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ABSTRACT. This study investigates the existence and uniqueness of
solutions for a class of Kirchhoff problems involving the fractional p-
Laplacian operator and a singular nonlinearities. We also study the
existence and infinitely many solutions but without the singular term
and with a presence of a nonlinear term satisfies a growth assumption.
Our proofs are based on variational methods and genus theory.
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1. INTRODUCTION

The first part of this paper is devoted to study the existence and unique-
ness of positive solution for the following fractional p-Kirchhoff problem
involving a singular nonlinearity:

(a +b [ [pon %7;(&)5 d:xdy)(—A)‘;u = % —Aud, in
(P1) 4 u>o0, in €
u=0, on RN\ Q,

where s € (0,1), A > 0,0 < v < 1 and Q C R" is a smooth bounded
domain with N > sp, p > 1 and 0 < ¢ < pf — 1, such that pZ = N]\i’;p is the
fractional critical Sobolev exponent, a,b > 0, a + b > 0 are parameters and
k: Q — R is a positive function.

The new nonlocal and nonlinear operator (—A); is defined, for p > 1 and

s € (0,1) and u smooth enough, by
u() — u(y)["~?(u(z) — u(y))

|z —y|[NVHep

(=AY u(r) = 2lim dy, xeRY,

p
e—=0 JpN \B:(z)

where B.(z) = {y € RY : |y — 2| < ¢}, this operator is known as the
fractional p-Laplacian. For the basic properties of this operator, see [9, 25].

Since the emergence of the original model of the Kirchhoff problems [14],
researchers have been working on this type of problems, especially after the
great development that took place in the tools of functional analysis, it is
evident through the intensity of research and the generalization of the usual
differential operators to different operators such as the fractional Laplacian
(—A)?u, the fractional p-Laplacian (—A);, the p(z)-Laplacian... etc. In the
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last few years, many researchers were interested in problems involving frac-
tional operators with a singular nonlinear term, in which one encounter many
difficulties resulting in nonclassical operator and the loss of regularity of
some quantities, which lead to adopting unusual ways to solve them. Among
the pioneering works in this field, we refer the reader to [10, 12, 13, 20]. In
[20], the authors discussed a class of fractional p-Laplacian problems with
weights which are possibly singular on the boundary of the domain and they
provided the existence and multiplicity results as well as characterizations
of critical groups and related applications. In [4], Canino et al discussed the
following nonlocal quasilinear singular problem

(—A)u =L in o

u > 0, in Q;

u =0, on RN\

with a slightly different weak notion of solution is considered, the authors
studied the existence of solution by considering first the simplest case 0 <
v < 1 and then the case v > 1. The proof was by proving a solution to
a regularized problem by using Shauder fixed point theorem and then they
performed apriori uniform estimates to pass to the limit. By giving a distinct
definition of the Dirichlet boundary condition, they proved the uniqueness
result for all v > 0 by using a more general comparison principle. In [10],
the authors treat a class of Kirchhoff type problems driven by a nonlocal
fractional operator and involving a singular term and a critical nonlinearity.
In particular, they covered the delicate degenerate case, that is, when the
Kirchhoff function is zero at zero, by combining variational methods with
an appropriate truncation argument, they provided the existence of two so-
lutions. Problem (P) has been also studied with different elliptic operators.
We refer the reader to [19, 24]. In [19], the authors established, by using the
minimax method and some analysis techniques, the uniqueness of positive
solutions for a class of Kirchhoff type problems with singularity.

In the second part, we keep almost the same problem but with absence
of the singular term; we consider

(a0 fuo B dudy ) (~A)3u = g(o,u) = Aul?, in @
(P2)§ u>o0, in
u =0, on RV \ Q,

where s € (0,1), A > 0,0 < v < 1 and Q ¢ RY is a smooth bounded domain
with N > sp,p>1and 0 < g <pi—1,1let g: 2 xR — R be a continuous
function satisfies certain conditions which we will present later. The first
part of our work is a generalization of the results of [19] to the fractional
p-Laplacian case and the second part is a generalization of the results of the
existence and multiplicity of the solutions presented in [8]. We believe that
the lack of works that dealt with this matter motivated us to shed more
light on it.

