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Abstract

The reciprocal edge transmission of a edge e = uv in a connected graph G is defined
as the sum of reciprocal of distances between the edge e and all other edges of a graph
G. In this paper we introduce and study new topological indices based on the reciprocal
edge transmission, such as reciprocal edge transmission sum-connectivity index, recip-
rocal edge transmission atom bond connectivity index, reciprocal edge transmission
arithmetic-geometric index, reciprocal edge transmission geometric-arithmetic index,
reciprocal edge transmission augmented Zagreb index and reciprocal edge transmission
inverse sum indeg index. Further obtain bounds for reciprocal edge transmission based
indices of any graph and also give explicite expression for some class of graphs.

Keywords: Degree of a vertex, degree of an edge, distance between edges, recip-
rocal edge transmission, reciprocal edge transmission indices.
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1 Introduction

A representation of an object giving information only about the number of elements com-
posing it and their connectivity is named as topological representation of an object. A
topological representation of a molecule is called molecular graph. A molecular graph is a
collection of points representing the atoms in the molecule and set of lines representing the
covalent bonds. These points are named vertices and the lines are named edges in graph
theory language. The advantage of topological indices is in that they may be used directly as
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simple numerical descriptors in a comparison with physical, chemical or biological parameters
of molecules in Quantitative Structure Property Relationships (QSPR) and in Quantitative
Structure Activity Relationships (QSAR).

The name line graph comes from a paper by Harary and Norman [14] although both
Whitney [15] and Krausz [16] used the construction before this. Other terms used for the
line graph include the covering graph, the derivative, the edge-to-vertex dual, the conjugate,
the representative graph, as well as the edge graph, the interchange graph, the adjoint graph,
and the derived graph.

The edge versions of augmented Zagreb index, hyper-Zagreb index, Harmonic index and
sum-connectivity index are studied in [17], where degree of edge e = uv in L(G) is taken
into account in the place of degree of vertex in G, that is dL(G)(e) = dG(u) + dG(v)− 2.

In the recent years, mathematical techniques for the computation of the edge-Wiener
index have been considered by a number of researchers, see [18, 19, 20, 21, 22, 23, 24, 25, 28]
and a survey [27].

The distance between the edges e, f ∈ E(G) is equal to the distance between the vertices
e, f in the line graph of G, which is denoted by dG(e, f) and defined as [13],

dG(e, f) = dL(G)(e, f). (1)

Distance between edges dG(e, f) satisfies the definition of metric, therefore the concept
of distance between edges in a graph is well defined.

In this paper we consider simple, connected graph G having n vertices and m edges. The
vertex set and edge set of graph G denoted by V (G) and E(G) respectively. An edge joins
vertices u and v are termed as uv. The number of edges connects to vertex v is known as
degree of a vertex v and is denoted by dG(v). Further the degree of an edge e = uv is equal
to dG(u) + dG(v)− 2.

The reciprocal edge transmission of a edge e = uv in a graph G is defined in [2] by

rsG(e) =
∑

f∈E(G)

1

dG(e, f)
.

The first reciprocal edge transmission index RET1(G) of a graph G is defined in [2] by

RET1(G) =
∑

e∼f∈E(G)

[σG(e) + σG(f)] . (2)

The second reciprocal edge transmission index RET2(G) of a graph G is defined in [2] by

RET2(G) =
∑

e∼f∈E(G)

σG(e)σG(f). (3)
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In the literature several degree based topological indices have been introduced and studied
[6]. More studied topological indices based on the degree of vertices are Zagreb indices. [7, 9].
The first and second Zagreb indices of a graph G are defined in [8] by

M1(G) =
∑

uv∈E(G)

[d(u) + d(v)] and M2(G) =
∑

uv∈E(G)

d(u)d(v).

The sum-connectivity index of a graph G, denoted by SC(G), is defined in [12] by

SC(G) =
∑

uv∈E(G)

1√
d(u) + d(v)

.

