DEGREE DISTANCE INDEX OF GENERALIZED COMPLEMENTS OF GRAPHS

HARSHITHA A, GOWTHAM H. J, SABITHA D'SOUZA*, AND PRADEEP G. BHAT

Abstract

The topological indices are the numerical parameters associated with the graph which are usually graph invariant. The topological indices are classified based on the properties of graphs. The degree distance index is the topological index which is calculated by counting the degrees and distance between the vertices. In this paper, the degree distance indices of generalized complements of graphs are calculated.

2010 Mathematics Subject Classification. 05C10, 05C12.
KEYWORDS AND PHRASES. degree distance index, k-complement, $k(i)$-complement.

1. Introduction

Let G be a simple connected graph with vertex set $V(G)$. The complement of a graph is obtained by removing all the edges of G and adding the edges which are not in G. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of $V(G)$ of order $k \geq 2$. For all V_{r} and V_{s} in $P, r \neq s$, remove the edges between V_{r} and V_{s} in G and add the edges between V_{r} and V_{s} which are not in G. The resulting graph G_{k}^{P} is called k-complement of graph G with respect to the partition P. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of $V(G)$ of order $k \geq 2$. For each set V_{r} in P, remove the edges of G inside V_{r} and add the edges joining vertices of V_{r} in \bar{G}. The resulting graph $G_{k(i)}^{P}$ is called $k(i)$-complement of graph G with respect to the partition P [1].

Topological indices are the numerical parameters associated with the graph which are usually graph invariant. From this index it is possible to analyze mathematical values and further investigate some physicochemical properties of a molecule. Therefore, it is also called a molecular descriptor. The Wiener index was introduced by Harry Wiener [2] is the first topological index to be used in Chemistry to determine the boiling point of paraffin. Let $d\left(v_{i}, v_{j}\right)$ be the distance between the vertices v_{i} and v_{j} and $\operatorname{deg}\left(v_{i}\right)$ be the degree of the vertex v_{i}.

The Wiener index of a graph G is,

$$
W(G)=\sum_{1 \leq i<j \leq n} d\left(v_{i}, v_{j}\right)
$$

The degree distance index was introduced by Dobrynin and Kochetova [3] which correlates degree distance with Wiener index. The degree distance of a graph G is defined as,

[^0]$$
D D(G)=\sum_{1 \leq i<j \leq n}\left(\operatorname{deg}\left(v_{i}\right)+\operatorname{deg}\left(v_{j}\right)\right) d\left(v_{i}, v_{j}\right) .
$$

The various upper bounds for degree distance index of a graph are found in [4]. The degree distance index of few product graphs are calculated in [5]. One can refer [6] for the degree distance index of derived graphs. The generalized degree distance of graphs can be found in [7, 8].

Motivated by the work on distance in complements of graphs [9], in this paper, the concept of degree distance index is extended to generalized complements of a graph. In order to compute degree distance index of G_{k}^{P} or $G_{k(i)}^{P}$, the graph G is partitioned in such a way that the resultant k or $k(i)$ - complement of G is a connected graph. For all the terminologies refer [10, 11].

2. Degree distance index of k-Complements of graphs

We now find necessary condition for the connectedness of k-complement of graph G.

Lemma 2.1. The k-complement of a connected graph G is connected, if $V(G)$ can be partitioned into $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ such that there exist a path between every pair of vertices in V_{i} and a vertex v in V_{i} such that v is non-adjacent to at least one vertex of each partite $V_{j}, i \neq j$.
Proof. Suppose $V(G)$ can be partitioned into $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ such that there exist a path between every pair of vertices in V_{i} and a vertex v in V_{i} such that v is non-adjacent to at least one vertex of each partite $V_{j}, i \neq j$. Then, in G_{k}^{P} there exists a path between all the vertices of V_{i} and at least two vertices of every two different partites are adjacent. Hence G_{k}^{P} is connected.
Proposition 2.2. (1) Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ be a partition of a cycle $C_{2 n}$ such that the graph induced by the vertex set V_{i} denoted as $\left\langle V_{i}\right\rangle$ is K_{2}. Then, $D D\left(C_{2 n}\right)_{n}^{P}=8 n^{2}(n-1)$.
(2) Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n+1}\right\}$ be a partition of a cycle $C_{2 n+1}$ such that $\left\langle V_{1}\right\rangle=K_{1}$ and $\left\langle V_{i}\right\rangle=K_{2}$ for $i=2,3, \ldots, n$. Then, $D D\left(C_{2 n+1}\right)_{n}^{P}=8 n^{3}+$ $4 n^{2}-2 n-4$.

Proof. (1) Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ be a partition of $C_{2 n}$ such that each $\left\langle V_{i}\right\rangle$ is K_{2}. Note that $\left(C_{2 n}\right)_{n}^{P}$ is a $(2 n-2)$-regular graph with n pairs of vertices of $\left(C_{2 n}\right)_{n}^{P}$ are at distance 2 and remaining $\binom{2 n}{2}-n$ pairs of vertices are at distance 1 .

Therefore,

$$
\begin{aligned}
D D\left(C_{2 n}\right)_{n}^{P} & =n(2 n-2+2 n-2)(2)+2 n(n-1)(2 n-2+2 n-2)(1) \\
& =8 n^{2}(n-1) .
\end{aligned}
$$

(2) Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n+1}\right\}$ be a partition of $C_{2 n+1}$ such that $\left\langle V_{1}\right\rangle=$ K_{1} and $\left\langle V_{i}\right\rangle=K_{2}$ for $i=2,3, \ldots, n$. Note that one vertex of degree $2 n-2$ and remaining $2 n$ vertices of degree $2 n-1$. The $n+1$ pairs of vertices of $\left(C_{2 n+1}\right)_{(n+1)}^{P}$ are at distance 2 and remaining $\binom{2 n+1}{2}-(n+1)$ pairs of vertices are at distance 1 .

Therefore,

$$
\begin{aligned}
D D\left(C_{2 n+1}\right)_{n+1}^{P} & =2(2 n-2+2 n-1)(2)+(2 n-2)(2 n-2+2 n-1)(1) \\
& +(n-1)(2 n-1+2 n-1)(2)+(2 n-1)(2 n-1+2 n-1)(1) \\
& +2(2 n-1+2 n-1)((2 n-3)+(2 n-5)+\cdots+1) \\
& =8 n^{3}+4 n^{2}-2 n-4
\end{aligned}
$$

Proposition 2.3. (1) Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ be a partition of the path $P_{2 n}$ such that $\left\langle V_{i}\right\rangle=P_{2}$ for all $i=1,2, \ldots, n$. Then, $D D\left(P_{2 n}\right)_{n}^{P}=8 n^{3}-8 n^{2}+2$.
(2) Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n+1}\right\}$ be a partition of the path $v_{1}, v_{2}, \ldots, v_{2 n+1}$ such that $\left\langle V_{i}\right\rangle=P_{2}, i=1,2, \ldots, n$ and $\left\langle V_{n+1}\right\rangle=\left\{v_{2 n+1}\right\}$. Then, $D D\left(P_{2 n+1}\right)_{n+1}^{P}=8 n^{3}+4 n^{2}-2 n$.
(3) Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n+1}\right\}$ be a partition of the path $v_{1}, v_{2}, \ldots, v_{2 n+1}$ such that $\left\langle V_{i}\right\rangle=P_{2}$ except one $\left\langle V_{i}\right\rangle=\left\{v_{i}\right\}, i \neq 1,2 n+1$. Then, $D D\left(P_{2 n+1}\right)_{n+1}^{P}=8 n^{3}+4 n^{2}-2 n-2$.