2. PRELIMINARIES

In this paragraph, we will provide a suitable functional space to study the
problem (P;) and (P2) with some preliminary results. In the following we
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will assume that © € RY is a bounded Lipschitz domain with N > 2. We
consider, for any p > 1 and s € (0, 1), the space

WP(RY) = {u € LP(RY), —“":(f)y'x@p e L'(R?V)}

endowed with the Gagliardo norm

|u(z) — u(y)|P 5
_ )P
lullyysp@yy = (/ z)| dx+//R?N o=y dxdy) )

Let us introduce the next space
WiP(Q) = {u € WP(RY) :u =0 in RN\Q},

endowed with the standard Gagliardo norm

||U|| // |u(z _uy)|p da:dy)%
gav |z — [N .

Thanks to the Poincaré inequality holds in W;*(), we observe that this

norm is equivalent to the full norm || - [|lyyspgy). Let
N .
o= N ope AN > sp;
8 00, if N < sp.

The space W;P(€) is a reflexive Banach space, continuously embedded
in L*(Q2) for any a € [1,p%] if N > sp, for any 1 < a < 0o if N = sp and
in L*°(Q) for any N < sp. It is also compactly embedded in L*(2) for any
a € [1,pt)if N > sp and into L>®(Q2) for N < sp. Furthermore, C§°(12) is
a dense subspace of W3’ (Q) with respect to the norm || - ||. In particular,
restrictions to  of functions in W;"?(£2) belong to the closure of C§°(€2) in
W#P(Q)) , i.e. with respect to the localized norm

u(z) — u(y)l” v
/|u(x \pd:lc—l-// ||x Y[V d:xdy)p.

This closure is often denoted with the same symbol W;"”(€2). For more
details about the theory of these spaces see [2, 9, 25]. The symbol | - ||,
stands for the standard norm for the LP(£2) space.

We now recall the Krasnoselskii genus, more information on this subject
may be found in [1, 5, 15]. Let E be a real Banach space. Let us denote
by ¥ the class of all closed subsets A C E — {0} that are symmetric with
respect to the origin, that is, u € A implies —u € A.

Definition 2.1. Let A € ¥. The Krasnoselskii genus v(A) is defined as
being the least positive integer n such that there is an odd mapping ¢ €
C(A,R"—{0}). If such ann does not exist we set y(A) = +oo. Furthermore,
by definition, (@) = 0.

Theorem 2.2. Let E = RY and 09 be the boundary of an open, symmetric
and bounded subset @ C RN with 0 € Q. Then () =

Note v(SV~1) = N. If E is of infinite dimension and separable and S is
the unit sphere in E, then v(S) = 4o0.
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Proposition 2.3. Let A,B € 3. Then if there exists an odd map f €
C(A, B), then v(A) < v(B). Consequently, if there exists an odd homeo-
morphism f: A — B, then v(A) = v(B).

We now state a theorem due to Clarke.
Theorem 2.4. Let J € CY(E,R) be a functional satisfying the Palais-Smale

condition. Also suppose that:

e J is bounded from below and even,
o there is a compact set K € 3 such that v(K) = k and sup,c g J(x) <
J(0).
Then J possesses at least k pairs of distinct critical points and their corre-
sponding critical values are less than J(0).

In what follows, we denote by C;, © € N, general positive numbers whose
value may change from line to line. We denote by u™ := max{u,0} and
u” := max{—u, 0} respectively the positive and negative part of a function
u. To simplify, we put &(¢) = [t[P~2t, for t € R.