Estrada et al. [4] proposed a topological index called atom-bond connectivity index. It is
defined as

ABC(G) =
∑

uv∈E(G)

√
d(u) + d(v)− 2

d(u)d(v)
.

The augmented Zagreb index of a graph G, proposed by Furtula et al. [5], is defined as

AZ(G) =
∑

uv∈E(G)

[
d(u)d(v)

d(u) + d(v)− 2

]3
.

The arithmetic-geometric index of a graph G, proposed by Shigehalli and Kanabur [10],
is defined as

AG(G) =
∑

uv∈E(G)

d(u) + d(v)

2
√
d(u)d(v)

.

The geometric-arithmetic index was invented by Vukicević and Furtula [11] and it is
defined as

GA(G) =
∑

uv∈E(G)

2
√
d(u)d(v)

d(u) + d(v)
.

The inverse sum indeg index of a graph G is defined in [28] by

ISI(G) =
∑

uv∈E(G)

(
d(u)d(v)

d(u) + d(v)

)
.

Motivatd by the work on edge distance, reciprocal edge transmission and reciprocal edge
transmission indices and we define the following indices.

The reciprocal edge transmission sum connectivity index of a graph G is defined by

RETSC(G) =
∑

e∼f∈E(G)

1√
rsG(e) + rsG(f)

.
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The reciprocal edge transmission geometric airthmatic index of a graph G is defined by

RETGA(G) =
∑

e∼f∈E(G)

2
√
rsG(e)rsG(f)

rsG(e) + rsG(f)
.

The reciprocal edge transmission airthmatic geometric index of a graph G is defined by

RETAG(G) =
∑

e∼f∈E(G)

rsG(e) + rsG(f)

2
√
rsG(e)rsG(f)

.

The reciprocal edge transmission atom bond connectivity index of a graph G is defined by

RETABC(G) =
∑

e∼f∈E(G)

√
rsG(e) + rsG(f)− 2

rsG(e)rsG(f)
.

The reciprocal edge transmission augumented Zagreb index of a graph G is defined by

RETAZ(G) =
∑

e∼f∈E(G)

(
rsG(e)rsG(f)

rsG(e) + rsG(f)− 2

)3

.

The reciprocal edge transmission inverse sum indeg index of a graph G is defined by

RETISIS(G) =
∑

e∼f∈E(G)

(
rsG(e)rsG(f)

rsG(e) + rsG(f)

)
.

The following results are used in the remaining paper:

Lemma 1.1. [3] Let Pk be the set of all distinct paths of length k ≥ 1 in a graph G. Then

|P1| = m and |P2| = 1

2
[Z1(G)− 2m] .

Note that uvw ∈ P2 means uvw is a path of length 2 with v as its middle vertex.

Theorem 1.2. [1] For a connected graph G, diam(L(G)) ≤ 2 if and only if none of the three
graphs F1, F2 and F3 of Fig. 1.1 are an induced subgraph of G.
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Figure 1.1 : Forbidden induced subgraphs.
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2 Bounds for reciprocal edge transmission based topo-

logical indices of graphs

Theorem 2.1. Let G be a connected graph with n vertices, m edges and let diam(G) = D.
Then

∑
uvw∈P2

1√
(m− 1) + 1

2
(d(u) + 2d(v) + d(w)− 4)

≤ RETSC(G)

≤
∑

uvw∈P2

1√
2
D
(m− 1) +

(
1− 1

D

)
(d(u+ 2d(v) + d(w)− 4)

.

Equality on both sides holds if and only if none of the three graphs F1, F2 and F3 of Fig. 1.1
are an induced subgraph of G.

Proof. Lower bound: For any edge e of G, there are dG(e) number of edges which are at
distance 1 from e and remaining m− 1− dG(e) edges are at distance 2. Therefore

rsG(e) ≤ 1

2
(m− 1 + dG(e)).

