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TOPOLOGIES ON Z DETERMINED BY SEQUENCES

Abdelaziz Raouj and Abderrahim Makki Naciri

ABSTRACT. In the first part of this paper, we study nullpotency of linear recurrence
sequences of integers and we give a proof of a conjecture of I.Z. Ruzsa.

In the second part, we characterize nullpotent sequences in an abelian ring by
an arithmetic property analogous to that known for nullpotent sequences in an
abelian group.
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1. Introduction and some basic results

The essential motivation of this work is to determine whether or not there exist
group topologies or even ring topologies on Z satisfying some specified conditions.
A typical problem is:

- Given a sequence of integers, when does a norm on the group (resp. ring) of integers
Z exist such that this sequence converges?

Our approach is to use number theory methods, wherever possible, to answer the
underlying questions in this context.

In this section, we recall some basic notions and results that will be useful in the
sequel.

Let (G, +) be an abelian group written in additive notation. The neutral element
is denoted 0.

Definition 1. Let (a,) be a sequence of elements of G. We say that the sequence
(ay) is nullpotent (or group nullpotent) if there exists a topology T on G such that
(G,T) is a Hausdorff topological group and (a,) converges to 0.

By convention, we say that a sequence of integers is nullpotent if it is nullpotent
in the usual group (Z,+).

Recall that a function N : G — [0, 4o0[ with N(0) = 0, is a semi-norm on the
group (G, +) if N satisfies the following two properties:
(a) symmetry: for all u € G, N(—u) = N(u);
(b) triangle inequality (or subadditivity): for all u,v € G, N(u+v) < N(u)+ N(v).
The semi-norm N is a norm if in addition it satisfies the following property:
(c) separation: for all u € G, N(u) =0 = u=0.
Clearly, a norm on the group (G, +) induces a Hausdorff group topology on G.

Simple examples of nullpotent sequences of integers.

Submitted on October 19, 2022.



72

A. Raouj and A. M. Naciri

1. Let p be a prime number. The sequence (p") is nullpotent since |p™|, — 0 where
|.|p is the p-adic norm on Z.

On the other hand, if (b,) = (p" + 1), the relation by41 — pb, = 1 — p shows that
(bn,) cannot be nullpotent.

2. For any real number z, let ||z|| denote the distance from the real number z to
the nearest integer. Let 8 be a fixed real number in R \ Q. For u € Z, let
Ng(u) :=||Bu||. This defines a norm on Z.

Let (a;) be the Fibonacci sequence given by the recurrence relation:

ag = a1 =1,ap42 = Gpt1 + ap (n>0).

For B = (1+ /5)/2, we have |a,11 — Ba,| < ﬁL” — 0 and so Ng(a,) — 0. The
Fibonacci sequence is then nullpotent.
3. For any function £(n) ,/7°° there exists an increasing nullpotent sequence (ay,)

such that a, < &(n) for every n. Indeed, we can consider for example: a, =
log &£(n)
95ee2 1 5 0 in the 2-adic topology (where as usual [.] denotes the greatest

integer function).
This gives an answer to problem 3 posed by I. Protasov and E. Zelenyuk in [12].
4. Let P be a polynomial with integer coefficients and with degree d > 1. Then the
sequence (P(n)) is not nullpotent (this follows readily by induction on d and by
using the fact that P(n+ 1) — P(n) has degree < d).
5. The sequence of primes is not nullpotent. Indeed

e Method 1. According to Y. Zhang [18], there exists an integer h and infinitely
many prime numbers p < ¢ such that ¢ —p = h.

e Method 2. By the classical result of L. Schnirelmann, we know that there
exists a positive integer h such that any natural number greater than 1 can
be expressed as the sum of no more than h primes. Assume that the sequence
(pn) of primes is nullpotent and consider the compact K = {p,, : n > 1}U{0}.
Let hK denote the compact K + K +---+ K (h times). It follows that the
space Z can be written as Z = hK U (—hK) U {1} which implies that the
topological space Z is compact and this leads to a contradiction with Baire’s
theorem.

