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Abstract

The current study is to carry out investigation of Magneto hydrodynamic Casson nanofluids

with the combination of “(q
′′′
) non-uniform heat source/sink” and “viscous dissipation”. The

equations probes couple of non-linear (ODE) with the help of correspondence transformation,

4th order RK Shooting technique is executed for numerical results for velocity and tempera-

ture periphery. The outcomes parameters on velocity and temperature like “(γ)Casson fluid”,

“(M)magnetic”, porosity, “Eckert number(EC)”, “heat source/ sink”, “Prandtl number’, f
′′
(η)

and Nusselt number on the flow field has been investigated numerically represented graphically.
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1 Introduction

Periphery non-Newtonian viscous fluids have impressed many researchers due to its large applications

in manufacturing polymers, crystal growing, extrusion flexible sheets, jelly & honey industries etc.

Crane[1] initiated boundary layer flow through stretching/shrinking surface. Later investigated

originating problem has pulled great interest for many researchers like Cortell[2], Bhattacharyya

et.al[3], Mukhopadhyay[4], Rashidi and Pour[5] and Pal[6] etc. “Magnetohydrodynamic (MHD)”

periphery “flow due to an exponentially stretching sheet with radiation effect has been examined by
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Ishak[7]”. “The characteristics of steady two-dimensional laminar boundary layer flow of a viscous

and incompressible fluid past a moving wedge with suction or injection are theoretically investigated

by Falkner and Skan[8]”. “Heat and mass transfer in a two-dimensional radial flow of a viscous

fluid through a saturated porous wedge-shaped region with confining walls is studied by Goyal

and Kassoy[9]”. Furthermore many researchers [10-22] investigated boundary layer with different

parameters & non-Newtonian fluids along with variety of conditions by using numerical or analytical

methods. Keeping the importance and several industrial applications in mind, the current study is

carried out with the combination of viscous dissipation and heat source/sink for the MHD Casson

nanofluid above permeable stretching sheet.

2 Formulation problem

Considering Casson fluid near stagnancy on heated stretching plane y = 0, ”[3]ref the flow being

limited to y > 0, where “y coordinate nor-mal surface. Equal and opposite forces are applied along

the x-axis (measured along the surface) so that the surface is stretched keeping the origin fixed”.

The rheology modified equation of in compressible flow of Casson nanofluid defined by (Ref.[4]),

τij =

⎧⎨
⎩
2(μB + PY√

2π
)eij , π > πc

2(μB + PY√
2π

)eij , π < πc

”π = eijeij , and eij (i, j)
th component of deformation rate, n is the product of deformation rate with

itself, πc critical value of product based on the non-Newtonian model, μB plastic dynamic viscosity

of the non-Newtonian fluid, π product component of deformation rate with itself, πc critical value

and Py is the yield stress of the fluid”. The governed periphery equations are

∂u

∂x
+

∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂v

∂y
= vnf (1 +

1

γ
)(
∂2u

∂y2
)− (

σB2
0

ρnf
+

vnf
k0

)u (2)

u
∂T

∂x
+

∂T

∂y
= αnf

∂2T

∂y2
+

v

ρCp
(1 +

1

γ
)(
∂v

∂y
)2 +

q
′′

ρCp
(3)

vnf Kinematic viscosity, ρf density base fluid, ρnf represents Casson fluid density, γ = μB

√
2πc

Py

means non-Newtonian (Casson) parameter, σ electrical conductivity of the fluid, Cp represents spe-

cific heat, αnf means thermal diffusivity of the fluid, T temperature and k0 represents permeability

of the porous medium. q
′′′

from equation (3) given as

q��� =
Kuw(x)

xυ
[A∗(Tw − T∞)f � + (T − T∞)B∗] (4)

Where A∗ and B∗ represents heat source/sink respectively. Note that their arises two cases

1. A∗ > 0 , B∗ > 0 Correlate internal heat production and
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2. A∗ < 0 , B∗ < 0 Correlate internal heat inclusion. Induced magnetic field is negligibly very

small should be assumed. Boundary conditions

u = ux(x) = bx, v = 0

T = Tw = T∞ +A
(x
l

)2

at y = 0 (5)

u → 0, T → T∞ as y → ∞

Where uw = bx, b > 0 means stretching sheet velocity and A is constant. We launch suitable

similarity variables

ψ = x
√

bνff(η), θ(η) =
T − T∞
Tw − T∞

, η =

√
b

νf
y (6)

Where ψ represents stream function defined by

u =
∂ψ

∂y
and v = −∂ψ

∂x

Substituting (6) in mathematical statement (2) and (3), results are obtained,

(1 +
1

γ
)f

���
+ φ1(ff

�� − f
�2 − M

φ2
f

�
)− kf

�
= 0 (7)

θ
��
+ (

kf
knf

φ3)(Prfθ
�
+ Ec(1 +

1

γ
)f

��
+ (A∗f � +B∗θ)) = 0 (8)

And the conditions in (5) becomes

f = 0, f � = 1, θ�� = 1 at η → 0

f � = 0, θ → 0 as η → ∞ (9)

Here M =
σB2

0

bρf
represents magnetic parameter”, γ denotes Casson parameter, k =

νf

k0b
represents

porosity parameter, φ denotes nanoparticle volume fraction(
Where φ1 =

νf

νnf
, φ2 =

ρnf

ρf
and φ3 =

αfknf

αnfkf

)
, Pr =

νf

αf
is the Pr and tl number and Ec =

U2
w

Cp[Tw−T∞] denotes (Eckert number).