We have

RETSC(G) =
∑

e∼f∈E(G)

1√
rsG(e) + rsG(f)

≥
∑

e∼f∈E(G)

1√
1
2
(m− 1 + dG(e)) +

1
2
(m− 1 + dG(f))

≥
∑

e∼f∈E(G)

1√
(m− 1) + 1

2
(dG(e) + dG(f))

≥
∑

uvw∈P2

1√
(m− 1) + 1

2
(d(u) + 2d(v) + d(w)− 4)

.

Upper bound:For any edge e of G, there are dG(e) number of edges which are at distance 1
from e and remaining m− 1− dG(e) edges are at distance D. Therefore

rsG(e) ≥ dG(e) +
1

D
(m− 1− dG(e))

≥ 1

D
(m− 1) +

(
1− 1

D

)
dG(e).
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RETSC(G) =
∑

e∼f∈E(G)

1√
rsG(e) + rsG(f)

≤
∑

e∼f∈E(G)

1√
1
D
(m− 1) +

(
1− 1

D

)
dG(e) +

1
D
(m− 1) +

(
1− 1

D

)
dG(f)

≤
∑

e∼f∈E(G)

1√
2
D
(m− 1) +

(
1− 1

D

)
(dG(e) + dG(f))

≤
∑

uvw∈P2

1√
2
D
(m− 1) +

(
1− 1

D

)
(d(u+ 2d(v) + d(w)− 4)

.

Theorem 2.2. Let G be a connected graph with n vertices, m edges and let diam(G) = D.
Then

∑
uvw∈P2

2

√√√√√√

1
4
[(m− 1)2 + (m− 1)(d(u) + 2d(v) + d(w)− 4)

+(d(u)d(v) + d(v)d(w) + d(w)d(u))

−2(d(u) + 2d(v) + d(w)) + 4 + (d(v))2]

(m− 1) + 1
2
(d(u) + 2d(v) + d(w)− 4)

≤

RETGA(G) ≤
∑

uvw∈P2

2

√√√√√√√

(
1
D
(m− 1)2

)
+ 1

D
(m− 1)

(
1− 1

D

)
(d(u) + 2d(v) + d(w)− 4)

+
(
1− 1

D

)2
(d(u)d(v) + d(v)d(w) + d(w)d(u))

−2(d(u) + 2d(v) + d(w)) + 4 + d(v)2

2
D
(m− 1) +

(
1− 1

D
(d(u) + 2d(v) + d(w)− 4)

) .

Equality on both sides holds if and only if none of the three graphs F1, F2 and F3 of Fig. 1.1
are an induced subgraph of G.

Proof. Lower bound: For any edge e of G, there are dG(e) edges which are at distance 1
from e and remaining m− 1− dG(e) are at distance 2. Therefore

rsG(e) ≤ 1

2
(m− 1 + dG(e)).
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We have

RETGA(G) =
∑

e∼f∈E(G)

rsG(e) + rsG(f)

2
√
rsG(e)rsG(f)

≥
∑

e∼f∈E(G)

2
√

1
4
(m− 1 + dG(e))(m− 1 + dG(f))

1
2
(m− 1 + dG(e) +m− 1 + dG(f))

≥
∑

e∼f∈E(G)

2
√

1
4
[(m− 1)2 + (m− 1)(dG(e) + dG(f)) + dG(e)dG(f)]

(m− 1) + 1
2
(dG(e) + dG(f))

≥
∑

uvw∈P2

2

√√√√
1
4
[(m− 1)2 + (m− 1)(d(u) + 2d(v) + d(w)− 4)

+(d(u) + d(v)− 2)(d(v) + d(w)− 2)]

(m− 1) + 1
2
(d(u) + d(v)− 2 + d(v) + d(w)− 2)

≥
∑

uvw∈P2

2

√√√√√√

1
4
[(m− 1)2 + (m− 1)(d(u) + 2d(v) + d(w)− 4)

+(d(u)d(v) + d(v)d(w) + d(w)d(u))

−2(d(u) + 2d(v) + d(w)) + 4 + (d(v))2]

(m− 1) + 1
2
(d(u) + 2d(v) + d(w)− 4)

.

