SKEW-ENERGY OF t-DUPLICATION GRAPH

SHANTHAKUMARI. Y ${ }^{1}$ AND V. LOKESHA ${ }^{2}$

Abstract

Graph spectra provide much information about the structure of the graph. In this paper, we figure out the energy of a graph derived from simpler graphs by certain modifications. In the present work, we define t-duplication graph $D_{t} G$ and disclosed that the energy $\mathcal{E}\left(D_{t} G\right)=$ $2 \sqrt{t} \mathcal{E}(G)$ and $\mathcal{E}\left(D_{t} G^{\sigma}\right)=2 \sqrt{t} \mathcal{E}\left(G^{\sigma}\right)$. Keywords: Kronecker product of two graphs, Digraph, t-Duplication graph. AMS 2000 Subject Classification: 05C50.

1. Introduction

Let $G=(V ; E)$ be a finite undirected graph without loops or multi edges and $|V(G)|=m$. Let $A(G)$ be an adjacency matrix of order m. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are the eigenvalues of G with multiplicity $k_{1}, k_{2}, \ldots, k_{m}$ respectively, then the spectrum of G denoted by $\operatorname{Spec}(G)$ i.e

$$
\operatorname{Spec}(S)=\left(\begin{array}{llll}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{m} \\
k_{1} & k_{2} & \cdots & k_{m}
\end{array}\right)
$$

The notion graph energy was introduced by I. Gutman in 1978 [2], the energy of G is defined as $\mathcal{E}(G)=\sum_{i=1}^{m}\left|\lambda_{i}\right|$. In the present article, we construct t-duplication graph and find out energy for it. The notion skew energy was introduced by Adiga et al.in 2010 [1] and also we refer [4, 5, 10]. The definition of a digraph is utilized to compute the skew energy of some graphs.

Definition 1.1. Let G^{σ} be a directed graph of order m with the vertex set $V\left(G^{\sigma}\right)$ and the arc set $\Gamma\left(G^{\sigma}\right) \subset V\left(G^{\sigma}\right) \times V\left(G^{\sigma}\right)$. The skew adjacent matrix of G^{σ} is the $n \times n$ matrix $S\left(G^{\sigma}\right)=\left[s_{i j}\right]$, where $s_{i j}=1$ whenever $\left(v_{i}, v_{j}\right) \in \Gamma\left(G^{\sigma}\right), s_{i j}=-1$ whenever $\left(v_{j}, v_{i}\right) \in \Gamma\left(G^{\sigma}\right)$ and $s_{i j}=0$ otherwise.
In [6] S. K. Vaidya et al. has estimated the energy of a t-splitting graph and a t-shadow graph. In this section, we calculate the energy of a t-duplication graph and its corresponding digraph.

2. ENERGY OF A DUPLICATION GRAPH

Let $A \in M_{m \times n}$ and $B \in M_{p \times q}$. Then the tensor product (or Kronecker product) of A and B is defined as the matrix

$$
A \otimes B=\left[\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 n} B \\
a_{21} B & a_{22} B & \cdots & a_{2 n} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} B & a_{m 2} B & \cdots & a_{m n} B
\end{array}\right]
$$

Proposition 2.1 ([3]). Let $A \in M_{m \times n}$ and $B \in M_{p \times q}$ and let λ be the eigenvalue of matrix A with corresponding eigenvector x and μ be the eigenvalue of matrix B with corresponding eigenvector y. Then $\lambda \mu$ is an eigenvalue of $A \otimes B$ with corresponding eigenvector $x \otimes y$.

[^0]Definition 2.2 ([8]). Let G be a graph with $V(G)=\left\{v_{1}, \ldots, v_{m}\right\}$. Take another set $U=$ $\left\{u_{1}, \ldots, u_{m}\right\}$. Make u_{j} adjacent to all the vertices in $N\left(v_{j}\right)$ in G for each j and remove edges of G only. The resulting graph H is called the duplication graph of G denoted by $D G$.

Motivated from above definition we develop following definition.
Definition 2.3. The t-duplication graph $D_{t}(G)$ of a connected graph G with $V(G)=\left\{v_{1}, \ldots, v_{m}\right\}$ is constructed by taking t-sets say $U^{j}=\left\{u_{1}^{j}, \ldots, u_{m}^{j}\right\}, j=1,2, \ldots t$. Make each u_{l}^{j} adjacent to all the vertices in $N\left(v_{l}\right)$ in G for each l, for $j=1,2, \ldots m$ and remove edges of G only.

Theorem 2.4. Let $V(G)=\left\{v_{1}, \ldots, v_{m}\right\}$ be the vertex set of a graph G and $A(G)$ be its adjacency matrix. Then, $\mathcal{E}\left(D_{t} G\right)=2 \sqrt{t} \mathcal{E}(G)$.