Proof. (1) Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ be a partition of $P_{2 n}$ such that $\left\langle V_{i}\right\rangle=P_{2}$ for all $i=1,2, \ldots, n$. Observe that two vertices have degree $(2 n-1)$ and remaining $(2 n-2)$ vertices have degree $(2 n-2)$. Now, $(n-1)$ pairs of vertices of $\left(P_{2 n}\right)_{n}^{P}$ are at distance 2 and remaining $\binom{2 n}{2}-(n-1)$ pairs of vertices are at distance 1 . Therefore,

$$
\begin{aligned}
D D\left(P_{2 n}\right)_{n}^{P} & =(1)(2 n-1+2 n)(1)+(2 n-2)(2 n-1+2 n-2)(1) \\
& +(2 n-2)(2 n-2+2 n-1)(1)+(n-1)(2 n-2+2 n-2)(2) \\
& +(2)(2 n-2+2 n-2)((2 n-4)+(2 n-6)+\cdots+2)(1) \\
& =8 n^{3}-8 n^{2}+2 .
\end{aligned}
$$

(2) Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n+1}\right\}$ be a partition of $P_{2 n+1}$ such that $\left\langle V_{i}\right\rangle=$ $P_{2}, i=1,2, \ldots, n$ and $\left\langle V_{n+1}\right\rangle=\left\{v_{2 n+1}\right\}$. Then, $\left(P_{2 n+1}\right)_{n+1}^{P}$ has one vertex of degree $2 n$ and remaining vertices of degree $2 n-1$. Also n pairs of vertices of $\left(P_{2 n+1}\right)_{(n+1)}^{P}$ are at distance 2 and remaining $\binom{2 n+1}{2}-n$ pairs of vertices are at distance 1. Therefore,

$$
\begin{aligned}
D D\left(P_{2 n+1}\right)_{n+1}^{P} & =(1)(2 n-1+2 n)(1)+(2 n-1)(2 n-1+2 n)(1) \\
& +(2 n-2)(2 n-1+2 n-1)(1)+(n)(2 n-1+2 n-1)(2) \\
& +(2 n-2)(2 n-1+2 n-1)+(2)(2 n-1+2 n-1)((2 n-4) \\
& +(2 n-6)+\cdots+2) \\
& =8 n^{3}+4 n^{2}-2 n .
\end{aligned}
$$

(3) Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n+1}\right\}$ be a partition of $P_{2 n+1}$ such that $\left\langle V_{i}\right\rangle=$ P_{2} except one $\left\langle V_{i}\right\rangle=\left\{v_{i}\right\}, i \neq 1,2 n+1$. Then, $\left(P_{2 n+1}\right)_{n+1}^{P}$ has two vertices of degree $2 n$, one vertex of degree $2 n-2$ and remaining $2 n-2$ vertices of degree $2 n-1$. So, n pairs of vertices of $\left(P_{2 n+1}\right)_{(n+1)}^{P}$ are at distance 2 and remaining $\binom{2 n+1}{2}-n$ pairs of vertices are at
distance 1. Therefore,

$$
\begin{aligned}
D D\left(P_{2 n+1}\right)_{n+1}^{P} & =1(2 n+2 n)(1)+4(2 n+2 n-1)(1) \\
& +2(2 n+2 n-2)(1)+2(2 n-4)(2 n+2 n-1)(1) \\
& +2(2 n-1+2 n-2)(2)+(2 n-4)(2 n-1+2 n-2)(1) \\
& +(n-2)(2 n-1+2 n-1)(2) \\
& +\left(2 n^{2}-6 n+5\right)(2 n-1+2 n-1)(1) \\
& =8 n^{3}+4 n^{2}-2 n-2
\end{aligned}
$$

Proposition 2.4. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{m}\right\}$ be a partition of complete bipartite graph $K_{m, n}$ such that $\left\langle V_{1}\right\rangle=K_{1, n-m+1}$ and $\left\langle V_{i}\right\rangle=K_{2}$ for $i=$ $2,3, \ldots, m$. Then, $D D\left(K_{m, n}\right)_{m}^{P}=m n(3 m+3 n-4)$.

Proof. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{m}\right\}$ be a partition $K_{m, n}$ such that $\left\langle V_{1}\right\rangle=$ $K_{1, n-m+1}$ and $\left\langle V_{i}\right\rangle=K_{2}$ for $i=2,3, \ldots, m$. Let u, v be two vertices of $K_{m, n}$.

TABLE 1. Degree distance of k-complement of $K_{m, n}$

Number of pairs of vertices	$\operatorname{deg}(\mathbf{u})+$ $\mathbf{d e g}(\mathbf{v})$	$\mathbf{d}(\mathbf{u}, \mathbf{v})$	$\mathbf{D D}(\mathbf{u}, \mathbf{v})$
$\binom{m-1}{2}$	$2 m$	1	$m^{3}-3 m^{2}+2 m$
$m-1$	$m+n$	1	$m^{2}+m n-m-n$
$\binom{n-1}{2}$	$2 n$	1	$m^{2} n-3 m n+2 n$
$(m-1)(n-m+1)$	$m+n$	1	$m n^{2}-n^{2}-m^{3}+m^{2}$
$m-1$	$m+n$	1	$m^{2}+m n-m-n$
$n-m+1$ $\binom{n-m+1}{2}$$m^{m+n}$	1	$n^{2}-m^{2}+m+n+2 m^{3}-6 m^{2}$	
$m-1$	$2 m$	2	$2 m^{3}+2 m n^{2}-4 m^{2} n+3 m n-m^{2}-m-n$
$(m-1)(m-2)$	$m+n$	2	$4 m n-4 n$

Thus, $D D\left(K_{m, n}\right)_{m}^{P}=m n(3 m+3 n-4)$.

3. Degree distance index of $k(i)$-COMPLEMENTS of GRAPHS

We shall now find the necessary condition for $G_{k(i)}^{P}$ to be connected whenever G is connected graph.

Lemma 3.1. The $k(i)$-complement of a connected graph G is connected, if $V(G)$ can be partitioned into $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ such that no two vertices of V_{i} are adjacent.