The nullpotency of sequences has been studied by many authors. Nienhuys [9]
showed that if (ny) is a sequence of positive integers such that ng.1/n; — oo, then
Z equipped with the finest topology such that (ng) converges to 0 is a complete
topological group. By using a probabilistic method, Ajtai, Havas and Kolmos [1]
proved that Z can be equipped with a Hausdorff (group-)topology such that the
principal character is the only continuous character. This result was also proved by
I.Z. Ruzsa by showing that the sequence (a,) defined by as, = 2", ag,+1 = 3" is
nullpotent. In the same context, I.Z. Ruzsa and R. Tijdeman [14] showed that there
is an integer-valued additive function f, not identically 0, such that the sequence
(f(n+1) — f(n)) is nullpotent.

An essential tool for the study of the nullpotency of sequences is the following
result of I.Z. Ruzsa [13], E. G. Zelenyuk and I. V. Protasov [10, 11] which allows us
to insert this study in an arithmetic context.

Theorem 1. A sequence of integers (an) is nullpotent if and only if: for every
beZ keNand (e1,...,e,) € {—1,1}*, there is only a finite number of indices
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g1 < -+ < ji satisfying

k
Zé‘ia]’i =b (1)
i=1
and

Zeiaji # 0 for all non empty subsets I of {1,...,k}. (2)
iel
In fact, under the conditions (1) and (2), I.Z. Ruzsa [13] constructed a norm N
on the group Z such that N(a,) — 0.

Definition 2. The representation (1) is said to be primitive if the condition (2) is
satisfied.
The next result provides practical criteria for nullpotency(see [10, 11]).

Theorem 2. Let (a,,) be a sequence of integers such that a, — +00. Assume that
GZ—:l — B € RT U {+o0}. Then (ay) is nullpotent in each of the following cases:

(B1) B €[0,+0) N Q and p(n) := any1 — fan — 0;
(B2) 6 = oo
(B3) B is a transcendental number.

In the first case (B1), we have Ng(a,) := ||Ban|| — 0. In the other cases, the
Theorem 2 is obtained by applying Theorem 1.
In [6], N. Hegyvéri used Theorem 1 to show that if (ay) is some linear recurrence
sequence, h is a polynomial over the integers of degree > 2 and (b,,) is a sequence
with positive upper density, then the sum z,, = a,, + b, + h(n) is not nullpotent.

Simple applications of the Theorem 2. The following sequences are nullpotent.

e The Fibonacci sequence (mentioned above) is nullpotent since it satisfies (B1).

o Let p =2 < ps =3 <p3 =5 < ... be the increasing sequence of the prime
numbers. Then the sequence (py) is nullpotent since it satisfies (B2).

e The sequence (ay) = ([¢"]) is nullpotent since it satisfies (B3).

Remarks 1.

1- Let u, = 2" , v, = on? _ on + 1, w, = v, if n is a square, w,, = 0 otherwise.
The two sequences (uy,) and (wy,) are positive nullpotent sequences since u, — 0
in the 2-adic topology and “** — +oo, but their sum (s;) = (un + wy) is not
because 5,41 — 25,2 = 2 for all integers m > 1.

2- The square of a nullpotent sequence cannot, in general, be nullpotent. Let us

consider the sequence (Z—Z) of convergents of the continued fraction expansion of
v/2. We know that

hoi=ho=1  k_1=0k =1,

hn = 2hn71 + hn72; 2kn = hn + hnfl (3)
and

1
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So for B =1/v/2, Ng(hn) = ||Bhn] — 0.
On the other hand, we know that the pair of positive integers (z,y) = (ham+1, k2m+1)
is a solution of the Pell-Fermat.

22— 2% =1. (4)

It follows that
6h3p 41 — Moo — h3, =4 (n>0)

which shows that the sequence (h2) is not nullpotent.

Several non-trivial nullpotent sequences are provided by applying the following
theorem of J-H. Evertse [4] on S-unit equations.

Theorem 3. Let ¢,d be constants with ¢ > 0,0 < d < 1, let Sy be a finite set of
prime numbers and let k be a positive integer. Then there are only finitely many
(k+ 1)—tuples x = (xo,%1,-..,Tk) of rational integers such that

sz—O

ij £0 for all 0CJC{0,1,... .k}
jeJ
( ) ng(Imwla”'amk‘) = 17

H |3 H |2ilp < c 1r2a<Xk |$z|)

PESo
An important application of this theorem is the following result of I.Z. Ruzsa [13].

