);

(3,5); (7,7); (5,.13); (3; 17)1(7;13); (13,19); (31,31) } complement the larger set when p;+

po—1=3, 5m 7, 13, 17, 19, 31, 61.

One subset of the composte Mersenne numbers of the form 2P1TP2—1 _ 1 can be con-

structed from the integer solutions to the following sets of equations
hi = 621y1 + (1 +91) ha — 622y2 + (z242)
wi +wa =3(x1 + 11+ 21) (@2 +y2) + (@1 +y1 + 21) + (w2 + y2) (2.17)
wiwz = 18x1y122y2 + 3T1Y1 (T2 + Y2) + 3T2y2(T1 + Y1 + 21) + (T1y1 + 292)
hy = 621y1 — (1 + Y1) ha = 622y2 + (22 + Y2)
wy +wy = —3(x1 +y1 — 21) (T2 + y2)e(T1y1 + T2y2) — (1 +y1 — 21) + (w2 +y2) (2.18)
wiwz = 1871y172y2 + 3T1Y1 (T2 + Y2) — 3T2y2(T1 +y1 — 21) + (T1y1 + 2y2)
h1 = 6z1y1 + (21 + y1) hy = 6z2y2 — (T2 + y2)
w1 +we = —=3(x1 + Y1 + 21)(T2 + Y2) + 6(z1y1 + T2y2) + (71 +y1 + 21) — (T2 + ¥2)

wiwy = 18x1y122y2 — 3x1y1 (22 + y2) + 3x2y2(z1 + y1 + 21) + (T1y1 + T2y2)
(2.19)

h1 = 6z1y1 — (21 + 1) ha = 6x2y2 — (22 + Yo)
wi +wy =3(x1 +y1 — 21) (@2 + y2) — (X1 +y1 + 21) — (X2 + 42) (2.20)
wiwz = 18z1y122y2 — 3x1y1(T2 + Y2) — 3x2y2(21 +y1 — 21) + (T1y1 + 2y2).
Consider the equations determined by the equations v +v = hy + 21 + hy and uv =
%(hl + z1)hz. these two conditions imply

2u? = 2(hy 4 21 + ho)u + (hy 4 21)hy = 0. (2.21)
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and

1
u = 5 hi+21+ ho £ \/(h1 + 21+ h2)2 — 2(h1 + Zl)hg . (222)

Then u is integer only if (hy + 21)? + h3 is the square of an integer. Since the Pythagorean
triples are multiples of the triples (34 2n,4 +6n +2n2, 5+ 6n+ 2n?), there is and solution
for hy + z1 and hs as both integers must be odd.

More generally,
u~4v=ri(hy + 2z1)ha + ka(hy + 21 + h2)

(2.24)
uv = Iig(hl + Zl)hg + /{4(h1 —+ z1 + hQ)
with
K1+ 6&3 =3
Ko +6kg =1 (225)

K1, K2, K3, R4 EQ

Integrality of u and v requires that k1 (h1+21)he+K—2(h1+21+hs) and z)’*%(hl +2z1)ho+

176’/”1 (hl + 21+ hg) are integer, while [Iil(hl + Zl)h2 + Kg(hl + z1 + hg)]2 — 4|:36K1 (hl +

z1)hg + 1%K1 (h1 4+ 21 + h2)| is the square of an integer.

Additional constraints can be placed on hy + 21, hs as the equality of 6[3(hi1+ z1)ho
+(hy + 21) + ha] + 1 and 2P1+P2=1 — 1 would yield the congruence conditions. First, after
division by 2, either hy + 21 = 0 (mod 4), he = 5 (mod 8); h1 + z1 = 5 (mod 8), hy =
0‘(mod‘d); h1 4+ z1 =1 (mod 4), he =3 (mod 4); hy + z1 =2 (mod 4), ha =1 (mod 4).
Since 3(h1+21)ho+(h1+21)+he = TLT* (mod 8), n even and 3(hy+z1)ha+(h1+21)+hy =
% (mod 2™), n odd.