Upper bound:For any edge e of G, there are dG(e) edges which are at distance 1 from e and
remaining m− 1− dG(e) are at distance D. Therefore

rsG(e) ≥ dG(e) +
1

D
(m− 1− dG(e))

rsG(e) ≥ 1

D
(m− 1) +

(
1− 1

D

)
dG(e).
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We have

RETGA(G) =
∑

e∼f∈E(G)

rsG(e) + rsG(f)

2
√
rsG(e)rsG(f)

≤
∑

e∼f∈E(G)

2
√(

1
D
(m− 1) +

(
1− 1

D

)
dG(e)

) (
1
D
(m− 1) +

(
1− 1

D

)
dG(f)

)
1
D
(m− 1) +

(
1− 1

D

)
dG(e) +

1
D
(m− 1) +

(
1− 1

D

)
dG(f)

≤
∑

e∼f∈E(G)

2

√√√√
(

1
D
(m− 1)

)2
+ 1

D
(m− 1)

(
1− 1

D

)
(dG(e) + dG(f))

+
(
1− 1

D

)2
dG(e)dG(f)

2
D
(m− 1) +

(
1− 1

D

)
(dG(e) + dG(f))

≤
∑

e∼f∈E(G)

2

√√√√
(

1
D
(m− 1)

)2
+ 1

D
(m− 1)

(
1− 1

D

)
(d(u) + 2d(v) + d(w)− 4)

+
(
1− 1

D

)2
(d(u) + d(v)− 2)(d(v) + d(w)− 2)

2
D
(m− 1) +

(
1− 1

D

)
(d(u) + 2d(v) + d(w)− 4)

≤
∑

uvw∈P2

2

√√√√√√√

(
1
D
(m− 1)2

)
+ 1

D
(m− 1)

(
1− 1

D

)
(d(u) + 2d(v) + d(w)− 4)

+
(
1− 1

D

)2
(d(u)d(v) + d(v)d(w) + d(w)d(u))

−2(d(u) + 2d(v) + d(w)) + 4 + (d(v))2

2
D
(m− 1) +

(
1− 1

D
(d(u) + 2d(v) + d(w)− 4)

)

Theorem 2.3. Let G be a connected graph with n vertices, m edges and let diam(G) = D.
Then

∑
uvw∈P2

(m− 1) + 1
2
(d(u) + 2d(v) + d(w)− 4)

2

√
1
4
[(m− 1)2 + (m− 1)(d(u) + 2d(v) + d(w)− 4)

+(d(u)d(v) + d(v)d(w) + d(w)d(u))− 2(d(u) + 2d(v) + d(w)) + 4 + (d(v))2]

≤

RETAG(G) ≤
∑

uvw∈P2

2
D
(m− 1) +

(
1− 1

D
(d(u) + 2d(v) + d(w)− 4)

)

2

√√√√√√√

(
1
D
(m− 1)2

)
+ 1

D
(m− 1)

(
1− 1

D

)
(d(u) + 2d(v) + d(w)− 4)

+
(
1− 1

D

)2
(d(u)d(v) + d(v)d(w) + d(w)d(u))

−2(d(u) + 2d(v) + d(w)) + 4 + (d(v))2

.