Theorem 4. Let P be a finite set of primes numbers. Let (ay) be a sequence of
distinct integers > 1 such that a,, — 400 and for all n,

(p| an and p prime ) = p € P.

Then (ay) is nullpotent.

Example. Let uj,...,u; be integers greater than 1 and c¢y,...,c; be nonzero
integers. Let (¢1(n)),..., (¢x(n)) be strictly increasing sequences of positive integers.

wj(n)

Let (ay,) the sequence defined, for all n > 1, by: appqj—1 = u;”", where j =1,... k.

k WJ( ))

Then (a,,) is nullpotent. This implies in particular that the sequence (ZJ 1 CjU;
is also nullpotent.

In what follows we will recall the well known result of Baker [16] (see [15], p. 30)
concerning estimates of linear forms in logarithms. In our context, we need it to
show, in appropriate situation, that the number of solutions of (1) is at most finite.

Let § be a non-zero algebraic number and let P(x) = agz? + ajz® '+ -+ aq be
its minimal polynomial over the integers. Recall the definitions:
the degree of ¢ : deg(d) := d°P =d,
the height of § : H(0) := max(|ao|, |a1], .- -, |ad|)-

Furthermore, if 6, = §,09,...,04 are all conjugates of 6, we set the notation |§| =
maxi<i<d |6z|
Let us recall also the following well known properties of |§| and the height function
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H ([15], pp 10-11): if 8 and ¢ are non-zero algebraic numbers of degrees at most d
then

B+3 < |B]+1] (5)

85| < |Bl[3] (6)

6] < deg(6)H(d) (7)

H() < (208])0E0 s)
logH(B+96) < c1logH 9)
log H(BS) < cologH, (10)

where H := max(H(3), H(6),2) and c;, co are two computable numbers depending
only on d.

Let a1, ..., oy represent non-zero algebraic numbers. For each j € {1,...,n}, let
Hj be a real number > 3 such that H(a;) < Hj. Let d,Q, ' be the numbers defined
by:

d=1Q(a,...,an): Ql, (11)

n—1
Q=) log H;, = [Jlog H;. (12)
j=1

Theorem 5 (Baker[16] (see [15], p. 30)). Let B > 2 be a real number. There ewist
computable absolute constants ¢ and ¢’ such that the inequalities

0< ’1 - Ha?i < exp ( — (end)¢"Qlog ' log B) (13)
i=1
have no solution in rational integers by, ..., b, of absolute values not exceeding B.

2. Main results
2.1. Nullpotent sequence in the group Z.
We first present a detailed proof for the following result stated in [13], p.488.

Theorem 6. Let P be a finite set of primes and let (a,) be a sequence of positive
integers. Assume that a,, = b,d,, where b, is composed exclusively of primes belonging
to P and the positive integers d, satisfy dn, = O(b5,) for every ¢ > 0 as n — +o0.
Then the sequence (ay,) is nullpotent.

Proof. Set b, k integers > 1 and (e1,...,e;) € {—1,1}*. Let us show that the equality

k
i=1
has only a finite number of solutions (ap,,...,an,) such that

Zejanj #0 for every nonempty subset J of {1,... ,k}.
jeJ
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By dividing the two members of (14) by ged(b,e1an,,. .., €xan, ), We can assume
ged(b,e1an,, - - -, Ekan, ) = 1.
We shall apply Theorem 3 with:

S():P, l'():*b, Ij:E‘janj (j:L...J{J).

We therefore need to verify that the condition (d) is satisfied. Let ¢ €]0,1/k[. By
hypothesis, there exists a real number r. > 0 such that d,, <.l for all n € N.
The condition (d) is satisfied for d = ek since

k k
[Tl IT l=ils < laol [ b5,
i=0  peSo i=1
< k A ek
< leolre ( max bn,)
d
< .
< o max |il)
where ¢ = |zo|rE.
Thus Theorem 6 is obtained as a consequence of Theorem 3. (|
Example. Let uy,...,u; be integers greater than 1 and 71, ..., Ty be polynomials
with integer coefficients. Let (¢1(n)),..., (¢r(n)) be strictly increasing sequences of

positive integers. Then the sequence (Z?Zl Tj(n)u}pj(n)) is nullpotent.

Our main objective in the rest of this section is the study of nullpotency of linear
recurrence sequences of integers. To illustrate two different approaches for this study,
we propose to deal first with binary recurrence sequences.

