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ON THE DEGENERATE MULTI-POLY-GENOCCHI
POLYNOMIALS AND NUMBERS
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ABSTRACT. Recently, the degenerate version of special polynomials are
defined by many researcher and found some new and interesting identi-
ties by using Carlitz’s degenerate exponential function.

In this paper, we define the degenerate multi-poly-Genocchi polyno-
mials and numbers and found some interesting relationships between
Genocchi polynomials, the falling factorial polynomials and the Stirling
numbers of the second kind.
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1. INTRODUCTION

The Genocchi numbers which are defined by the A. Genocchi are defined
by the generating function to be
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When z = 0. G,, = G,,(0) are called the Genocchi numbers.

The properties and applications of the Genocchi polynomials and numbers
have bee investigated in the various field by many researchers. In [1], authors
investigated some interesting properties of weighted ¢-Genocchi polynomials
by using fermionic p-adic g-integral on Z,. Luo generalized the Genocchi
polynomials which are called the g-Apostol-Genocchi polynomials and de-
rived an explicit formula and a variety of relations for these polynomials
including a differential equation, integral formula and recursive formulas in
[14]. Belbachir-Hadj-Rachid defined a mixed polynomials which are called
the Euler-Genocchi polynomials and found some properties including the
expression of the power of a variable, the Raabe-like formula, the linear
recurrence and the difference equations (see [2]). In [12], authors investi-
gated the properties of degenerate Genocchi polynomials of higher-order by
using A-umbral calculus, and in [6], authors defined a new type generalized
Genocchi polynomials which were called the degenerate poly-Genocchi poly-
nomials with the degenerate polylogarithm function and derived some new
explicit expressions and identities of those polynomials.

For a given A € R — {0}, the degenerate exponential function is defined to
be

(1) L) = (14 A%, ex(t) = (14 )%, (see [3)).
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In [13], Lim defined the degenerate Genocchi polynomials of order r as

follows:
’ 2t .
ZG;Z\( )n' (Q\(t)ﬂ> ex(t), (t| <m).

n=0
For ki, ko, ..., k, € Z, the multiple polylogarithm function is defined by

"
..... kr(l') = Z m, (see [8, 18]).
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In particular, Li; (z) = —log(1 — x).
By (2), we note that
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and thus
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By (5) and induction, we see that

6) Lip g, @) =" o1 -y, (rem)
—_—— :

r—times

ixLikl ()dz, (see [8]).

(see [8]).
For nonzero integers n and k, the Stirling numbers of the first kind S1(n, k)
and Stirling numbers of the second kind Sa(n, k), respectively, are given by

(7 ()= ZSl(n,k)xk and z" ZSQ n, k)(z)g, (see [4, 17)),
k=0

where (z)o =1, (), = 2(x—1)--- (x—n+1), (n > 1) is the falling factorial
sequences. By (7), we can derive easily the followings (see [4, 17])

(8) o (log (1+1)) ZSlnk ',an e 71 ZSQ(nk
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The generalizations of various special functions using the multi poly-
logarithm function have been attempted actively by many researchers (see
[5,7, 8,09, 10, 11, 15, 16, 18]).

In this paper, we defined a degenerate multi-poly-Genocchi polynomials
and numbers by using multiple polylogarithm function and degenerate ex-
ponential function and derived some interesting identities which are related
to the falling factorial functions, Stirling numbers of the second kind and
Genocchi polynomials.

2. MULTI-POLY-GENOCCHI POLYNOMIALS AND NUMBERS

By (2), we define the degenerate multi-poly-Genocchi polynomials which
are defined by the generating function to be
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When z = 0, G;k;k) = Gflk;""’k'”)(O) are called the degenerate multi-poly-
r—times

Gencochi numbers. Note that, by (6), GS)’\ o 1)(:1:) = %G(T)A(w).

n,
By the definition of degenerate multi-poly-Genocchi polynomials, we get
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By (10), we obtain the following theoem.

Theorem 2.1. For each nonnegative integer n, we have

n
Koo for n K1,k
G ) = Y ()6 @
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In the special case y = 0 of Theorem 2.1, we obtain the following corollary.

Corollary 2.2. For each nonnegative integer n, we have

Gsl]f;\,...,kr)(x) — Z (n)Gilkl;%;fT)(-T)m,)\-

m
m=0
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Note that
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By (12), we obtain the following theorem.

Theorem 2.3. For each nonnegative integer n, we have
k I+l o
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Xn ( ) l+‘i( + Tl) —k mG(kl’ ko1 — (.%’)Gn,k’)\(l’).
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If we replace k. by —k;, then we obtain the following corollary.

Corollary 2.4. For each nonnegative integer n, we have
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By (13), we obtain the following theorem.
Theorem 2.5. For each positive integer n, we have
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