Equality on both sides holds if and only if none of the three graphs F1, F2 and F3 of Fig. 1.1
are an induced subgraph of G.
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Theorem 2.4. Let G be a connected graph with n vertices, m edges and let diam(G) = D.
Then

�
uvw∈P2

������
(m− 1) + 1

2
(d(u) + 2d(v) + d(w))− 4

1
4
[(m− 1)2 + (m− 1)(d(u) + 2d(v) + d(w)− 4)

+(d(u)d(v) + d(v)d(w) + d(w)d(u))− 2(d(u) + 2d(v) + d(w)) + 4 + (d(v))2]

≤

RETABC(G) ≤
�

uvw∈P2

���������

2
D
(m− 1) +

�
1− 1

D

�
(d(u) + 2d(v) + d(w)− 4)− 2�

1
D
(m− 1)2

�
+ 1

D
(m− 1)

�
1− 1

D

�
(d(u) + 2d(v) + d(w)− 4)

+
�
1− 1

D

�2
(d(u)d(v) + d(v)d(w) + d(w)d(u))

−2(d(u) + 2d(v) + d(w)) + 4 + (d(v))2

.

Equality on both sides holds if and only if none of the three graphs F1, F2 and F3 of Fig. 1.1
are an induced subgraph of G.

Theorem 2.5. Let G be a connected graph with n vertices, m edges and let diam(G) = D.
Then

�
uvw∈P2

⎛
⎜⎜⎜⎜⎝

1
4
[(m− 1)2 + (m− 1)(d(u) + 2d(v) + d(w)− 4)

+(d(u)d(v) + d(v)d(w) + d(w)d(u))− 2(d(u) + 2d(v) + d(w)) + 4 + (d(v))2]

(m− 1) + 1
2
(d(u) + 2d(v) + d(w))− 4

⎞
⎟⎟⎟⎟⎠

3

≤

RETAZ(G) ≤
�

uvw∈P2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
1
D
(m− 1)2

�
+ 1

D
(m− 1)

�
1− 1

D

�
(d(u) + 2d(v) + d(w)− 4)

+
�
1− 1

D

�2
(d(u)d(v) + d(v)d(w) + d(w)d(u))

−2(d(u) + 2d(v) + d(w)) + 4 + (d(v))2

2
D
(m− 1) +

�
1− 1

D

�
(d(u) + 2d(v) + d(w)− 4)− 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3

.

Equality on both sides holds if and only if none of the three graphs F1, F2 and F3 of Fig. 1.1
are an induced subgraph of G.

Theorem 2.6. Let G be a connected graph with n vertices, m edges and let diam(G) = D.

9
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Then

�
uvw∈P2

⎛
⎜⎜⎜⎜⎝

1
4
[(m− 1)2 + (m− 1)(d(u) + 2d(v) + d(w)− 4)

+(d(u)d(v) + d(v)d(w) + d(w)d(u))− 2(d(u) + 2d(v) + d(w)) + 4 + (d(v))2]

(m− 1) + 1
2
(d(u) + 2d(v) + d(w)− 4)

⎞
⎟⎟⎟⎟⎠

≤

RETISI(G) ≤
�

uvw∈P2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
1
D
(m− 1)2

�
+ 1

D
(m− 1)

�
1− 1

D

�
(d(u) + 2d(v) + d(w)− 4)

+
�
1− 1

D

�2
(d(u)d(v) + d(v)d(w) + d(w)d(u))

−2(d(u) + 2d(v) + d(w)) + 4 + (d(v))2

2
D
(m− 1) +

�
1− 1

D

�
(d(u) + 2d(v) + d(w)− 4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Equality on both sides holds if and only if none of the three graphs F1, F2 and F3 of Fig. 1.1
are an induced subgraph of G.

3 Reciprocal edge trannsmission based topological in-

dices of some graphs

Proposition 3.1. For a complete graph Kn on n vertices. Then

RETSC(Kn) =
1

2
n(n− 1)(n− 2)

1�
1
2
(n2 + 3n− 10)

.

Proof. From Theorem 2.1, we have

RETSC(Kn) =
�

uvw∈P2

1�
(m− 1) + 1

2
(d(u) + 2d(v) + d(w)− 4)

=
1

2
(M1 − 2m)

1�
n(n−1)

2
− 1 + 1

2
(4(n− 1)− 4)

=
1

2

�
n(n− 1)2 − 2

n(n− 1)

2

�
1�

n(n−1)−2
2

+ 2(n− 2)

=
1

2
n(n− 1)(n− 2)

1�
1
2
(n2 + 3n− 10)

.