Let

(pt2 = UGpt1 + Van, (n=0,1,...) (15)

be a binary recurrence sequence such that (ag,a1) € Z?~{(0,0)} and (u,v) € Z* x Z
such that u? + 4v # 0. If @ and § are the roots in C of the polynomial 22 — uz — v,
we know that the sequence (a,) can be expressed in the form:

an = aa™ + 8" (n=0,1,2,...) (16)
with
Bag — ay aap — ay
a=——, b=————
B -« B—a
Suppose in the following results that
a # 0. (17)

Theorem 7. Suppose |a] > |B| > 1. Let k > 1, A1,..., Ax are given non-zero
integers. There exist computable numbers Ny and ¢y depending only on the sequence
(an) and (As,..., Ag) such that, for all N, < nq < --- < ny we have

k
1> Ajan,| > |af™ exp (— cr(logng)*). (18)
j=1
whenever
ZAj&n]- # 0 for all nonempty subsets J of {1,...,k}. (19)

JjeJ
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Proof. We use an argument similar to the one used by Stewart and Shorey in their
proofs concerning lower bounds for |a,| and |a, — a,|(see [15], p. 64). We proceed
by induction on k.

For k =1, we first write

ana| = lalla™ |1+ 2(E)™ . (20)

Theorem 5 shows that the inequality
\(g)"l +1] > exp(—glognl)

is satisfied for a suitable constant ¢ > 0 and for all sufficiently large integers n1, and
we therefore obtain

|an,| > |a|"t exp(—clogny) (n1 > Nq) (21)

as desired.
Now we assume (18) is valid for k — 1, and we shall prove it for k. We distinguish
two cases.

k
Case 1. |ZAjan].\ > 2|Aran, |.

j=2
Then

k
‘ Z Aja'nj |
j=1

Y

k
1D Ajan,| — |Aray, |
j=2

1 k
2 §| ZAjanj‘
j=2

1
§|cv|"’v exp ( — cx(log nk)k_l) (by the induction hypothesis )

%

> a|™ exp (— c(logny)") (22)
for sufficiently large integer n;.
k
Case 2. |ZAjanj\ < 2|A41an,|.

j=2
By the induction hypothesis, this case gives

la|™ exp ( — cx(log nk)kfl) < cla™ (23)
which implies for sufficiently large ng
ng —n1 < ¢, (logng)* (24)

since || > 1.
Write now
k
0<|2Ajanj‘:|A+B‘a (25)
j=1
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where
k k
A::aZAja”j7 B::bZA]ﬂ"j.
j=1 j=1

Suppose for example that A # 0. We see that
B o b ni A1+A25n2—n1 +...+Ak6nk—n1

B
A a(a) Aj + Agam2=m - Apaema
Applying Theorem 5 with:

d§27 n =3, B:’I’Lh IOgH1SCO, IOgHQSCO,

and log Hz < ¢ (ny, — n1) < ¢ (logng)*,
we get
B /" k
1+ Z' > exp (— df(logng)"),
and so by (25) we may conclude

k

1> Ajan,| > |Alexp (— cx(log ny)¥). (26)
=1

Similarly, we prove by induction on £ that:
|A| > |a|™ exp ( — cx(log nk)k)
O

Theorem 8. The binary recurrence sequence (ay,) is nullpotent if and only if o and
B are not roots of unity.

Proof. Tt is easy to verify that if one of «, 8 is a root of unity, then (a,) cannot
be nullpotent. Suppose now that the numbers o and § are not roots of unity and
|B] > |a|. We distinguish the cases: |a] < 1, |a] =1 and |a| > 1.

In the first case we have

an+1 — Bayp = b(a - ﬁ)an;
this gives 5 € R\ Q (by using (17)) and
Na(an) = [|Banl| = 0. 27)

If |a| = 1, the roots of the polynomial 22 — uz — v are a and B8 = @ with modulus
—v =1.S0 u=+1 (since A = u? + 4v < 0 and u integer). This implies that o is a
root of unity, which is a contradiction.