Cf Skin friction coefficient & N(ux) Nusselt number given by

Cf =
τw

ρfu2
w

and Nux =
xqw

k(Tw − T∞)
(10)

Where shear stress and heat flux from the surface are given by

τw =

(
μB +

Py√
2πc

)(
∂u

∂y

)

y=0

and qw = −k

(
∂T

∂y

)

y=0

(11)
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Substituting the transformations in (6), (10) and (11), we obtain

Re
1
2
xCf =

(
1 +

1

γ

)
f ��(0), Re

− 1
2

x Nux = −θ�(0) (12)

Where Rex =
u2
w

v Reynolds number.

3 Numerical interpretation

Related ODE (7) & (8) are highly non-linear with the appropriate boundary conditions (9) are

calculated mathematically by 4th order RK shooting technique.

df0
dη

= f1,
df1
dη

= f2,

(
1 +

1

γ

)
df2
dη

= φ1

(
f0f2 − f2

1 − M

φ2
f1

)
− kf1 (13)

dθ0
dη

= θ1,
dθ1
dη

= − kf
knf

ϕ3

[
(Pr θ1f0)− Ec

(
1 +

1

γ

)
f2
2 − (A∗f1 +B∗θ0)

]
(14)

Boundary conditions are,

f0(0) = 0, f1(0) = 1, θ0(0) = 1 (15)

f1(∞) = 0, θ0(∞) = 0 (16)

Here ”f0(η) = f(η) and θ0(η) = θ(η)” ref[12]”. This requires primary ideals f2(0) and θ1(0) and

hence suitable estimated values are chosen and afterwards integration is performed. Δη = 0.001

where Δ(η) is step size chosen with an error of tolerance 10( − 6). To solve system of equations

using Runge-Kutta fourth order shooting technique. In order to get the desired values one should

need 3 more missing initial conditions. On the other hand standards of f(η) & θ(η) are known

when η → ∞, these end settings are used to obtain an unknown initial conditions at η = 0 by using

suitable shooting technique” ref[7].

4 Analysis of the Result

Casson nanofluid flow with viscous dissipation, heat source/sink & magneto hydrodynamics is ex-

plored in the current research. The numerical calculation has agreed to perform the f
′
(η)(velocity

profiles), θ(η), f
′′
(η) and θ

′
(η) for distinct parameters illustrates stream of individuality. The de-

termination of this segment is to scrutinize the physical moment of different root as velocity and

temperature profiles which are illustrated in Figs.[1-1].

Figs. [1-3] revels the results of parameter γ, M and k on f
′
(η). Fig. [1] explains fluid velocity

falls for advanced ideals of Casson parameter γ due to the converse relation of γ differ stress shows

increasing values of γ decrease the yield stress, that is, enhances in the Casson parameter reduces

fluids flexibility. Fig.[2] shows the sound effects of m on fluid velocity, as m enhances fluid velocity

drops. Because reason behind this is resistive type of force called a “Lorentz force”. In Fig.[3] revels
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that as k (porous parameter) differs that the fluid velocity sharply in the vicinity of stretching pane.

Fig. [4 - 12] revels that the effect of γ, M , k, Pr, Ec, φ3, A
∗ and B∗” on θ

′
(η) of Casson nanofluid

over the horizontal stretching sheet. Fig.[4] depicts the outcomes of γ on θ
′
(η) .Observed that

nanofluid enhances with the increasing values of γ. It is evident from Fig.[5] θ
′
(η) lifts for variety of

M , magnifies, due to existence of magnetic field enhances in the flowing temperature at periphery.

Fig.[6], influences k on the temperature profile, and porosity parameter increases as temperature of

the fluid increases is noticed Fig. [7] For different values of nanoparticles φ improves as the fluid

temperature also improves. Fig.[8] illustrates differing of Pr on temperature distribution of the fluid,

as Pr enhances the temperature profile decreases.

From fig (9) demonstrates , viscous dissipation enhances as Ec raises the fluid temperature. Figs.

[10 & 11] illustrates, As A∗ & B∗ raises there will enhances in temperature distribution at periphery.

Commonly, positive values acts as heat power house and negative values acts as heat exhaustion of

non-uniform heat source at periphery. Fig.[12] displays that for increase in nanoparticle’s volume

fraction φ, skin friction coefficient grow up where as local Nusselt number in figure[13 & 14] also

shows the same effect for an increase in the Pr and Ec.

5 Concluding remarks

Current study explored velocity and heat transferred predictable two dimensional flows based on

Casson nanofluid above a porous stretching shell with outcomes of irregular source/sink. Differing

non bulk governing parameters results velocity distribution is discussed diagrammatically. The

following are the effects observed.

• As velocity profile decreases eventually Casson parameter increases.

• Increment in skin friction – f
′′
(0) enlarges φ (nanoparticle volume fraction) and [k] porosity

parameter k.

• Positive values behave like heat generator & negative values behave like heat absorption in

non –uniform heat source/sink at boundary region.

• Ec which cause temperature rise at boundary region
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