Based on the pairwise relations between Mersenne prime indices, a sum extended over
a set of these integers may be derived. Since p), = pi.+p} —1 for some composite Mersenne
number index pg., £ < n and pg. — 1 can be expressed either as the sum of two integers
that are differences beween a Mersenne prime index and a composite Mersenne index, or
the sum of two primes by the Goldbach conjecture, the process can be iterated until all
of the addends are either Mersenne prime indices, with either sign, or twice the previous

index or +1.

The relations between Mersenne prime indices have a form similar to the equations for
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the sequence of primes [29][30]

Pon =1+t p1 £p2 £ ... £ pop_2 + Dan—1
(2.26)

DPont1 = 1Ep1 T ps £ ... £ poy_1 +2pon

The equations are consistent with the estimate of the number of Mersenne primes with
indices between z and 2z [31][32]. It is possible to extend the sequence of Mersenne prime
indices by forming combinations having the form in Eq.(2.26) and using any of the various

tests to verify that 2P — 1 is prime.

3. Fermat Quotients

When p is a prime,

2P —1=1 (mod p) (3.1)
and
P _1=Ap+1
(3.2)
A =2F(p),
where Fy(p) = 2p7;_1 is the Fermat quotient. Suppose that 2P — 1 is not prime and has
the prime factorization
2P — 1 = [[(koip ++1)" J](2k1p +1)%, (3.3)
i J

where ko; = 0 (mod 4), ki;; = —p (mod 4) for all 4, j [33][34]. Since F(p) is an odd
integer, compatibility of the congruences of the coefficients modulo p requires j d; to be

odd. Furthermore,

[T@koip+ D)7 [[@kp+ 1% =1+ 2 (D ik + D 05k | p+ 0O (3.4)
7 7 7

J

and

Z%‘km + Z dik1; = Fa(p) (mod p). (3.5)

When there are no Wieferich primes [35][36] in the hypothetical factorization, this condition

reduces to

Z koi + Z ki; = F»(p) (mod p), (3.6)
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When ko; (mod p) is odd for all ¢, ki; (mod p) is even for all j and F5(p) (mod p) is odd,

there must be a minimum of one prime factor of the type 8ko;p+ 1, where ko; = kOI . More

generally, let
N§ = # odd ko; (mod p)

N§ = # even ko; (mod p)
= # odd ki; (mod p)
Ni = # even ky; (mod p).

(3.8)

Then 2P — 1 is composite for

F5(p) (mod p) is odd; NS + N7 is odd if 2np < ka + Zklﬂ (2n+ 1)p;

i J

Ng + N7 zsevenzf(2n+1p<Zka+Zk1j (2n+2)p
J
nez

Fs(p) (mod p) is even; N§ + Ny is even if 2np < Z koi + Z k1; < (2n+ 1)p;
J

N§+ Ny isoddif (2n+1 p<ZkoZ Zkl] (2n+2)p
J
nei
(3.9)

given that there are no Wieferich prime factors. Since there are only two known Wieferich
primes less than 6.7 x 10'® [38], the condition may be straightforwardly tested. From
the table of factors of Mersenne numbers, all composite Mersenne numbers with prime

exponents, 2P — 1, with p < 100, have a prime divisor congruent to 1 modulo 8, except for

p =43 and 79, where
243 _ 1 =431-9719 - 2099863

ki1 =5, kio = 113, ki3 = 24417 (3.10)
F5(43) = 25 (mod 43)

and
279 _ 1 = 2687 -202029703 - 1113491139767

ki1 =17, ki = 1278669, ki3 = 7047412277 (3.11)
F5(79) =19 (mod 79).
It may be verified that Eq.(3.6) is valid for these two Mersenne numbers.

The Catalan sequence is defined to be

{or —1, 221 q, 9 (3.12)
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When p =2, it is
{3, 7,4127, 2127 — 1, ..} (3.13)

The sequences for other values of p are

{5, 31, 2147483647, 22147483647 _ 1~ 1
{13. 8191, 28191 — 1 221 _ 1}
17, 131071, 2131070 _q 92"'—1 ¢
(3.14)
{19, 524287, 2584287 _ 1 921 g

There are composite numbers by the second or third terms of these sequences.