If 1 < |a| < |B], by Theorem 7, we see that the equation (1) cannot have an infinite
number of solutions. This completes the proof of the theorem 8. ([

More generally, let us now consider a linear recurrence sequence (a,)n>0 in Z of
order £k > 1:

Antk = ClUptk—1 + C2nih—2 + -+ cpan (0> k) (28)

with constant coefficients ¢; € Z, ¢, # 0, and initial values ag, . . ., ag—1. By definition,
the order k is the smallest positive integer satisfying (28).
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It is well known (see, for example, [15], Theorem C.1, p.33) that the linear recurrence
sequence (a,) can be expressed as a polynomial exponential sum:

Lo
an = Pi(n)o}  (n>0) (29)
/=1

where the P; are polynomials with complex coefficients and the oy are the roots of
the characteristic polynomial:

Q) =tF —eyth L —epth 2 4 — ¢y
We present a proof of the following result conjectured by I.Z. Ruzsa [13], p.488.

Theorem 9. A linear recurrence sequence is nullpotent in 7Z unless there is a root
of unity among the roots of the characteristic polynomial.

The proof we present is based on the following result of Laurent. Let us recall
some basic notations and terminology related to this context.
Let K be a field of characteristic 0 and let d be a positive integer. For d—tuples

a=(a,...,aq) € (K) and m = (mq,...,my) € Z%, we use the notation: a™ :=
o't ay

Let fi1,..., fr be polynomials in d variables with coefficients in K and o, ..., o, €
(K*)“.

Consider the following equation:

T
Z fi(m)ai* =0 with m € Z? unknown. (30)
j=1

A solution m € Z% is called non-degenerate if there is no non-empty proper subset
Iof {1,...,r} such that 7., fi(m)aj™ = 0.
Define
M={meZ" :a"=---=ao;"}
with M = {0} in the particular case r = 1.
We shall use the following theorem of Laurent.

Theorem 10 (Laurent|7, 8, see [3], p. 327). If M = {0} then the equation (30) has
only finitely many non-degenerate solutions.

Proof of the Theorem 9.
Assume there exist an integer b’ # 0, an integer k' > 1, a k’-tuple of non-zero
integers (A1, ..., Ap) such that for all integers n > 1 we have

k./
b/ = Z A,’a%(n) (31)
i=1

where ¢;(n) — +oo for i = 1,...,k’, and with the property that all representations
(31) are primitive. Then, by using the expression (29) of a,, the representation (31)
becomes
K Lo
V=33 AiPi(pi(n))a] ™ (n=1,2...). (32)

i=1 ¢=1
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For every 3 C {1,...,k'} and £ C {1,..., Lo}, we consider the subset Ajg; of N
whose elements n satisfy

=33 APpi(n)af ™ (33)
1€J el
with
SN APpin)af ™ £ 0 (34)
€7 bel’

for all non-empty subset I’ of J and all non-empty subset £’ of L.

By (32), we have N = Uy £Ag ¢, thus, there exist J and £ such that the set Ag; is
infinite.

For simplicity of notations and without loss of generality, we may suppose that the
index set J is of the form {1,...,k} and the index set £ is of the form {1,...,L}.
Hence we can write

k L
=33 APi(pi(n))B7 ™ (n € Ayc) (35)
i=1 4=1
with
35T AiPi(pi(n) 87 # 0 (36)
i€J’ Lel’

for all non-empty subset ' of {1,...,k} and all non-empty subset £’ of {1,...,L}.
Let fori=0,...,.k—1land ¢{=1,...,L

oirr=(1,...,1,ap1,...,1) € CFE

where ay is the (iL + £)™ component for oy, 4¢. Let also

ag1 = (1,...,1).
We see that, for all m = (my,...,myr) € ZFL,
alf = a, " (i=0,....k—1,0=1,...,L). (37)
Put
firre(m) = A1 Po(mipae) (1=0,....,.k—1,0=1,...,L), (38)
Jrr1(m) = =b. (39)
For n € Ay ¢, consider m = m(n) = (m1(n),...,myr(n)) € N*L such that
Mir+e = Min+e(n) = wit1(n) (i=0,....,k—1,4=1,...,L). (40)
We have, for every n € Ay s,
kL k-1 L
Z fs(m)al® = ZZfz‘LM(m)a?EM
s=1 i=0 (=1

k—1 L
= ZZAi+1Pg((pi+1(n))afi+l(n)

i=0 (=1
= bl
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We thus obtain that the equation

kL+1

3" fm)ar =0 (41)
s=1

has infinitely many non-degenerate solutions m.
On the other hand, with the notation of Theorem 10, recalling that

L
M = {mGZk o' = =a)p}
= {(mezZ.a=...=af =1}
and let us verify that M = {0}.
Let m = (my,...,myp) € ZFE. Since
CX?Z+@ — Oé'ZLiL-Fl

and none of a; are roots of unity, we see that
ot =1=myre=0 (i=0,....,k—14=1,...,L);
which gives
M = {0}.