Proof. Suppose $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ is a partition of a graph G such that no two vertices of V_{i} are adjacent. Then, the vertices of V_{i} form a complete subgraph in $G_{k(i)}^{P}$. Since G is connected, there exists a path between the vertices of different partites. Hence $G_{k(i)}^{P}$ is connected.

Proposition 3.2. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ be a partition of a cycle $C_{2 n}$ such that each $\left\langle V_{i}\right\rangle=\langle u, v\rangle$ in which $d(u, v)=n$. Then,
(1) $D D\left(C_{4 l}\right)_{2 l(i)}^{P}=12 l\left(2 l^{2}+2 l-1\right)$, if $n=2 l$
(2) $D D\left(C_{4 l+2}\right)_{(2 l+1)(i)}^{P}=6\left(4 l^{3}+10 l^{2}+6 l+1\right)$, if $n=2 l+1$.

Proof. If $P=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ is a partition of $C_{2 n}$ such that each partite has two non adjacent vertices with distance between them is n. Then, $\left(C_{2 n}\right)_{n(i)}^{P}$ is a 3 -regular graph.
(1) Suppose $n=2 l, 6 l$ pairs of vertices are at distance $1,8 l$ pairs of vertices are at distance $2,8 l$ pairs of vertices are at distance $3,4, \ldots, 8 l$ pairs of vertices are at distance l. Thus,

$$
\begin{aligned}
D D\left(C_{4 l}\right)_{2 l(i)}^{P} & =6 l(6)(1)+8 l(6)(2)+\cdots+8 l(6)(l) \\
& =12 l\left(2 l^{2}+2 l-1\right) .
\end{aligned}
$$

(2) Suppose $n=2 l+1,3(2 l+1)$ pairs of vertices are at distance 1 , $4(2 l+1)$ pairs of vertices are at distance $2,4(2 l+1)$ pairs of vertices are at distance $3,4, \ldots, 4(2 l+1)$ pairs of vertices are at distance $l-1$ and $2(2 l+1)$ pairs of vertices are at distance l. Thus

$$
\begin{aligned}
D D\left(C_{4 l+2}\right)_{(2 l+1)(i)}^{P} & =3(2 l+1)(6)(1)+4(2 l+1)(6)(2)+\cdots \\
& +4(2 l+1)(6)(l-1)+2(2 l+1)(6)(l) \\
& =6\left(4 l^{3}+10 l^{2}+6 l+1\right) .
\end{aligned}
$$

Proposition 3.3. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n+1}\right\}$ be a partition of cycle $C_{2 n+1}$ such that $\left\langle V_{1}\right\rangle=K_{1}$ and $\left\langle V_{i}\right\rangle=\left\langle v_{i}, v_{j}\right\rangle, i=2,3, \ldots, 2 n+1$, in which $d\left(v_{i}, v_{j}\right)=n$. Then,
(1) $D D\left(C_{4 l+1}\right)_{(2 l+1)(i)}^{P}=24 l^{3}+37 l^{2}+11 l$, if $n=2 l$
(2) $D D\left(C_{4 l+3}\right)_{(2 l+2)(i)}^{P}=24 l^{3}+73 l^{2}+69 l+16$, if $n=2 l+1$.

Proof. (1) Suppose $n=2 l$. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{4 l}, v_{4 l+1}$ be the vertices of $C_{4 l+1}$. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{2 l+1}\right\}$ be a partition of $C_{4 l+1}$ such that $\left\langle V_{1}\right\rangle=\left\{v_{1}\right\},\left\langle V_{i}\right\rangle=\left\langle v_{i}, v_{i+l}\right\rangle, 2 \leq i \leq \frac{2 l+1}{2}$. In this partition one partite consists of single vertex and remaining partites consist two vertices which are at distance $2 l$.

TABLE 2. Distance between pair of vertices of k-complement of $C_{4 l+1}$

$\begin{gathered} \operatorname{deg}\left(v_{i}\right) \\ + \\ \operatorname{deg}\left(v_{j}\right) \\ \hline \end{gathered}$	Number of pairs	Pair of vertices	$\left[\begin{array}{c}\text { distance } \\ \text { Number of pairs }\end{array}\right]$
5	$4 l$	$\begin{gathered} \left(v_{1}, v_{i}\right) \\ 2 \leq i \leq 4 l+1 \end{gathered}$	$\left[\begin{array}{ccccccc}1 & 2 & 3 & 4 & \ldots & l & l+1 \\ 2 & 4 & 4 & 4 & \ldots & 4 & 2\end{array}\right]$
6	$3 l^{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 2 \leq i \leq 3 l+1 \\ 1 \leq j \leq l \end{gathered}$	$\left[\begin{array}{cccccc}1 & 2 & 3 & 4 & \ldots & l \\ 3 l & 3 l & 3 l & 3 l & \ldots & 3 l\end{array}\right]$
6	$2 l^{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 2 \leq i \leq 2 l+1 \\ l+1 \leq j \leq 2 l \\ \hline \end{gathered}$	$\left[\begin{array}{cccccc}l & l-1 & \ldots & 3 & 2 & 1 \\ 2 l & 2 l & \ldots & 2 l & 2 l & 2 l\end{array}\right]$
6	$\frac{l^{2}-l}{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right), \\ 3 l+2 \leq i \leq 4 l, \\ 1 \leq j \leq l-1 \\ \text { such that } \\ i+j \leq 4 l+1 \end{gathered}$	$\left[\begin{array}{cccccc}1 & 2 & 3 & \ldots & l-2 & l-1 \\ l-1 & l-2 & l-3 & \ldots & 2 & 1\end{array}\right]$
6	$\frac{l^{2}-l}{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ l+2 \leq i \leq 2 l \\ 2 l+1 \leq j \leq \frac{3 l-1}{2} \end{gathered}$ such that $i+j \leq 4 l+1$	$\left[\begin{array}{cccccc}2 & 3 & 4 & \ldots & l-1 & l \\ l-1 & l-2 & l-3 & \ldots & 2 & 1\end{array}\right]$
6	$2\left(\frac{l^{2}-l}{2}\right)$	$\begin{gathered} \left(v_{i}, v_{i+j}\right), \\ \left(v_{x}, v_{x+y}\right) \\ 2 \leq i \leq l, \\ 2 l+2 \leq j \leq 3 l, \\ 2 l+2 \leq x \leq 3 l, \\ l+1 \leq y \leq 2 l-1 \\ \text { such that } \\ i+j \leq 4 l+1 \end{gathered}$	$\left[\begin{array}{cccccc}2 & 3 & 4 & \ldots & l-1 & l \\ 1 & 2 & 3 & \ldots & l-2 & l-1\end{array}\right]$
6	l^{2}	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 2 \leq i \leq l+1 \\ 2 l+1 \leq j \leq 3 l \\ \text { such that } \\ i+j \leq 4 l+1 \end{gathered}$	$\left[\begin{array}{cccccc}2 & 3 & 4 & \ldots & l & l+1 \\ l & l & l & \ldots & l & l\end{array}\right]$