Analogous to Proposition 3.1 by using Theorem 2.2 to 2.6 we get the following results.
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Theorem 3.2. For a complete graph Kn on n vertices. Then

(i) RETGA(Kn) = 2n(n− 1)(n− 2)

�����
1
4

��
n(n−1)−2

2

�2

+ 2(n− 2)(n(n− 1)− 2)

+4(n2 − 4n+ 4)]

n2 + 3n− 10
.

(ii) RETAG(Kn) =
1

8
n(n− 1)(n− 2)

n2 + 3n− 10�����
1
4

��
n(n−1)−2

2

�2

+ 2(n− 2)(n(n− 1)− 2)

+4(n2 − 4n+ 4)] .

(iii) RETABC(Kn) =
1

2
n(n− 1)(n− 2)

���� 2(n2 + 3n− 14)�
n(n−1)−2

2

�2

+ 2n3 − 2n2 − 16n+ 24
.

(iv) RETAZ(Kn) =
1

2
n(n− 1)(n− 2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

��
n(n−1)−2

2

�2

+ 2(n− 2)(n(n− 1)− 2)

+4(n2 − 4n+ 4)]

n2 + 3n− 14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

3

.

(v) RETISIS(Kn) =
1

2
n(n− 1)(n− 2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

��
n(n−1)−2

2

�2

+ 2(n− 2)(n(n− 1)− 2)

+4(n2 − 4n+ 4)]

n2 + 3n− 14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proposition 3.3. For a complete bipartite graph Kp,q,

RETSC(Kp,q) =
1

2
pq(p+ q − 2)

1√
pq + p+ q − 3

.

Proof. The vertex set V (Kp,q) can be partitioned into two independent sets V1 and V2 such
that the vector u ∈ V1 and v ∈ V2 for every edge e = uv ∈ E(Kp,q). Therefore d(u) = q and
d(v) = p. And the graph Kp,q has n = p+ q vertices and m = pq edges.

M1(Kp,q) = pq(p+ q).

11
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Also diam(G) ≤ 2. Therefore by the equality part of Theorem 2.1 we get,

RETKp,q =
�

uvw∈P2

1�
(m− 1) + 1

2
(d(u) + 2d(v) + d(w)− 4)

=
1

2
(M1 − 2m)

1�
(m− 1) + 1

2
(d(u) + 2d(v) + d(w)− 4)

=
1

2
(pq(p+ q)− 2pq)

1�
(pq − 1) + 1

2
(2p+ 2q − 4)

=
1

2
pq(p+ q − 2)

1√
pq + p+ q − 3

.

Analogous to Proposition 3.3 by using Theorem 2.2 to 2.6 we get the following results

Theorem 3.4. For a complete bipartite graph Kp,q,

(i) RETGA(Kp,q) = pq(p+ q − 2)

����
1
4
[(pq − 1)2 + 2(pq − 1)(p+ q − 2) + 3pq

−4(p+ q) + 4 + q2]

(pq + p+ q − 3)
.

(ii) RETAG(Kp,q) = pq(p+ q − 2)
pq + p+ q − 3����

1
4
[(pq − 1)2 + 2(pq − 1)(p+ q − 2)

+3pq + 4 + q2 − 4(p+ q)]

.

(iii) RETABC(Kp,q) =
1

2
pq(p+ q − 2)

������
pq + p+ q − 5

1
4
[(pq − 1)2 + 2(pq − 1)(p+ q − 2)

+3pq − 4(p+ q) + 4 + q2]

.