Hence, by Theorem 10, the equation (41) has only finitely many non-degenerate
solutions, which leads to a contradiction. This concludes the proof.

Suppose now that « is an ¢-th root of unity. It is known (see, for example, [5],
Theorem 1.3, p.5) that the subsequence (ag, ), of the linear recurrence sequence (ay,)

is also a linear recurrence sequence of order at most d, so there exist rational numbers
Al, ..., Ag such that

d
1= Z )\bag(ner) (TL S N); (42)
b=1

where we have used the fact that for given (cy,...,cx) € QF with ¢ # 0, the space
E =FE,,.. ) of linear recurrence sequences in Q of order at most k and satisfying
(28) is a Q-vector space of dimension k.

This shows that the sequence (a,) is not nullpotent in Z.

2.2. Ring nullpotent sequences.

A sequence of elements of an abelian ring A is ring nullpotent in A if there exists
a Hausdorff ring topology on A that makes the sequence converging to 0.
The main objective of this section is to study ring nullpotent sequences in Z.

Remarks 2.

1- Let p be prime number. The sequence (p™) is ring nullpotent in Z since [p"|, — 0
where |.|, is the p-adic norm on the ring Z.

2- The Fibonacci sequence (uy,) is not ring nullpotent in 7 since:

u?wrl — UnUnt2 = (=1)" (n=0).
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3- Let « be real number > 0. The sequence (considered in [2]) defined by

o — @22 +1 if n=23F forsome k€N,
" @] otherwise

satisfies lim,, aZ“ = a, so, if « is transcendental, the sequence (ay,) is nullpotent
in the group Z, but it is not ring nullpotent in Z because ay g1 — agk =1 for every

keN.

Notations. For every integer ¢ > 1, we denote by J,; the set of multi-indices
(J1,---,Je) such that 1 < j; < -+ < jy.

Let
J= Uzzljz.
For every J = (j1,...,j¢) € Jy, put
J* = {jl?"'?je}? (43)
4
ay = Haji (44)
i=1

for a fixed sequence (ay).
We state our principal result:

Theorem 11. A sequence of integers (an)n>1 15 ring nullpotent in Z if and only if:
for every (b,k, L) € Z* x Nx N and (e1,...,e;) € {—1,1}*, there is at most a finite

number of Ji, ..., Ji € Ui<e<rdy such that
k
ZeiaJi =b (45)
i=1
where
Z*‘fiah # 0 for all non empty subset I of {1,...,k}. (46)
i€l

In fact, under the assumptions of the Theorem 11, the group (Z,+) can be
equipped with a norm N satisfying
N(uwv) < N(u) + N(v) for all (u,v) € Z2,
such that N(a,) — 0.

Definition 3. If the integer b is written in the form (45) under the condition (46),
we say that the representation (45) is primitive.

Proof of the Theorem 11.

=) Suppose that for some b € Z*, k € N, L € N, the representation (45) is valid
with the condition (46) for infinitely many Ji,...,Jr € Ui<e<rds. By choosing
subsequences if necessary, we can write this in the form:

CLgy 1 (n) -+ Dy (n) 7 F gy () -+ - Oy () = U (47)
where v/ # 0, d € {1,...,k}, ¢; € Z*, m; € {1,...,L}, pie(n) — +oo for every
(i,0) e {1,...,d} x{1,...,L}.