The degree distance between the vertices corresponding to first row of the table is $10 l^{2}+20 l$. The degree distance between the vertices of next rows are $9 l^{3}+9 l^{2}, 6 l^{3}+6 l^{2}, l^{3}-l, l^{3}+3 l^{2}-4 l, 4 l^{3}-4 l$ and $3 l^{3}+9 l^{2}$ respectively. Hence $D D\left(C_{4 l+1}\right)_{(2 l+1)(i)}^{P}=24 l^{3}+37 l^{2}+11 l$.
(2) Suppose $n=2 l+1$. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{4 l+2}, v_{4 l+3}$ be the vertices of $C_{4 l+3}$. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{2 l+2}\right\}$ be a partition of cycle such that $\left\langle V_{1}\right\rangle=\left\{v_{1}\right\},\left\langle V_{i}\right\rangle=\left\langle v_{i}, v_{i+l}\right\rangle, 2 \leq i \leq l+1$. In this partition one
partite consists of single vertex and remaining partites consist of two vertices which are at distance $2 l+1$.

Table 3. Distance between pair of vertices of k-complement of $C_{4 l+3}$

$\begin{gathered} \operatorname{deg}\left(v_{i}\right) \\ + \\ \operatorname{deg}\left(v_{j}\right) \\ \hline \end{gathered}$	Number of pairs	Pair of vertices	$\left[\begin{array}{c}\text { distance } \\ \text { Number of pairs }\end{array}\right]$
5	$4 l+2$	$\begin{gathered} \left(v_{1}, v_{i}\right) \\ 2 \leq i \leq 4 l+3 \end{gathered}$	$\left[\begin{array}{ccccccc}1 & 2 & 3 & 4 & \ldots & l & l+1 \\ 2 & 4 & 4 & 4 & \ldots & 4 & 4\end{array}\right]$
6	$\begin{gathered} 3 l^{2}+4 l \\ \quad+1 \end{gathered}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 2 \leq i \leq 3 l+2 \\ 1 \leq j \leq l+1 \end{gathered}$	$\left[\begin{array}{ccccc}1 & 2 & \ldots & l & l+1 \\ 3 l+1 & 3 l+1 & \ldots & 3 l+1 & 3 l+1\end{array}\right]$
6	$\frac{l^{2}+l}{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 3 l+3 \leq i \leq 4 l+2 \\ 1 \leq j \leq l \\ \text { such that } \\ i+j \leq 4 l+3 \\ \hline \end{gathered}$	$\left[\begin{array}{ccccccc}1 & 2 & 3 & \ldots & l-2 & l-1 & l \\ l & l-1 & l-2 & \ldots & 3 & 2 & 1\end{array}\right]$
6	$2 l^{2}+l$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 2 \leq i \leq 2 l+2 \\ \frac{2 l+3}{2} \leq j \leq 2 l+1 \end{gathered}$	$\left[\begin{array}{ccccc}l & l-1 & \ldots & 2 & 1 \\ 2 l+1 & 2 l+1 & \ldots & 2 l+1 & 2 l+1\end{array}\right]$
6	$\frac{l^{2}-l}{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 2 l+3 \leq i \leq 3 l+1 \\ l+2 \leq j \leq 2 l \end{gathered}$ such that $i+j \leq 4 l+3$	$\left[\begin{array}{ccccccc}2 & 3 & 4 & \ldots & l-2 & l-1 & l \\ 1 & 2 & 3 & \ldots & l-3 & l-2 & l-1\end{array}\right]$
6	$\frac{l^{2}-l}{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ l+3 \leq i \leq 2 l+1, \\ 2 l+2 \leq j \leq \frac{3 l}{2} \end{gathered}$ such that $i+j \leq 4 l+3$	$\left[\begin{array}{cccccc}2 & 3 & 4 & \ldots & l-1 & l \\ l-1 & l-2 & l-3 & \ldots & 2 & 1\end{array}\right]$
6	$l^{2}+l$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 2 \leq i \leq l+2 \\ l+1 \leq j \leq 3 l+1 \end{gathered}$	$\left[\begin{array}{cccccc}2 & 3 & \ldots & l-1 & l & l+1 \\ l+1 & l+1 & \ldots & l+1 & l+1 & l+1\end{array}\right]$
6	$\frac{l^{2}+l}{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 2 \leq i \leq l+1 \\ 3 l+2 \leq j \leq 4 l+1 \end{gathered}$ such that $i+j \leq 4 l+3$	$\left[\begin{array}{ccccccc}2 & 3 & 4 & \ldots & l-1 & l & l+1 \\ 1 & 2 & 3 & \ldots & l-2 & l-1 & l\end{array}\right]$

The degree distance between the vertices corresponding to first row of the table is $10 l^{2}+30 l+10$. The degree distance between the vertices of next rows are $9 l^{3}+30 l^{2}+27 l+6, l^{3}+3 l^{2}+2 l, 6 l^{3}+9 l^{2}+3 l$,
$2 l^{3}-2 l, l^{3}+3 l^{2}-4 l, 3 l^{3}+12 l^{2}+9 l$ and $2 l^{3}+6 l^{2}+4 l$ respectively.
Hence $D D\left(C_{4 l+3}\right)_{(2 l+2)(i)}^{P}=24 l^{3}+73 l^{2}+69 l+16$.

Proposition 3.4. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ be a partition of the path $P_{2 n}$ such that each $\left\langle V_{i}\right\rangle=\left\langle v_{i}, v_{j}\right\rangle$ in which $d\left(v_{i}, v_{j}\right)=n$. Then,
(1) $D D\left(P_{4 l}\right)_{(2 l+1)(i)}^{P}=24 l^{3}+26 l^{2}-20 l+4$, if $n=2 l$
(2) $D D\left(P_{4 l+2}\right)_{(2 l+2)(i)}^{P}=24 l^{3}+62 l^{2}+30 l+4$, if $n=2 l+1$.

Proof. (1) Suppose $n=2 l$. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{2 l}\right\}$ be a partition of $P_{4 l}$ such that $\left\langle V_{i}\right\rangle=\left\langle v_{i}, v_{i+l}\right\rangle, 1 \leq i \leq l$. In this partition each partite consists of two vertices which are at distance $2 l$.