Proof. The adjacency matrix of G is given by

$$
A(G)=\left[\begin{array}{ccccc}
0 & a_{12} & a_{13} & \cdots & a_{1 m} \\
a_{21} & 0 & a_{23} & \cdots & a_{2 m} \\
a_{31} & a_{32} & 0 & \cdots & a_{3 m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & 0
\end{array}\right]
$$

Let $U^{j}=\left\{u_{1}^{j}, \ldots, u_{m}^{j}\right\}, j=1,2, \ldots t$. Make each u_{l}^{j} adjacent to all the vertices in $N\left(v_{l}\right)$ in G for each 1 and remove edges of G only. . We get t-duplication graph $D_{t} G$. The adjacency matrix of duplication graph $D_{t} G$ of order $(t+1)$ is given by

$$
\begin{gathered}
A\left(D_{t} G\right)=\left[\begin{array}{cccc}
0 & A(G) & \cdots & A(G) \\
A(G) & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
A(G) & 0 & \cdots & 0
\end{array}\right] \\
A\left(D_{t} G\right)=\left[\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 0
\end{array}\right] \otimes A(G) .
\end{gathered}
$$

Let

$$
S=\left[\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 0
\end{array}\right]_{(t+1) \times(t+1)}
$$

Since the rank of the matrix is two, we have two nonzero eigenvalues for the matrix S and $(t-1)$ zero eigenvalues. By the matrix S we have,

$$
\begin{equation*}
\mu_{1}+\mu_{2}=0 \tag{1}
\end{equation*}
$$

Consider

$$
S^{2}=\left[\begin{array}{cccc}
t & 1 & \cdots & 1 \\
1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 0
\end{array}\right]_{(t+1) \times(t+1)}
$$

Here,

$$
\mu_{1}^{2}+\mu_{2}^{2}=2 t
$$

on solving equations (1) and (2) we get,

$$
\begin{equation*}
\mu_{1}=\sqrt{t} \quad \text { and } \quad \mu_{2}=-\sqrt{t} \tag{3}
\end{equation*}
$$

Thus,

$$
\operatorname{Spec}(S)=\left(\begin{array}{ccc}
-\sqrt{t} & \sqrt{t} & 0 \\
1 & 1 & t-1
\end{array}\right)
$$

If $\lambda_{j}, j=1,2, \ldots, m$ are the eigenvalues of G , then by proposition 2.1

$$
\begin{gathered}
\operatorname{Spec}\left(A\left(D_{t} G\right)=\left(\begin{array}{ccc}
-\lambda_{j} \sqrt{t} & \lambda_{j} \sqrt{t} & 0 \\
1 & 1 & t-1
\end{array}\right)\right. \\
\mathcal{E}(D G)=\sum_{j=1}^{m}\left|(\pm) \lambda_{j} \sqrt{t}\right|=2 \sqrt{t} \sum_{j=1}^{m}\left|\lambda_{j}\right|=2 \sqrt{t} \mathcal{E}(G) .
\end{gathered}
$$

Corollary 2.5. Let $V\left(G^{\sigma}\right)=\left\{v_{1}, \ldots, v_{m}\right\}$ be the vertex set of a graph G^{σ} with arc set $\Gamma\left(G^{\sigma}\right)$ and $A\left(G^{\sigma}\right)$ be its adjacency matrix. Then, $\mathcal{E}\left(D_{t} G^{\sigma}\right)=2 \sqrt{t} \mathcal{E}\left(G^{\sigma}\right)$.
Proof. The proof is similar to above theorem 2.4.

The following illustrations gives better understanding of above theorems.

Illustration 1

Consider the cycle C_{4} and its duplication graph.

Figure 1. The duplication graph of C_{4}
Adjacency matrix of $D_{2} C_{4}$ is given by

$$
A\left(D_{2} C_{4}\right)=\left[\begin{array}{ccc}
0 & C_{4} & C_{4} \\
C_{4} & 0 & 0 \\
C_{4} & 0 & 0
\end{array}\right]
$$

$$
\begin{gathered}
A\left(D_{2} C_{4}\right)=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] \otimes C_{4} \\
\operatorname{Spec}\left(D_{2} C_{4}\right)=\left(\begin{array}{ccc}
-2 \sqrt{2} & 0 & 2 \sqrt{2} \\
2 & 8 & 2
\end{array}\right) \text { and } \operatorname{Spec}\left(C_{4}\right)=\left(\begin{array}{rrr}
-2 & 0 & 2 \\
1 & 2 & 1
\end{array}\right)
\end{gathered}
$$

Therefore,

$$
\mathcal{E}\left(D_{2} C_{4}\right)=8 \sqrt{2} \text { and } \mathcal{E}\left(C_{4}\right)=4
$$

Hence,

$$
\mathcal{E}\left(D C_{4}\right)=2 \sqrt{t} \mathcal{E}\left(C_{4}\right) \quad \text { where } \quad t=2 .
$$