It will be sufficient to investigate the extent of the set of primes for p = 2. Suppose

that 2P — 1 is a prime. Then
2% =1 _1=1 (mod 2P —1). (3.15)
It follows that

27 1 1 =A@2P-1)+1

i 2P —p—1 2P —2p—1 +1 (3.16)
A=2°"P7" 42 P=h 2P 2

The number 22°~! —1 may be tested for primality by postulating a factorization into prime

divisors. The product of divisors congruent to 1 modulo 2(2P — 1) equals
(2K (2P — 1)+ 1)(2K' (2" — 1) + 1) = (4KK' (2" — 1) + 2K + 2K")(2" = 1) +1  (3.17)

The coefficients of 22 — 1 modulo p are

A=20270~1 _1) (mod p) (3.18)
AKK'(2P — 1) + 2K + 2K’ = 22KK’ + K + K'] (mod p) '
which are compatible when
IKK'+ K + K' =27P) 1 (mod. p) (3.19)

iF Fy(p) =0 (mod p), 2KK' + K + K/ =1 (mod p), which has solutions for odd K + K'.
Given the infinitesimal probability of the higher Catalan-Mersenne numbers being prime,

there would be factorizations, nearly always, yielding solutions to this congruence relation.
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4. The New Mersenne Prime Conjecture

By the new Mersenne prime conjecture, if p = 2¥ £ 1 or 4* £+ 3, and

2p+1 . .
5= Is prime,

then 2P — 1 is prime [38]. When p = 1 (mod 4), the factors of 27 — 1 are congruent to 1

or 6p + 1 (mod 8p), while the factors of 21}3—“ are congruent to 1 or 2p + 1 (mod 8p). If

p = 3 (mod 4), the factors of 2P — 1 are congruent to 1 or 2p + 1 modulo 8p, while the

2P 41

divisors of 3

are congruent to 1 or 6p + 1 (mod 8p).

2P+1 . .
If =5 is prime,

P 4
255 _1=1 (m0d2 ;1)

Then

and

2P +1
22-1 _1=1 (mod + )

This congruence condition is equivalent to

» (2P 41
22‘1—1—A< ;)+1

Given that

The congruence condition for p = 3 (mod 4) to be a Mersenne prime index is

If
o

1+\/5PT+1 1—\/5%1
() ()

When p = 4F + 3. 2ZE = 22k=1+2 and this relation becomes

22k=149 2:2k—1+42
14++5 1-+5
2 T2 =0

and

4k 44 3k 44 15—
145 1-v5 1—5\2" +2=0
2 + 2 +2 2

(4.1)

2w 4 1) ' (4.2)
(4.3)

(4.4)

(mod p) (4.7)
(mod 4% + 3) (4.8)

(mod 4*++3).(4.9)
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Since
1+v5\" +1 +1 +1
_ p p p 555
( 2 ) 2P+1{1+< 1 >\/g+( 2 >5+"'+( P )5 o }
p+1
1-5 1 p+1 p+1 P\, ept
() sl (1) () ()
(4.10)
p+1 p+1
1++5 1-+5 1 p+1 pil
R A R

Therefore,

p+1 p+1
1 5 1—-+5 1 »
V5 + V5 =_ (1 + 5%> (mod p). (4.12)
2 2 2
By the quadratic reciprocity law,
5 5— -1
(p):(_l) zl.p_zl

p/) \b 2

and (15)) = (%). it follows that

5y _ [1 ifp=1, 4 (mod 5)
<p> a {—1 ifp=2,3 (mod 5) (4.13)

and

%(1+5%) (modp)—1<1+5(2>) (modp)—{3 if p=1, 4 (mod5)

2 -1 if p=2, 3 (mod 5)
(4.14)
Two congruences
22748 L 3= (mod 4% +3) if 4% +3 =1, 4 (mod 5)
92k-1 4 . ok (4.15)
2 -2=0 (mod 4% +3) if 4" +3 =2, 3 (mod 5)

It may be verified that 4* + 3 = 4 (mod 5) when k is even and 4% + 2 = 2 (mod 5) if k is
odd, and
2k—1
227 T4 3=0 (mod 4* + 3) k is even

22%71_1_3_250 (m0d4k+3) Z’f4k—|—3ifk‘0dd

The second congruence yields

(4.16)

222k—1+2 -1 (mod 4k + 3) if 4k +3if kis odd. (417)
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Adapting the method of §3, the congruences for the numbers 27 — 1 and L;l may be

related.