TABLE 4. Distance between pair of vertices of k-complement of $P_{4 l}$

		Pair of vertices	$\left[\begin{array}{c}\text { distance } \\ \text { Number of pairs }\end{array}\right]$
5	$4 l$	$\begin{gathered} \left(v_{1}, v_{i}\right), \\ \left(v_{j}, v_{4 l}\right), \\ 2 \leq i \leq 2 l+1, \\ 2 l \leq j \leq 4 l-1 \end{gathered}$	$\left[\begin{array}{ccccccc}1 & 2 & 3 & \ldots & l-2 & l-1 & l \\ 4 & 4 & 4 & \ldots & 4 & 4 & 4\end{array}\right]$
5	$2 l$	$\begin{gathered} \left(v_{1}, v_{i}\right) \\ \left(v_{j}, v_{4 l}\right) \\ 2 l+2 \leq i \leq 3 l+1 \\ l \leq j \leq 2 l-1 \end{gathered}$	$\left[\begin{array}{ccccccc}2 & 3 & 4 & \ldots & l-1 & l & l+1 \\ 2 & 2 & 2 & \ldots & 2 & 2 & 2\end{array}\right]$
5	$2(l-2)$	$\begin{gathered} \left(v_{1}, v_{i}\right), \\ \left(v_{j}, v_{4 l}\right), \\ 3 l+2 \leq i \leq 4 l-1, \\ 2 \leq j \leq l-1 \end{gathered}$	$\left[\begin{array}{ccccccc}4 & 5 & 6 & \ldots & l-1 & l & l+1 \\ 2 & 2 & 2 & \ldots & 2 & 2 & 2\end{array}\right]$
4	1	$\left(v_{1}, v_{4 l}\right)$	3
6	$3 l^{2}-4 l$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 2 \leq i \leq 3 l-1 \\ 1 \leq j \leq l \end{gathered}$	$\left[\begin{array}{ccccc}1 & 2 & \ldots & l-1 & l \\ 3 l-2 & 3 l-2 & \ldots & 3 l-2 & 3 l-2\end{array}\right]$
6	$\frac{l^{2}-l}{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right), \\ 3 l \leq i \leq 4 l-1, \\ 1 \leq j \leq l-1 \\ \text { such that } \\ i+j \leq 4 l+1 \end{gathered}$	$\left[\begin{array}{ccccc}1 & 2 & \ldots & l-2 & l-1 \\ l-1 & l-2 & \ldots & 2 & 1\end{array}\right]$
6	$\frac{l^{2}-l}{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 2 l \leq i \leq 3 l-2 \\ l+1 \leq j \leq 2 l-1 \\ \text { such that } \\ i+j \leq 4 l+1 \end{gathered}$	$\left[\begin{array}{ccccccc}2 & 3 & 4 & \ldots & l-2 & l-1 & l \\ 1 & 2 & 3 & \ldots & l-3 & l-2 & l-1\end{array}\right]$
6	$2 l^{2}-2 l$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 2 \leq i \leq 2 l-1, \\ l+1 \leq j \leq 2 l \end{gathered}$	$\left[\begin{array}{ccccc}1 & 2 & \ldots & l-1 & l \\ 2 l-2 & 2 l-2 & \ldots & 2 l-2 & 2 l-2\end{array}\right]$

$\begin{gathered} \hline \operatorname{deg}\left(v_{i}\right) \\ + \\ \operatorname{deg}\left(v_{j}\right) \\ \hline \end{gathered}$	Number of pairs	Pair of vertices	$\left[\begin{array}{c}\text { distance } \\ \text { Number of pairs }\end{array}\right]$
6	$\frac{l^{2}-l}{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ l-1 \leq i \leq 2 l-2 \\ 2 l+1 \leq j \leq 3 l \\ \text { such that } \\ i+j \leq 4 l+1 \end{gathered}$	$\left[\begin{array}{ccccccc}2 & 3 & 4 & \ldots & l-1 & l & l+1 \\ l & l-1 & l-2 & \ldots & 3 & 2 & 1\end{array}\right]$
6	$l^{2}-2 l$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 2 \leq i \leq l-2 \\ 2 l+1 \leq j \leq 3 l \end{gathered}$	$\left[\begin{array}{cccccc}2 & 3 & \ldots & l-1 & l & l+1 \\ l-3 & l-3 & \ldots & l-3 & l-3 & l-3\end{array}\right]$
6	$\frac{2 l^{2}-10 l+12}{4}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right), \\ 2 \leq i \leq l-2, \\ 3 l+1 \leq j \leq 4 l-3 \\ \text { such that } \\ i+j \leq 4 l+1 \end{gathered}$	$\left[\begin{array}{ccccccc}5 & 6 & 7 & \ldots & l-1 & l & l+1 \\ 1 & 2 & 3 & \ldots & l-5 & l-4 & l-3\end{array}\right]$

The degree distance between the vertices corresponding to first four rows of the Table 4 are $10 l^{2}+10 l, 5 l^{2}+15 l, 5 l^{2}+15 l-50$ and 12 respectively. The degree distance between the vertices of next rows are $9 l^{3}+3 l^{2}-6 l, l^{3}-l, 2 l^{3}-2 l, 6 l^{3}-6 l, l^{3}+6 l^{2}+5 l, 3 l^{3}-27 l$ and $2 l^{3}-3 l^{2}-23 l+42$ respectively. Hence $D D\left(P_{4 l}\right)_{(2 l+1)(i)}^{P}=24 l^{3}+$ $26 l^{2}-20 l+4$.
(2) Suppose $n=2 l+1$. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{2 l+1}\right\}$ be a partition of $P_{4 l+2}$ such that $\left\langle V_{i}\right\rangle=\left\langle v_{i}, v_{i+l}\right\rangle, 1 \leq i \leq l$. In this partition each partite consists of two vertices which are at distance $2 l+1$.

Table 5. Distance between pair of vertices of k-complement of $P_{4 l+2}$

$\operatorname{deg}\left(v_{i}\right)$ + $\operatorname{deg}\left(v_{j}\right)$	```Number of pairs```	Pair of vertices	$\left[\begin{array}{c}\text { distance } \\ \text { Number of pairs }\end{array}\right]$
5	$2(l+1)$	$\begin{gathered} \left(v_{1}, v_{i}\right),\left(v_{j}, v_{4 l+2}\right) \\ 2 \leq i \leq l+2 \\ 3 l+1 \leq j \leq 4 l+1 \end{gathered}$	$\left[\begin{array}{ccccccc}1 & 2 & 3 & \ldots & l-1 & l & l+1 \\ 2 & 2 & 2 & \ldots & 2 & 2 & 2\end{array}\right]$
5	$2 l$	$\begin{gathered} \left(v_{1}, v_{i}\right) \\ \left(v_{j}, v_{4 l+2}\right) \\ l+3 \leq i \leq 2 l+2 \\ 2 l+1 \leq j \leq 3 l \end{gathered}$	$\left[\begin{array}{ccccccc}1 & 2 & 3 & \ldots & l-2 & l-1 & l \\ 2 & 2 & 2 & \ldots & 2 & 2 & 2\end{array}\right]$
5	$2(l+1)$	$\begin{gathered} \left(v_{1}, v_{i}\right), \\ \left(v_{j}, v_{4 l+2}\right), \\ 2 l+3 \leq i \leq 3 l+3, \\ l \leq j \leq 2 l \\ l \end{gathered}$	$\left[\begin{array}{ccccccc}2 & 3 & 4 & \ldots & l & l+1 & l+2 \\ 2 & 2 & 2 & \ldots & 2 & 2 & 2\end{array}\right]$