(iv) RETAZ(Kp,q) =
1

2
pq(p+ q − 2)

⎛
⎜⎜⎜⎜⎜⎝

1
4
[(pq − 1)2 + 2(pq − 1)(p+ q − 2)

+3pq − 4(p+ q) + 4 + q2]

pq + p+ q − 5

⎞
⎟⎟⎟⎟⎟⎠

3

12
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(v) RETISI(Kp,q) =
1

2
pq(p+ q − 2)

⎛
⎜⎜⎜⎜⎜⎝

1
4
[(pq − 1)2 + 2(pq − 1)(p+ q − 2)

+3pq − 4(p+ q) + 4 + q2]

pq + p+ q − 7

⎞
⎟⎟⎟⎟⎟⎠

.

Proposition 3.5. For a wheel Wn+1, n ≥ 3. Then

RETSC(Wn+1) =
�

e∼f∈E1

1√
3n

+
�

e∼f∈E2

1√
2n+ 3

.

Proof. The wheel Wn+1 has n + 1 vertices and 2n edges. If diam(Wn+1) ≤ 2 then dWn+1(e)
number of edges are at distance 1 from e and remaining 2m − 1 − dWn+1(e) edges are at
distance 2. Therefore for each edge e in Wn+1.

rsWn+1(e) = dWn+1(e) +
1

2
(2n− 1− dWn+1(e))

=
1

2
(2n− 1 + dWn+1(e)).

By the definition of reciprocal edge transmission sum connectivity index of graph we have

RETSC(Wn+1) =
�

e∼f∈E(Wn+1)

1�
rsWn+1(e) + rsWn+1(f)

=
�

e∼f∈E(Wn+1)

1�
(2n− 1) + 1

2
(dWn+1(e) + dWn+1(f))

The edge set E(Wn+1) can be partitioned into two sets E1 and E2 such that

E1 = {uv / d(u) = n and d(v) = 3} ,
E2 = {uv / d(u) = 3 and d(v) = 3}

dWn+1(e) = d(u) + d(v)− 2 for each edge e = uv ∈ E1

= n+ 3− 2 = n+ 1 for each edge e = uv ∈ E1,

dWn+1(e) = d(u) + d(v)− 2 for each edge e = uv ∈ E2

= 3 + 3− 2 = 4 for each edge e = uv ∈ E2.
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RETSC(Wn+1) =
∑

e∼f∈E1

1√
(2n− 1) + 1

2
(dWn+1(e) + dWn+1(f))

+
∑

e∼f∈E2

1√
(2n− 1) + 1

2
(dWn+1(e) + dWn+1(f))

=
∑

e∼f∈E1

1√
(2n− 1) + 1

2
(2(n+ 1))

+
∑

e∼f∈E2

1√
(2n− 1) + 1

2
(8)

=
∑

e∼f∈E1

1√
(2n− 1) + (n+ 1)

+
∑

e∼f∈E2

1√
(2n− 1) + 4

=
∑

e∼f∈E1

1√
3n

+
∑

e∼f∈E2

1√
2n+ 3

.

Analogous to Theorem 3.5 we have the following results.

Theorem 3.6. For a wheel Wn+1, n ≥ 3. Then

(i) RETGA(Wn+1) =
∑

e∼f∈E1

2
√

1
4
[(2n− 1)2 + 2(2n− 1)(n+ 1) + (n+ 1)2]

3n

+
∑

e∼f∈E2

2
√

1
4
[4n2 + 12n+ 9]

2n+ 3
.

(ii) RETAG(Wn+1) =
∑

e∼f∈E1

3n

2
√

1
4
[(2n− 1)2 + 2(2n− 1)(n+ 1) + (n+ 1)2]

+
∑

e∼f∈E2

2n+ 3

2
√

1
4
[4n2 + 12n+ 9]

.

(iii) RETABC(Wn+1) =
∑

e∼f∈E1

√
3n− 2

1
4
[(2n− 1)2 + 2(2n− 1)(n+ 1) + (n+ 1)2]

+
∑

e∼f∈E2

√
2n+ 1

1
4
[4n2 + 12n+ 9]

.