Theorem 2. If p =2F — 1 and 2?374_1 is prime, 2P — 1 is prime.
Proof. From Eq.(3.16), let
2=t 1= (2%l 4 poptl L 9)(2P — 1) + 1. (4.18)

Since

2P + 1
2 -1=2P4+1-2= -2 <mod ;— >

P+l =9.97 = _9
22r+l = 9

(4.19)

A complete cancellation amongst the terms in 22°~7~1 4 . 4+ 2P+ 4 9 occurs as a result of
an an odd number of multiples of the prime p present in the sequence from p to 2P —p — 1

inclusively. Therefore, if 2° — 1 is prime, 22"~1 —1=1 (mod Lg“) It follows that

(22”%)3 — 2P+l — 9271 92 _ 9 92 — 93 <mod 2;,; 1)

»
221)%52 <mod2 ;—1)7

2P 41
3

a prime or a pseudoprime. Conversely, reversing the direction of the congruences, when

P . . . . . . . .
2°+1 g prime, 2P — 1 is a prime or pseudoprime. When n is a pseudoprime, 2" — 1 is a

3
pseudoprime [39], and, if 2" — 1 is a prime number, n also must be prime. Given that 21)3—'“

(4.20)

. . . . 2P 41 .
to be prime. Then, if 2P — 1 is prime, =5~ is

which is a necessary condition for

is prime, a certain set of primes p may be selected such that 2P — 1 is prime. It is evident

that the primes of the form 2¥ — 1 are such that 22~ = 1 (mod 2173—+1 Since

22"-1 41
92" -1= <m0d 3+> , (4.21)

. ok 1 22’“71 1
222 1_1 _ 23.2 3 +1_o = 23—2 =9 <m0d 7_‘_) (422)
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or

Koy 22"-1 41
92" -l = (mod %) . (4.23)

Furthermore, since Fy(p) =1 (mod p), there must be a prime factor of F5(p) of the form
8¢p-+1if 2P — 1 is composite. The factorization of double Mersenne number 22"~ — 1 will

include divisors congruent to 1 and 7 modulo 8. Suppose that

22" =1 _ 1 = (80(2% — 1) + 7)(8¢/(2% — 1) +1). (4.24)
Then
2141 BETECE D) F D) +2 6425 12+ 8L+ TN — 1) +9
3 3 - 3
1ok _ /
_ 64002 1;+ BUE+TE) gk 1) 13
(4.25)

which requires 3|(—16¢' + ¢+ 7¢) or £ = ¢ = 0, 2 (mod 3). Setting ¢ = 3z + 2 and
0 =3z + 2, M will be divisible by 3 if  + 2’ = 0 (mod 3). It is evident from
the product in (4.24) that = + 2’ must be congruent to 0 modulo 3. Then {p|p = 2~ — 1}
2P 41
3

will be amongst the set of primes which yield integers 2P — 1 that are prime when is

prime.

5. The Characteristic Function of the Mersenne Numbers

The classification of polynomial and exponential functions will confirm the conjectured

density of Mersenne primes. Let

sp: I' = {0,1}
sn(®) = xp(Lf(n+2)])
Sk It Ry
B al s () (5.1)
Sw(e) =2y
Zl<z’<N XP(IJ((QCJ')_n)J)