$\begin{gathered} \operatorname{deg}\left(v_{i}\right) \\ + \\ \operatorname{deg}\left(v_{j}\right) \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { pairs } \\ \hline \end{gathered}$	Pair of vertices	$\left[\begin{array}{c}\text { distance } \\ \text { Number of pairs }\end{array}\right]$
5	$2(l+1)$	$\begin{gathered} \left(v_{1}, v_{i}\right) \\ \left(v_{j}, v_{4 l+2}\right) \\ 3 l+4 \leq i \leq 4 l+1 \\ 2 \leq j \leq l-1 \end{gathered}$	$\left[\begin{array}{ccccccc}4 & 5 & 6 & \ldots & l-1 & l & l+1 \\ 2 & 2 & 2 & \ldots & 2 & 2 & 2\end{array}\right]$
4	1	$\left(v_{1}, v_{4 l+2}\right)$	3
6	$3 l^{2}+4 l$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 2 \leq i \leq 3 l \\ 1 \leq j \leq l+1 \end{gathered}$	$\left[\begin{array}{ccccccc}1 & 2 & 3 & \ldots & l-1 & l & l+1 \\ 3 l & 3 l & 3 l & \ldots & 3 l & 3 l & 3 l\end{array}\right]$
6	$\frac{l^{2}+l}{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 3 l+1 \leq i \leq 4 l, \\ 1 \leq j \leq l \\ \text { such that } \\ i+j \leq 4 l+3 \\ \hline \end{gathered}$	$\left[\begin{array}{ccccccc}1 & 2 & 3 & \ldots & l-2 & l-1 & l \\ l & l-1 & l-2 & \ldots & 3 & 2 & 1\end{array}\right]$
6	$2 l^{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 2 \leq i \leq 2 l \\ l+2 \leq j \leq 2 l+1 \\ \hline \end{gathered}$	$\left[\begin{array}{ccccccc}1 & 2 & 3 & \ldots & l-2 & l-1 & l \\ 2 l & 2 l & 2 l & \ldots & 2 l & 2 l & 2 l\end{array}\right]$
6	$\frac{l^{2}-l}{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right), \\ 2 l+1 \leq i \leq 3 l-1, \\ l+2 \leq j \leq 2 l \end{gathered}$ such that $i+j \leq 4 l+3$	$\left[\begin{array}{ccccccc}l & l-1 & l-2 & \ldots & 4 & 3 & 2 \\ l-1 & l-2 & l-3 & \ldots & 3 & 2 & 1\end{array}\right]$
6	$\frac{l^{2}+l}{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ l-1 \leq i \leq 2 l-1, \\ 2 l+2 \leq j \leq 3 l+2 \\ \text { such that } \\ i+j \leq 4 l+3 \end{gathered}$	$\left[\begin{array}{ccccccc}2 & 3 & 4 & \ldots & l & l+1 & l+2 \\ l+1 & l & l-1 & \ldots & 3 & 2 & 1\end{array}\right]$
6	$\frac{2 l^{2}-2 l+1}{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right) \\ 2 \leq i \leq l-2, \\ 2 l \leq j \leq 3 l+2 \\ \hline \end{gathered}$	$\left[\begin{array}{cccccc}2 & 3 & \ldots & l & l+1 & l+2 \\ l-3 & l-3 & \ldots & l-3 & l-3 & l-3\end{array}\right]$
6	$\frac{l^{2}-5 l+6}{2}$	$\begin{gathered} \left(v_{i}, v_{i+j}\right), \\ 2 \leq i \leq l-2, \\ 3 l+3 \leq j \leq 4 l-1 \\ \text { such that } \\ i+j \leq 4 l+3 \\ \hline \end{gathered}$	$\left[\begin{array}{ccccccc}5 & 6 & 7 & \ldots & l-1 & l & l+1 \\ 1 & 2 & 3 & \ldots & l-5 & l-4 & l-3\end{array}\right]$

The degree distance between the vertices corresponding to first five rows of the Table 5 are $5 l^{2}+15 l+10,5 l^{2}+5 l, 5 l^{2}+25 l+20$, $5 l^{2}+15 l-50$ and 12 respectively. The degree distance between the vertices of next rows are $9 l^{3}+24 l^{2}+9 l-6, l^{3}+3 l^{2}+2 l, 6 l^{3}+3 l^{2}-3 l$,
$2 l^{3}-2 l, l^{3}+9 l^{2}+20 l+12,3 l^{3}+6 l^{2}-33 l-36$ and $2 l^{3}-3 l^{2}-23 l+42$ respectively. Hence $D D\left(P_{4 l+2}\right)_{(2 l+2)(i)}^{P}=24 l^{3}+62 l^{2}+30 l+4$.

Proposition 3.5. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{n+1}\right\}$ be a partition of path v_{1}, v_{2}, $\ldots, v_{2 n+1}$ such that $\left\langle V_{1}\right\rangle=\left\{v_{1}\right\}$ and $\left\langle V_{i}\right\rangle=\left\langle v_{i}, v_{j}\right\rangle$, such that $d\left(v_{i}, v_{j}\right)=n$. Then,
(1) $D D\left(P_{4 l+1}\right)_{(2 l+1)(i)}^{P}=24 l^{3}+36 l^{2}+16 l-10$, if $n=2 l$
(2) $D D\left(P_{4 l+3}\right)_{(2 l+2)(i)}^{P}=24 l^{3}+72 l^{2}+76 l+13$, if $n=2 l+1$.

Proof. (1) Suppose $n=2 l$. Let $v_{1}, v_{2}, \ldots, v_{4 l+1}$ be the vertex set of a path $P_{4 l+1}$. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{2 l+1}\right\}$ be a partition of $P_{4 l+1}$ graph so that $\left\langle V_{1}\right\rangle=\left\{v_{4 l+1}\right\}$ and $\left\langle V_{i}\right\rangle=\left\langle v_{i}, v_{i+l}\right\rangle, 1 \leq i \leq l$. The $d\left(v_{i}, v_{j}\right)$, $1 \leq i<j \leq 4 l$ remains same as in Table 4. $d\left(v_{i}, v_{4 l+1}\right), 1 \leq i \leq 4 l$ are $4, l+2, l+1, \ldots, 7,6,5, l+2, l+1, \ldots, 5,4,3,2,3, \ldots, l-1, l, l+1$, $l+1, l, \ldots, 3,2,1 . \operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{j}\right)=5$ for $2 \leq j \leq 4 l, \operatorname{deg}\left(v_{i}\right)+$ $\operatorname{deg}\left(v_{j}\right)=6$ for $2 \leq i<j \leq 4 l, \operatorname{deg}\left(v_{i}\right)+\operatorname{deg}\left(v_{4 l+1}\right)=4$ for $2 \leq i \leq 4 l$ and $\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{4 l+1}\right)=3$.