(iv) RETAZ(Wn+1) =
∑

e∼f∈E1

( 1
4
[(2n− 1)2 + 2(2n− 1)(n+ 1) + (n+ 1)2]

3n− 2

)3

+
∑

e∼f∈E2

( 1
4
[4n2 + 12n+ 9]

2n+ 1

)3

.
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(v) RETISIS(Wn+1) =
∑

e∼f∈E1

( 1
4
[(2n− 1)2 + 2(2n− 1)(n+ 1) + (n+ 1)2]

3n

)

+
∑

e∼f∈E2

( 1
4
[4n2 + 12n+ 9]

2n+ 3

)
.

Proposition 3.7. For friendship graph Fn, n ≥ 2. Then

RETSC(Fn) =
∑

e∼f∈E1

1√
5n− 1

+
∑

e∼f∈E2

1√
3n+ 1

.

Proof. The friendship graph Fn has 2n + 1 vertices and 3n edges. If diam(Fn) ≤ 2, then
dFn(e) number of edges are at distance 1 from e and remaining 3n− 1− dFn(e) edges are at
distance 2. Therefore for each edge e in Fn.

rsFn(e) = dFn(e) +
1

2
(3n− 1− dFn(e))

=
1

2
(3n− 1 + dFn(e)).

By the definition of reciprocal edge transmission sum connectivity index of graph we have

RETSC(Fn) =
∑

e∼f∈E(Fn)

1√
rsFn(e) + rsFn(f))

=
∑

e∼f∈E(Fn)

1√
(3n− 1) + 1

2
(dFn(e) + dFn(f)

The edge set E(Fn) can be partitioned into two sets E1 and E2, such that

E1 = {uv / d(u) = 2n and d(v) = 2} ,
E2 = {uv / d(u) = 2 and d(v) = 2} .

dFn(e) = d(u) + d(v)− 2 for each edge e = uv ∈ E1

= 2n+ 2− 2 = 2n for each edge e = uv ∈ E1,

dFn(e) = d(u) + d(v)− 2 for each edge e = uv ∈ E2

= 2 + 2− 2 = 2 for each edge e = uv ∈ E2.

RETSC(Fn) =
∑

e∼f∈E1

1√
(3n− 1) + 1

2
(2(2n))

+
∑

e∼f∈E2

1√
(3n− 1) + 1

2
4

=
∑

e∼f∈E1

1√
5n− 1

+
∑

e∼f∈E2

1√
3n+ 1

.
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Analogous to Theorem 3.7 we have the following results.

Theorem 3.8. For friendship graph Fn, n ≥ 2. Then

(i) RETGA(Fn) =
∑

e∼f∈E1

2
√

1
4
[25n2 − 10n+ 1]

5n− 1
+

∑
e∼f∈E2

2
√

1
4
[9n2 + 6n+ 1]

3n+ 1
.

(ii) RETAG(Fn) =
∑

e∼f∈E1

5n− 1

2
√

1
4
[25n2 − 10n+ 1]

+
∑

e∼f∈E2

3n+ 1

2
√

1
4
[9n2 + 6n+ 1]

.

(iii) RETABC(Fn) =
∑

e∼f∈E1

√
5n− 3

1
4
[25n2 − 10n+ 1]

+
∑

e∼f∈E2

√
3n− 1

1
4
[9n2 + 6n+ 1]

.

(iv) RETAZ(Fn) =
∑

e∼f∈E1

( 1
4
[25n2 − 10n+ 1]

5n− 3

)3

+
∑

e∼f∈E2

( 1
4
[9n2 + 6n+ 1]

3n− 1

)3

.

(v) RETISI(Fn) =
∑

e∼f∈E1

( 1
4
[25n2 − 10n+ 1]

5n− 1

)
+

∑
e∼f∈E2

( 1
4
[9n2 + 6n+ 1]

3n+ 1

)
.
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