3. MAIN RESULTS

3.1. Existence and uniquness for Problem (P;). We say that u is a
weak solution of problem (Pl) if uw e WyP(Q) with u > 0 and

E(u(z) —uly)) (p(z) — @)
a+b//RzN o |N+5p dd /RZN o — gV dxdy

_ q
(1) —dew—k/ﬂugodx
The functional J : W5?(2) — R associated with problem (P;) is defined by
1 A
—/ E(x)|u'™ dx + —/ lu|7T da
L=vJa q+1Jg

Obviously, this energy functional is not differentiable because of the appear-
ance of a singular term. Thus, the usual critical point theory is no longer
applicable to this kind of functional. We formulate the main result as follows

a b
Ja(w) = =|lul? + = ||u||?? —
() pll l 2pll I

Py
Theorem 3.1. Assume that k € L5+ =1(Q2). Then problem (Py) has a
unique positive solution.

In order to prove our main result, we need to study the geometry condi-
tions.

Lemma 3.2. Under the assumptions of Theorem 3.1, the functional J)y
is bounded from below and attains the global minimizer in WP (Q); that

is, there exists ug € W5P(Q) such that m =  inf  Jy(u) = Jx(uo).
ueWs P ()

Furthermore, Jx(up) < 0.

Proof. By the Holder inequality and Sobolev inequality, for any u € W;"* (),
we have

(2) /’47(90)\141 Tdr < k|l < ORI sl

pEt+v—1 pety—1
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where C = C(N, s,p) is a positive constant. Hence, since A > 0, we have
a b 1 A
D) = —|ullP + —|u ZP——/f:z:ulfwdx—F—/uquz
W = Sl gl - = | #e) il

o= _
rppel L B fluf =7,
-7 PEy—1

a b
> —lulP 4+ =|ul*® —
pH | 2pll I

which implies that Jy is coercive and bounded from below on W (€2). Now,
we show that Jy is weakly lower semi continuous; let (u,,) be a sequence that
converges weakly to u in WP (), we deduce that

(3) up — u  strongly in L*(Q) for any « € [1,p})
4) un(x) = u(z) a. e x €,

as n — +o00. Letting v, = u, — u, by the Brezis-Lieb lemma (see Theorem
1 of [3]), we have

(5) [[n P
(6) [|un

where 0,(1) is an infinitesimal as n — +oo. On other hand, by the Vitali
convergence theorem, we get

l[onll” + [lul[” + on(1).

2 2
p +llullp: + on(1).

o

(7 lim k() |un|' ™ do = /Qk:(x)\uﬂ_'y dz.

n—+o0o Jo

If 0 < ¢ < p% — 1, thanks to (3), (5) and (7), we have that

a b _ A
) = Sl 5ol = [ @l do+ 25 [t de

a b b
Ja(u) + ];Ilvan + 2—pan||2p + ];anllpHUIIP + on(1)

Ia(w).
If g =p% —1, by (5), (6) and (7), we have that

%

a b b A .
I(un) = Ja(u) + Ellvn\l” + 2—pan||2p + EanIIPHUIIP + ;an pi-

S

> Ja(u).

Thus, for any 0 < ¢ < pi — 1, the functional Jy is weakly lower semi

continuous. So, there exists ug € Wy (Q) such that m =  inf  Jy\(u) =
ueWs P ()

Jx(ug). Moreover, since 0 < v < 1 and k(z) > 0 almost every x € Q, we
have Jy(tp) < 0 for all p # 0 and small ¢ > 0; then m < 0. The assertion is
proved. O

Lemma 3.3. ug is a positive function.

Proof. The previous lemma shows that ug is a nontrivial local minimizer of
the functional Jy, then for any ¢ € W;*(Q) be a nonnegative function and
for any ¢ > 0 sufficiently small such that ||ug + t¢| < p, we have

(8) JA<Uo+ti)7J)\(uO)

> 0.
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We know that,
9)
o Juo + tell” — Jluol” _ / & (uo(x) —uo(y)) (p(x) — o(y))
R2N

i t |z — y|N+sp

(10)

dxdy,

b0l bl £ (uo(z) — uo(w)) (9(x) — (1))
|ww//

sy |z — y|NHep

By the dominated convergence theorem, we have

1 t g+l _ .9
(11) lim /Q(UO'F 2 il :/ng@ dx.