The degree distance between the vertices in the first four rows are $5 l^{2}+5 l+6 l^{2}+6 l, \frac{5}{2}\left(l^{2}+3 l\right)+3 l^{2}+9 l, \frac{5}{2}\left(l^{2}+3 l-10\right)+3 l^{2}+9 l-30$ and 15 respectively. The degree distance between the vertices of next rows are $9 l^{3}+3 l^{2}-6 l, l^{3}-l, 2 l^{3}-2 l, 6 l^{3}-6 l, l^{3}+6 l^{2}+5 l, 3 l^{3}-27 l$ and $2 l^{3}-3 l^{2}-23 l+42$ respectively. The degree distance between $\left(v_{i}, v_{4 l+1}\right), 1 \leq i \leq 4 l$ is $8 l^{2}+32 l-12$. Hence $D D\left(P_{4 l+1}\right)_{(2 l+1)(i)}^{P}=$ $24 l^{3}+36 l^{2}+16 l-10$.
(2) Suppose $n=2 l+1$. Let $v_{1}, v_{2}, \ldots, v_{4 l+3}$ be the vertex set of a path $P_{4 l+3}$. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{2 l+2}\right\}$ be a partition of $P_{4 l+3}$ in such that $\left\langle V_{1}\right\rangle=\left\{v_{4 l+3}\right\}$ and $\left\langle V_{i}\right\rangle=\left\langle v_{i}, v_{i+l}\right\rangle, 1 \leq i \leq l+1$. In such a partition one partite consists of one vertex and remaining partites consist of two vertices which are at distance $2 l+1$. The $d\left(v_{i}, v_{j}\right), 1 \leq i<j \leq 4 l+2$ remains same as in Table 5. It is noted that $d\left(v_{i}, v_{4 l+3}\right), 1 \leq i \leq 4 l+2$ is $4, l+2, l+1, \ldots, 7,6,5$, $l+3, l+2, \ldots, 5,4,3,2,3, \ldots, l-1, l, l+1, l+2, l+1, \ldots, 3,2,1$. Also $\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{j}\right)=5$ for $2 \leq j \leq 4 l+1, \operatorname{deg}\left(v_{i}\right)+\operatorname{deg}\left(v_{j}\right)=6$ for $2 \leq i<j \leq 4 l+1, \operatorname{deg}\left(v_{i}\right)+\operatorname{deg}\left(v_{4 l+3}\right)=4$ for $2 \leq i \leq 4 l+1$ and $\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{4 l+3}\right)=3$.

The degree distance between the vertices of first five rows are $\frac{5}{2}\left(l^{2}+3 l+2\right)+3 l^{2}+9 l+6, \frac{5}{2}\left(l^{2}+l\right)+3 l^{2}+3 l, \frac{5}{2}\left(l^{2}+5 l+4\right)+3 l^{2}+15 l+12$, $\frac{5}{2}\left(l^{2}+3 l-10\right)+3 l^{2}+9 l-30$ and 15 respectively. The degree distance between the vertices of next rows are $9 l^{3}+24 l^{2}+9 l-6, l^{3}+3 l^{2}+2 l$, $6 l^{3}+3 l^{2}-3 l, 2 l^{3}-2 l, l^{3}+9 l^{2}+20 l+12,3 l^{3}+6 l^{2}-33 l-36$ and $2 l^{3}-3 l^{2}-23 l+42$ respectively. The degree distance between $\left(v_{i}, v_{4 l+3}\right), 1 \leq i \leq 4 l+1$ is $8 l^{2}+40 l+8$. Hence $D D\left(P_{4 l+3}\right)_{(2 l+2)(i)}^{P}=$ $24 l^{3}+72 l^{2}+76 l+13$.

Proposition 3.6. Let G be a complete bipartite graph $K_{m, n}$ with vertex set $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}\right\}$.
(1) If m and n both are even and $K_{m, n}$ is partitioned into $\frac{m+n}{2}$ partites such that each partite has exactly two non-adjacent vertices. Then, $D D\left(G_{\left(\frac{m+n}{2}\right)(i)}^{P}\right)=3 m n(m+n)+2\left(m^{2}+n^{2}\right)-4 m n-3(m+n)$.
(2) If m is even and n is odd and $K_{m, n}$ is partitioned into $\frac{m+n-1}{2}$ partites such that $\left\langle V_{1}\right\rangle=\left\{v_{n}\right\}$ and remaining partites have exactly two nonadjacent vertices. Then, $D D\left(G_{\left(\frac{m+n-1}{P}\right)(i)}^{P}\right)=3 m n(m+n)+2\left(m^{2}+\right.$ $\left.n^{2}\right)-4 m n-2 m-5 n+4$.
(3) If m and n both are odd and $K_{m, n}$ is partitioned into $\frac{m+n-2}{2}$ partites such that $\left\langle V_{1}\right\rangle=\left\{v_{1}\right\},\left\langle V_{2}\right\rangle=\left\{v_{2}\right\}$ and remaining partites have exactly two non-adjacent vertices. Then, $D D\left(G_{\left(\frac{m+n-2}{2}\right)(i)}^{P}\right)=$ $\frac{1}{2}\left(6 m n(m+n)+4\left(m^{2}+n^{2}\right)-8 m n-11(m+n)+14\right)$.
Proof. Let G be a complete bipartite graph $K_{m, n}$.
(1) Suppose m and n both are even and $K_{m, n}$ is partitioned into $\frac{m+n}{2}$ partites such that each partite has exactly two non-adjacent vertices. Then,

TABLE 6. Degree distance of $k(i)$-complement of complete bipartite graph of even order

Number of Pairs of vertices	$\operatorname{deg}(\mathbf{u})+$ $\mathbf{d e g}(\mathbf{v})$	$\mathbf{d}(\mathbf{u}, \mathbf{v})$	$\mathbf{D D}(\mathbf{u}, \mathbf{v})$
$m n$	$m+n+2$	1	$m^{2} n+m n^{2}+2 m n$
$\frac{m}{2}$	$2 n+2$	1	$m n+m$
$\frac{n}{2}$	$2 m+2$	1	$m n+n$
$\binom{m}{2}-\frac{m}{2}$	$2 n+2$	2	$2 m^{2} n+2 m^{2}-4 m n-4 m$
$\binom{n}{2}-\frac{n}{2}$	$2 m+2$	2	$2 m n^{2}+2 n^{2}-4 m n-4 n$