DY*(P,f;N) =

Sicicn 35

where 9, 11, 1o are weighting functions and x p is the characteristic function for the set

of prime numbers. It will be seen that the correct choice for v is usually
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Wly) = {max{log 2, log y} f€Fpu (5.2)

y feFs,

where

m
Froo={ay* +) aiy™; >0, k>k > .. >k > 0] £(0) >0, f/(0) >0, f'(0)>0
=1

[ is monotonically increasing}

Fiop = {4+ f(y); k>0, f € Fppy u{0}}.
(5.3)
with a convention, defined previously [40], except for a change in the lower bounds for f(0)

and f’(0) in Eq.(4.3). Then, given that 2¥ € F7

1<nleN
and
1<n<N

If D!°9 (P,2¥ — 1; N) is defined with the weighting functions 1 (y) = maxz{log 2, log y}

har

and ¥2(y) = v,

1
Dy = (log 2)D¢2¢1(P7f§N)(O) = (log 2) Z XP—(n) Z M
1<n<N " 1<n<N " (56)
Sy

xp(n)
1<n<N n

= (log 2)

Since D p<n % = log log N + o(1) [41], and the probabilistic value of the density of the

p prime

Mersenne prime indices [32] is

SN e’ In N (5.7)
N N-—=xIn2 N '
D%, is approximately 7 —22~_ for known large Mersenne prime indices [39)].
N y inln N
A proof of W —¢e7| < e would provide the actual asymptotic value of the

density of the Mersenne primes. If an irreducible rational-coefficient polynomial is chosen
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to approximate 2¥ — 1 over a certain interval, the weighting factor should be replaced by

Y(y) =y, yielding

Sn(P,f) 1 p—pp)

lima o — 5.8
TN T e p LT (58)

where p(p) is the number of solutions to f(n) = 0 (mod p) [40]. When p increases,
the number of solutions to f(n) = 0 (mod p), 1 < n < N, decreases rapidly and, as
many of the terms in the product in Eq.(5.8) have the form pL, approximate equality

of ﬁ IL, %%11@ with the coefficient lfj can be deduced. The function 2¥ — 1 may

2
be approximated by rational-coefficient polynomials of given order only over an interval

the known Mersenne primes, whereas a method of intersecting polynomials at the next
Mersenne prime would be required for an approximation of the function throughout a

larger range including this integer.

To determine the prime distribution of a function | f(xz + n)|, the following intervals
shall be to defined to be
Ly =1f"'(0) =n, fT'p+1)—n) peP 59)
1%, oIy n N [a,b).

noindent Since

pe(Ipn) ~ 1(fF 0= 1) —n) = (F () =) = | (p1) — f (D)
= ‘ {f‘l(p) + (' Ip+1)—pl+ %(f‘l)”(p)[(er 1) —p)* + ] - f‘l(p)'
1

S ) +

~| e+ g

0)

(5.1
the Lebesgue measure of 1% which is not empty if P, (a,b) = {p € P|f(n+a) < p <

p,n’ >~

f(n+b) — 1} contains a prime, is given by

1
I =——_  4<0,<b € Pi(a,b
:U’( P, ) f/(n+@p) p ( ) (511)

Pula,b) ={p € P|f(n+a) <p < f(n+b)—1}.
Using the natural weighting, with ¢(y) = 1, it may be shown that

/S”at’Px dx—Z/ Sn(x da:—z Z 101

n=1peP,(0,1)

= Y Y ere+om= > () ®I+oQ)

pPEP pEP
FO)<p<f(N) F(O)<p<f(N)

(5.12)
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Suppose that f(y) =2Y — 1. Then

PNV 1 B 1 B 1
Z(.f 1) (pn)*;m*;m—;m (5.13)

n

It would appear that the index range of the sum is a presumption of the infinite extent
of the sequence of Mersenne primes. However, the sufficiently fine subdivision of the unit
interval, the infinitude of primes, the existence of a prime between f(n+a) and f(n—+b)—1
for a < b and sufficiently large n, given that f(n+1) = 2f(n)+1, and the overlapping of the
subintervals [a, b] with the inverse images under f~! of the primes and Mersenne numbers
leads to the conclusion that the infinite sum (4.18) is direct evidence of the extent of the

Mersenne prime sequence. It would follow that limy_.ocD}y — €7 lolog N

Tog 1og N continuously

and monotonically, and this limit would be verification of the density of Mersenne primes.

This discussion clearly does not extend to integers of the form a¥ — 1, a > 3, because
these expressions can be trivially factored and the characteristic function s,, = xp (| f(n+

x)]) then vanishes.
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