t—0q+1 t

‘We observe that

1 o)~y
(12) 1 (o + <,0)t Yo, uy o ae. in Q as t — 0.
-

Thus, using the Monotone Convergence Theorem (Beppo-Levi), we obtain,
with possibility that the right side can be equal to +o0o when ug(z) = 0,

it [ @) (w0 +10)' 7 g7 -
(13) hrtrl}%lf/ T ; f/ﬂk(x)uo @ dz,

Hence, combining (9-13) and using (8), we deduce that

(a+ blluo|I?) // & (uo(x —Uo( ) (p(x) = ¢(y)) ddy

— y|Ntsp

(14) —/k(x)uoﬂga da:—t—/u%w dr > 0.
Q O

Then, for any ¢ € W7 () with ¢ > 0, we have

dxdy.

/k(m)u(I% i < (a+bHU0Hp)// € (uo(x) —uo(y)) (p(x) — ¢(y)) dudy
Q R2N

|z —y|[N+ep
(15) +/ udp du.
Q

Let vy € WyP(Q2) be the first eigenfunction of the operator (—A)s with

vy > 0 and [jv1]] = 1, taking ¢ = v; in (15) and by applying the Holder
inequality and the Sobolev inequality, we get

/k(x)ugvvl dz < (a+bllugl?) // ke —Uo(y))|fv+£p)—vl(y))
Q
+/ ugvl dr.
Q
< Cala+ bluo|”)[|uol[P~" + Afuoll|vr || < oe.

wich implies that u.(z) > 0 for almost every = € Q.
O

Proof of Theorem 3.1. We show that inequality (15) is true all ¢ € W3 (Q),
For this, we note that there exists ¢y € (0,1) such that ug + tug € W3*(Q)

dxdy
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for all || < tg, we define the function

h:[—to,to} — R
t = h(t) = Jx(us + tuy).

Thus, h attains it’s minimum at ¢ = 0, wich implies that A’(0) = 0, that is

lim I (ug + tug) — Jx(uo)
t—0 t

:O’

(16) alluolP + bl|uol|* + )\/ oy — / k(z)uy™" dx = 0.

Q Q
Define 1. = (ug + ep) and (ug + ep)*™ = max{0, us + ep}. We denote by
{u <0} ={zr e RV :u(z) <0} and {u < 0}¢ is its complement in RY.
Putting » = 7 > 0 in (14), we obtain

0 < Gt [ [ SR w0 0,

o=y

—/ k(x)ug "1pe da + /\/ udtpe dx.
Q Q
Noting that (ug + )™ = (ug + ep) + (ug + €p)~, by (16), we can see that

0 < ¢ a+b||U0Hp/ £(ole) |;L(fy)|)1\(/f£:) #)

/ k(z)ug " dx + )\/ udp dx}

(a + bl|uo]|P) // 5“0 *UO(ZJ))WS (z) — vz () dady

dxdy

o =y ¥
(17) —/ k(x)ug "o dx—i—)\/ uys da.
Q Q
We note that
(18) —/ k(z)ug s dx <0,
Q
and
(19)
)\/ udps dr = f)\/ ugﬂ da;f)\s/ udp de < f)\a/ udp da.
Q {¢e<0} {¢e<0} {¢e<0}
We pose

T(uo, ) = (a + blluo|?) // §(un(@) — w)(p@) — eW) , 0

|.%' _ ‘N+5p

145
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By direct calculation, we have

I(uovs) = (a+blul]?) / §(uo(@) — w0 (®) e (@) =vz ) o0

| |N+sp

luo(@) — uo(y)[”
- —(a+bllullp)//w5<0}2 g Ly

—e(a + b|jul/?) //w . UO(JC —uo(y))(cp(w) ©(y)) dzdy

|z — y|[N+ep

» &(uo(x) —uo(y)) (Wz (x) — 2 (y))
+2(a + b||ul| )//{%Q}X{%Q}c o — [N TP dady

—e(a+ b”u”p)//{w . §(uo(x) - UO(Z/))(‘P@) —p(y)) dzdy

| — y| N

B » £ (uo(@) —uo(y)) (@) — )
2e{a + blul®) //{TZJESO}X{%SO}L- |z — y| NP o

luo(x) — uo(y)[P 1|‘P($) —o(y)
<25a+bup// dzdy.
( H H ) e <O} xRN |z y|N P Y

IN

(20)