Passage to the limit yields the contradiction: b = 0.
<) Let H : Z — [0,400[, be a function. Let 8 be the set of all integers s that can
be represented in the form s = Zfil gia;.
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We define the function Nj; : Z — [0,4+o00[ by: Np(u) = 1if u ¢ 8, and for every
u €S,

N
Ny (u) := inf{(log(N +1)+My) min _H(aj):u= Zfiajj,
i=1

JEU1<i<N I}
NeN,e =+1,J; € J, My := max card J;}. (48)
1<i<N

Now let
Ny := min(N};, 1). (49)

The reader can easily verify that the function Ny has the following properties:

(i) Ng(—u) = Ng(u) for all u € Z,

(ii) Ng(u+v) < Ng(u) + Ng(v) for all u,v € Z,

(i) Ng(uv) < Ng(u)+ Ng(v) for all u,v € Z,

(iv) Ng(u) <1 for all u € Z,

(v) Ng(an) <2H(ay) for all n.

let B = {b1, bo, ...} denote the countable set of integers b € Z* that can be written
in a primitive form (45). For each fixed b € B, let us first define a suitable function
Hy : Z — [0,400] such that Hy(a,) — 0.
Put Hy(0) = 0 and Hy(u) =1 for all u & {a, : n € N} U{0}. Set n an integer > 1.
We shall define Hy(ay,). We first consider the set

E, = {log(k +1)+ max card J; : b has the primitive form (45) with

ne Ui keNeg==+1J e J}. (50)
It £, =0, we set Hy(an) =0.If E, # 0, we set
Hy(ay) :=1/r, where 1y, := min E,.
The hypothesis of the Theorem 11 implies that Hy(a,) — 0 and so Ny, (an) — 0.
Furthermore, if b = EfL eiaz,, we have by letting My := max;<;<y card J},
Hy(a;) > 1/(log(N + 1) + My),

forall j € Ji(: =1,...,N), and it follows from (48) and (49) that

Np,(b) =1 for each b € B = {b1,bo,...}. (51)

Now, we consider the function N defined on Z, by

N(u) =) 27" Nu,, (|Ju]).
m=1

Hence it is clear that N is a norm on (Z,+) such that

N(uww) < N(u) + N(v) for all (u,v) € Z°.
Using the fact that the series is uniformly convergent, we see that N(a,) — 0. O
Remarks 3.

1- The proof of theorem 11 shows that the result can also be established in an
arbitrary abelian ring.
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2- Arguing exactly as in the proof of Theorem 4, we obtain according to Theorem
11 below that the sequence considered in Theorem 4 is in fact ring nullpotent in
Z.

3- Let ag = 1,ap41 = a2 + 1 (n > 1). The sequence (a,) is not ring nullpotent in Z
even if lim aZ—:l = 400.
The following result gives a criterion for a sequence to be ring nullpotent in Z.

Theorem 12. Let (ay,) be a strictly increasing sequence of positive integers such that

i log apn+1
im —————

= +4o00. Then (ay) is ring nullpotent in Z.
n  logan,

Proof. Let us argue by contradiction and suppose that there exist ¢, k, L positive
integers and Ay, ..., A nonzero integers such that ¢ has the primitive representation

k
c=> Ay, (n=12..) (52)
=1

where Jo,. () € Ui<e<rde, with the condition: J, () # Ji,;(n) When @ # j and for
every i € {1,...,k}, pi(n) = +o0 (n = 0).
For n > 1, put

Jn = 112%)2 I3 (n) (see notation (43))
Up = max{l/ eN:Jie{l,.. .,k},a;’n\ah_(n)}.

Since the positive integers v, are not exceeding L, so by considering a subsequence
of (vn), we may assume that for all n € N, v, = v.
Then we deduce from (52) that

1
c>af (1= |Ail—ray, ) (53)
i€l JIn
with I C {1,...,k} and af JijeJ%.(n) a; for all ¢ € I.

But lim,, a;, = +o00, and for all i € I

1 aj, 1
—a
ay e = ay,
which tends to zero with n because by the hypothesis we have lim,, 10&;—2“ = +o00.
This contradicts (53). O

Example. Let py = 2 < ps =3 < p3 =5 < ... be the increasing sequence of
the prime numbers. Let ¢(n) = n™ for n € N. Then the sequence (Pp(ny) 1s Ting
nullpotent in Z.

3. Conclusion

Returning to our initial motivation mentioned in the introduction of this work,
we realize that this field of study is in need of even further investigation. The
clarification brought from such investigations would greatly aid in the acquisition of
useful methods and tools devised to enrich the study of the integers. We also think
that it would be interesting to present new proofs of the results obtained in this work
by using only elementary methods of number theory.
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