Thus, $D D\left(G_{\left(\frac{m+n}{2}\right)(i)}^{P}\right)=3 m n(m+n)+2\left(m^{2}+n^{2}\right)-4 m n-3(m+n)$.
(2) Suppose m is even and n is odd and n is odd and $K_{m, n}$ is partitioned into $\frac{m+n-1}{2}$ partites such that $\left\langle V_{1}\right\rangle=\left\{v_{n}\right\}$ and remaining partites have exactly two non-adjacent vertices. Then,

TABLE 7. Degree distance of k-complement of complete bipartite graph of odd order

Number of Pairs of vertices	$\operatorname{deg}(\mathbf{u})+$ $\mathbf{d e g}(\mathbf{v})$	$\mathbf{d}(\mathbf{u}, \mathbf{v})$	$\mathbf{D D}(\mathbf{u}, \mathbf{v})$
$m(n-1)$	$m+n+2$	1	$m^{2} n+m n^{2}+m n-m^{2}-2 m$
m	$m+n+1$	1	$m n+m^{2}+m$
$\frac{m}{2}$	$2 n+2$	1	$m n+m$
$\frac{n-1}{2}$	$2 m+2$	1	$m n+n$

Number of Pairs of vertices	$\operatorname{deg}(\mathbf{u})+$ $\mathbf{d e g}(\mathbf{v})$	$\mathbf{d}(\mathbf{u}, \mathbf{v})$	$\mathbf{D D}(\mathbf{u}, \mathbf{v})$
$\binom{m}{2}-\frac{m}{2}$	$2 n+2$	2	$2 m^{2} n+2 m^{2}-4 m n-4 m$
$n-1$	$2 m+1$	2	$4 m n+2 n-4 m-2$
$\binom{n}{2}-\frac{n-1}{2}-(n-1)$	$2 m+2$	2	$2 m n^{2}+2 n^{2}-8 m n-8 n+6 m+6$

Thus, $D D\left(G_{\left(\frac{m+n-1}{2}\right)(i)}^{P}\right)=3 m n(m+n)+2\left(m^{2}+n^{2}\right)-4 m n-2 m-$ $5 n+4$.
(3) Suppose m and n both are odd and $K_{m, n}$ is partitioned into $\frac{m+n-2}{2}$ partites such that $\left\langle V_{1}\right\rangle=\left\{v_{1}\right\},\left\langle V_{2}\right\rangle=\left\{v_{2}\right\}$ and remaining partites have exactly two non-adjacent vertices. Then,

TABLE 8. Degree distance of k-complement of complete bipartite graph of even order

Number of Pairs of vertices	deg(u)+ $\mathbf{d e g}(\mathbf{v})$	$\mathbf{d}(\mathbf{u}, \mathbf{v})$	$\mathbf{D D}(\mathbf{u}, \mathbf{v})$
$(m-1)(n-1)$	$m+n+2$	1	$m^{2} n+m n^{2}-m^{2}-n^{2}-m-n+2$
$n-1$	$m+n+1$	1	$n^{2}+m n-m-1$
$m-1$	$m+n+1$	1	$m^{2}+m n-n-1$
1	$m+n$	1	$m+n$
$\frac{m-1}{2}$	$2 n+1$	1	$\frac{1}{2}(2 m n+m-2 n-1)$
$\frac{n-1}{2}$	$2 m+1$	1	$\frac{1}{2}(2 m n+n-2 m-1)$
$m-1$	$2 n+1$	2	$4 m n+2 m-4 n-2$
$n-1$	$2 m+1$	2	$4 m n+2 n-4 m-2$
$\binom{m}{2}-\frac{m-1}{2}-(m-1)$	$2 n+2$	2	$2 m^{2} n+2 m^{2}-8 m n+6 n-8 m+6$
$\binom{n}{2}-\frac{n-1}{2}-(n-1)$	$2 m+2$	2	$2 m n^{2}+2 n^{2}-8 m n+6 m-8 n+6$

Thus, $D D\left(G_{\left(\frac{m+n-2}{2}\right)(i)}^{P}\right)=\frac{1}{2}\left(6 m n(m+n)+4\left(m^{2}+n^{2}\right)-8 m n-\right.$ $11(m+n)+14)$.

4. Conclusion

In section 2 the authors obtained the characterization of G_{k}^{P} with respect to connectedness and calculated the degree distance index of k-complement of path graph, cycle and complete bipartite graph. The characterization of $k(i)$-complement and degree distance index is obtained in section 3.

References

[1] E. Sampathkumar, L. Pushpalatha, C. V. Venkatachalam and P. G. Bhat, Generalized complements of a graph, Indian Journal of Pure and Applied Mathematics, 29 (1998), 625-639.
[2] H. Wiener, Structural determination of paraffin boiling points, Journal of the American chemical society, 69 (1947), 17-20.
[3] A. A. Dobrynin and A. A. Kochetova, Degree distance of a graph: A degree analog of the Wiener index, Journal of Chemical Information and Computer Sciences, 34 (1994), 1082-1086.
[4] P. Dankelmann, I. Gutman, S. Mukwembi and H. C. Swart, On the degree distance of a graph, Discrete Applied Mathematics, 157 (2009), 2773-2777.
[5] P. Paulraja and V. S. Agnes, Degree distance of product graphs, Discrete Mathematics, Algorithms and Applications, 01 (2014), 01-19.
[6] J. Xu, J. Liu, A. Bilal, U. Ahmad, H. M. A. Siddiqui, B. Ali, and M. R. Farahani, Distance degree index of some derived graphs, Mathematics, 7 (2019), 99-110.
[7] T. Vetrik, General degree distance of graphs, Journal of Algebra Combinatorics Discrete Structures and Applications, 8 (2021), 107-118.
[8] A. Hamzeh, A. Iranmanesh, and S. Hossein-Zadeh, Some Results on Generalized Degree Distance, Open Journal of Discrete Mathematics, 3 (2013), 143-150.
[9] I. Gutman, J. Lu, and M. A. Boutiche, On distance in complements of graph, Appl. Math. Inform. and Mech., 8 (2016), 35-42.
[10] G. Chartrand and P. Zhang, A first course in graph theory, Courier Corporation, 2013.
[11] D. B. West, Introduction to graph theory, Prentice hall Upper Saddle River, 2001.
Department of Mathematics, Manipal Institute of Technology, Manipal
Academy of Higher Education, Manipal, India, 576104
Email address: harshuarao@gmail.com
Department of Mathematics, Manipal Institute of Technology, Manipal
Academy of Higher Education, Manipal, India, 576104
Email address: gowtham.hj@manipal.edu
Department of Mathematics, Manipal Institute of Technology, Manipal
Academy of Higher Education, Manipal, India, 576104
Email address: sabitha.dsouza@manipal.edu
Department of Mathematics, Manipal Institute of Technology, Manipal
Academy of Higher Education, Manipal, India, 576104
Email address: pg.bhat@manipal.edu

[^0]: *Corresponding author .