By (17), (18) and (19), we get
0 < E[I(uo,gp) f/Qk(x)ua”Qp dz+/\/ngg0 dm}
[uo(x) — uo(y) P~ () — o(y)l
+2e(a + bfju||”) / /¢E<0}XRN dzdy

v — y[ NP
(21) f)\a/ udp du.
{¢=<0}
Since meas{y. < 0} — 0 as ¢ — 0, we have

_ p—1 _
(a+b|\u||”)// luo(z) — uo(y)| N|?(x) ©(y)] da:dyf)\/ ul dz — 0,
Pe <O} xRN |z — y|NFsp P <0}

as ¢ — 0. Consequently, dividing (21) by ¢ and letting ¢ — 0, we have
el(ug, ) — / k(z)uy ¢ dx + /\/ udp dz > 0,
Q Q

for any ¢ € W;P(Q). This inequality also holds equally well for —¢, it
follows that ug is a positive solution of Problem (FP;).

Now, we show the uniqueness of solution, for this, we suppose that ug,
uy are solutions of problem (P), substituting into (1) with up and uq, put
w = ug — u1. Subtracting the resulting two equations, we find that:

o of [ [ (uo(@) = uo(y) = (i (@) — i (v) | (w(e) = wiy))

|z — y|NFsp dedy

+ba(ug,u1) + A /Q(ug —ul)w(z) dz — /Qk(x)(ua"’ —uy Nw(z) dz =0,
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where
_ w » € (uo(x) — uo(y)) (ur(x) — u1(y))
au,ir) = ool = uol” [ [ e drdy
5 €(ur (@) —u1(y)) (uo(z) — uo(y))
|2 — wmw/ L ddy
It is clear that we have
(23) /(ug —uf)w(z) dz > 0, / k(x)(ug " —uy Nw(z) dz < 0.
Q Q
Using the elementary inequalities (see [21])
Glo—yP,  ifp>2
(24) (222 = P Py) (@ —y) > o -yl
T i1 <p <.
(el + lyh*P
where ¢, is a positif constant, we get
. €(uole) —uoly) (@) — W) | (w@) —wl)
/Am [ =y i
cpllwlf, ifp>2

c [w(z) — w(y)l dedy, if1<p<2.
p//ﬂw (Juo(x) — uo(y)| + lur(x) — ur(y)])*Pla — y| N+ - !

By the Holder inequality, we have:

a(uo,ur) > luol|* = [luol*~Hlun | — [l [*7 [luol| + | [*”
(luoll = e 1) (o~ = flua 771

(26) > 0.
From (22)-(26), we deduce that:

allwl <0, if p > 2

‘ luta) = w(y)|2 dedy <0, if1 2.
//RQN (‘UO(CE) —up(y)| + |ua(z) — Ul(y)|)27p|x _ y|N+sp ray = Y, <p<

If a > 0, it follows that
[[w][P =0, ifp>2

(@) = wiy)? dedy =0, if 1 2
o oo ) s 500 = 0 1 <w <

Then w(x) =0 a.e. in RY so w(z) = 0 a.e. in Q and consequently ug = u.
If @ = 0, from (22) we have

/(ug —uf)w(x) de =0
Q

this implies that up(z) = ui(x) a.e. in Q. We deduce that ug is the unique
positive solution of problem (P;) which completes the proof of Theorem 3.1.
a
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3.2. Infinitely many different solutions without singularity. In the
problem (P,), assume that g satisfies the following conditions

(Hy) There exist positive constants ¢1, e, > 0 with 1 < o < min{p, ¢ +
1} such that:

et b < g(x,t) < ept® L forall t >0 and for a.e.x € Q.