Illustration 2

Consider the digraph C_{4}^{σ} and its duplication graph $D_{2} C_{4}^{\sigma}$

Figure 2. Duplication graph of digraph C_{4}^{σ}
Adjacency matrix of $D_{2} C_{4}^{\sigma}$ is given by

$$
\begin{gathered}
A\left(D_{2} C_{4}^{\sigma}\right)=\left[\begin{array}{ccc}
0 & C_{4}^{\sigma} & C_{4}^{\sigma} \\
C_{4}^{\sigma} & 0 & 0 \\
C_{4}^{\sigma} & 0 & 0
\end{array}\right] \\
A\left(D_{2} C_{4}^{\sigma}\right)=\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] \otimes C_{4}^{\sigma} \\
\operatorname{Spec}\left(D_{2} C_{4}^{\sigma}\right)=\left(\begin{array}{ccc}
-2 \sqrt{2} i & 0 & 2 \sqrt{2} i \\
2 & 8 & 2
\end{array}\right) \text { and } \operatorname{Spec}\left(C_{4}^{\sigma}\right)=\left(\begin{array}{ccc}
-2 i & 0 & 2 i \\
1 & 2 & 1
\end{array}\right)
\end{gathered}
$$

Therefore,

$$
\mathcal{E}\left(D_{2} C_{4}^{\sigma}\right)=8 \sqrt{2} \text { and } \mathcal{E}\left(C_{4}^{\sigma}\right)=4
$$

Hence,

$$
\mathcal{E}\left(D C_{4}^{\sigma}\right)=2 \sqrt{t} \mathcal{E}\left(C_{4}^{\sigma}\right) \quad \text { where } \quad t=2
$$

3. ON EQUIENERGETIC GRAPHS

The two non-isomorphic graphs G and H with same energy are equienergetic.
Definition 3.1. [8] The t-shadow graph $S_{t}(G)$ of a connected graph G is constructed by taking t copies of G, say $G_{1}, G_{2}, \ldots, G_{t}$, then join each vertex u in G_{i} to the neighbors of the corresponding vertex v in $G_{j}, 1 \leq i, j \leq t$.
Proposition 3.2. [8] $\mathcal{E}\left(S_{t}(G)\right)=t \mathcal{E}(G)$.

Theorem 3.3. The t-duplication graph and t-shadow graph are equienergetic if and only if $t=2$.
Proof. Let $D_{t}(G)$ t-duplication graph and $S_{t}(G)$ be t-shadow graph and according to theorem 2.4 and proposition 3.2, $\mathcal{E}\left(D_{t} G\right)=2 \sqrt{t} \mathcal{E}(G)$ and $\mathcal{E}\left(S_{t}(G)\right)=t \mathcal{E}(G)$. So clearly, $t=2$.

4. Conclusion

We initiated investigation on energy of a derived graph obtained via some graph operations. The t-duplication graph $D_{t} G$ is considered and it has been disclosed that $\mathcal{E}\left(D_{t} G\right)=2 \mathcal{E}(G)$ and $\mathcal{E}\left(D_{t} G^{\sigma}\right)=2 \mathcal{E}\left(G^{\sigma}\right)$ and also we characterized the equienergetic of these graphs.

References

[1] C. Adiga, R. Balakrishnan, Wasin So, The skew energy of a digraph, Linear Algebra Appl. 432 (2010), 1825-1835.
[2] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz 103 (1978), 1-22.
[3] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, (1991).
[4] V. Lokesha, Shanthakumari. Y and P. Siva Kota Reddy, Skew-Zagreb energy of Directed graphs, Proceeding of the Jangjeon Mathematical Society, 23(4) (2020), 557-568.
[5] V. Lokesha, Shanthakumari. Y and Zeba Yasmeen. K, Energy and Skew energy of a modified Graph, Creat. Math. Inform, 30 (2021), 41-48.
[6] Samir K. Vaidya, Kalpesh M. Popat, Some New Results on Energy of Graphs, MATCH Commun. Math. Comput. Chem. 77 (2017), 589-594.
[7] Samir K. Vaidya, Kalpesh M. Popat, Energy of m-splitting m-shadow graphs, Far East Journal of Mathematical Sciences 102 (2017), 1571-1578.
[8] E. Sampathkumar, On duplicate graphs, Journal of the Indian Math. Soc. 37 (1973), 285-293.
[9] B. Shader, Wasin So, Skew spectra of oriented graphs, The Electron. J. Combin. 16 (2009), N32.
[10] Shanthakumari. Y and V. Lokesha, Skew-Harmonic and Skew-Sum Connectivity Energy of Some Digraphs, New Trends in Applied Analysis and Computational Mathematics. 1356 (2021) 287-300.
(Shanthakumari.Y and V. Lokesha) Department of Studies in Mathematics, Vidayanagara Sri krishnadevaraya University, Ballari, Karnataka, India.

Email address: yskphd2019@gmail.com and v.lokesha@gmail.com
(Shanthakumari.Y and V. Lokesha) Department of Studies in Mathematics, Vijayanagara Sri krishnadevaraya University, Ballari, Karnataka, India.

Email address: yskphd2019@gmail.com, v.lokesha@gmail.com

[^0]: ${ }^{2}$ Corresponding author: v.lokesha@gmail.com, Department of studies in Mathematics, Vijayanagara Sri Krishnadevaraya University, Ballari-India.
 Submission date: 31-07-2021