(Hs) g(z,—t) = —g(z,t), for all ¢ > 0 and for a.e. z € Q.
we say that u € W3*(Q) is a weak solution of problem (P,) if and only if

(ot [ [ L) 00) el o,

|z — y[NHep

(27) /fmugadxf /|u\q Lug dz.

for all p € WP ().
Naturally, we associate the problem (P%) by the functional Ay : W5 (Q) —
R defined by

_ @y Oy op A g+l
Ax(u) HUH +2 (] /QG(%U) dx+q+1 Q\u| dz,

where G(z,t) fo x,$) ds. Under hypothesis (H1), it is easy to see that
Ay € CHWSP(Q),R) and for all u,p € W;P(Q), we have

(A% (u), ) = (a + b||u||p) (E'(u), ) — / flz,u)p de+ )\/ |u|? tugp d,

Q Q
where E’ is the differential of F with E(u) = 1—17||u||p. Thus the critical points
of Ay are the weak solutions of (Pz).

Lemma 3.4. The functional Ay is bounded from below and satisfies the
Palais-Smale condition.

Proof. Using (Hy), for any u € WP (), we have
a b co
Ay(u) > —|ul|lP + — u2p——/ u|® dz.
() = ShulP + ol = 2 [ 1
Since 1 < a < p}, By the Sobolev embeddings, we have
a b c3
2 A > 2 Py 2p 93 a
(28) Au) = p||U|| + 2p||UH o Il

for some c3 > 0. Hence, since a < 2p, then A is bounded from blow. Now,
we prove the second part of the lemma, let (u,) be a Palais-Smale sequence
for Ay; that is

(29) Ax(up) = ¢, A\(ug) = 0 in (WeP(Q)) asn — +oo.

Thus (Ax(uyn)) is a real bounded sequence. From (28) we get that (uy)
is bounded in W;?(f2), thus passing to a subsequence, if necessary, still
denoted by (uy) and u € WP () such that u, — u weakly in W (£2) and
and (up) converges strongly to u in L"(Q) for 1 < r < p% and up(z) — u(z)
a.e. ¢ € ) asn— +oo.
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We have
(A (up)yun —u) = (a+bllun|P)E (un), un — u)

Un |7 Y (un, — w) do — T, Up) (uy — u) da.
(30) A [ e = ) do = [ gl ) = ) d

Now, we prove that
/ |t |9 My (1, — u) dz — 0, as n — +oo.
Q

Indeed, since 1 < ¢ < p! — 1, we have u,, — u in LI1(Q) and from the
Holder inequality we get

(31) / |t |7 Y (0, — w0) dz| < ||| g1 llun —ullg+1 — 0, asn — +oo.

On the other hand, by the continuity of g we have g(z,un)u, — g(x,u)u
and g(x,up)u — g(z,u)u a.e. € Q, and the fact that the sequence (uy)
converges in L*(§2) then there exists a dominated function h in L*(£2), using
(Hy) we get

lg(x, up)un| < klup|® < kh® € Ll(Q)7 and |g(x, up)u| < k\un\a_l\u| < kh* € Ll(Q).

for some k > 0. Hence, the dominated convergence theorem implies that

(32) / g(x, upn)(un — u) dz — 0,
Q
as n — 4o0. The relations (29)-(32) implies that,
(a+ blun |P)(E (un), un — u) — 0, as n — +oc.
we consider
L = (a+blun?)

[/ (& (un(@) = wn(w)) = €(u(@) = u®)) ) ((un(@) = unw)) — (u(z) - u(y)))

|z — y|Nt+sp

By a direct calculation we get

Lo = {(a+bual?) <E’<un> i —
+at bl [Jul? — [ / £lute) = uly) (unle) = b))

|z — y[N+op

Easily to see that the weak convergence of (u,) to u in W*(Q) implies that

R2N

T

dxdy — ||u|P

so, we deduce that
(33) L, — 0, asn — 4o0.

If p > 2, using the first elementary inequality in (24), obviously we get
lun —ul| = 0asn — 4oo. If 1 < p < 2, we put

Hy(z,y) = (E(un(z) = un(y)) — §(ul@) — u®))) ((un(@) — un(y)) = (u(x) — u(y))),
Sn(@,y) = |un(@) — un(y)[” + [ulz) —u(y)[”.

149
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Using the second inequality in (24) and Hoélder’s inequality, we get

(un(z) = un(y)) — (u(z) — u(y)) o
//RZN |xy— y|N+sp y ' drdy < C//RQN \x— (ﬁvispy)) dxdy

H,(z,y) Su(z,y)
<C dxdy dxdy.
= / /R [ — y[NHor / /R To—yvem 0

From (33), we have

Hy(z,y)
4 _n\m g
(34) //RZN P e dzdy — 0,
Now, since f fRQN ‘Iy(‘iwlp dxdy is bounded, we deduce that
(35)
P

[ (@) = () = (u(z) = u())|

|un—ul|| = // =y dxdy — 0 as n — +oo.

consequently, u, — uin W3*(Q), so A, satisfies the Palais-Smale condition.
O

Theorem 3.5. Assume (Hy) and (H2) are satisfied, then Problem (P2) has
infinitely many distinct pairs solutions.

Proof. We notice that in every Banach space of infinite dimension, there is an
infinite-dimensional subspace with Schauder basis (background information
can be found in e.g. [6, 26, 27]). Thus, we consider {ej,es,...} a Schauder
basis of a subspace X of WP (2), and for each k € N, consider Xy, the
subspace of X generated by k vectors {e1,es,...,ex}. Obviously, X is a

subspace of W;?(2). So we have X}, C L*. Then, the norms | - |lwy, || - [la
are equivalent on Xjp. Hence, there exists positive constants C; > 0 such
that

(36) —Null oy < =Chkllullw,, forall ue Xj.

Let u € X}, using (36), (H1) and the Sobolev embedding, we have

a )\64
A < ZlulP 2p 1+q _
AMu) < pIIUII +o || 1%+ = H | a\l [
a b )\64 010
< Z Py 2y 1+q _ “1VE a
<l + ol 1 g — llull [
_ « 2 p—a e 2p—a )‘04 1+qg—a _ clcltcl
[l (pHUH +2PIIUII 11 g [ o ).

Since ae < p and o < ¢+ 1, so we can choose 0 < R < 1 small enough such
that
ng—a + iRQP—a + Acy
P 2p 1+¢

c1c
R1+q o k <0
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Thus, for 0 < r < R, we consider the set K = {u € X}, : |lullw, = r}. For
all u € K, we have

a _ b _ )\C4 _ ClCa
Ay(u) < ro(=rPm 4 P4 plra—a _ C1G
A= (p 2p 1+g¢ a )
< Ra(ng—a_'_iRQp_a_i_ Acy Rlta—a _ Clcg)
< OZA)\(()).

We can consider the odd homeomorphism k : K — S*~! defined by v =
k

Zaiei — h(u) = (a1, a9, ...,ax), where S¥71 is the sphere in R¥. From
i=1

Theorem 2.2 and proposition 2.3 we have that v(K) = v(S*~!) = k. By
Theorem 2.4, Ay has at least k pairs of different critical points. Since &
is arbitrary, we obtain infinitely many critical points of Ay, consequently,
Problem (P) has at infinitely many distinct pairs of nontrivial solutions. O

4. CONCLUSION

Using the direct method of minimization combined with the theory of
fractional Sobolev spaces, we have showed the existence and uniqueness
of positive solution for the fractional p-Kirchhoff problem (P1) involving a
singular nonlinearity. In addition, we have proved the existence of infinity of
pairs of solutions for the fractional p-Kirchhoff problem (P2) with a regular
nonlinear second member (without singularity). The approach that has been
used is the critical points theory and krasnoselskii’s genus. In future studies,
we could consider the variable exponent cases of this kind of problems. So
this will benefit future studies in this direction.
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