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A ONE-DIMENSIONAL PSEUDOREPRESENTATION

OF AN AMENABLE GROUP

WITH A DEFECT LESS THAN 1/4

IS AN ORDINARY CHARACTER OF THE GROUP

A. I. Shtern

Abstract. We prove that a one-dimensional pseudorepresentation of an

amenable group with a defect less than 1/4 is an ordinary character of the

group.

§ 1. Introduction

For the definitions, notation, and generalities concerning pseudocharac-
ters, quasicharacters, pseudorepresentations, and quasirepresentations, see
[1]–[3]. In particular, recall that a mapping π of a given group G into the
family of invertible operators in the algebra L(E) of bounded linear opera-
tors on a Banach space E is said to be a quasirepresentation of G on E if
π(eG) = 1E , where eG stands for the identity element of G and 1E for the
identity operator on E, and if

�π(g1g2) − π(g1)π(g2)�L(E) ≤ ε, g1, g2 ∈ G,

for some ε, which is usually assumed to be sufficiently small, and the greatest
lower bound of |π(g1g2) − π(g1)π(g2)| for a one-dimensional quasirepresen-
tation π is referred to as the defect of π; a one-dimensional quasirepresen-
tation π of G is said to be a one-dimensional pseudorepresentation of G if
π(gn) = π(g)n for any n ∈ Z and g ∈ G.
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We prove here that a one-dimensional pseudorepresentation of an ame-
nable group with a defect less than 1/4 is an ordinary character of the group.

§ 2. Preliminaries

We need a well-known lemma. For the convenience of the reader, we
present it with a proof.

Lemma 1. Let T be a bounded linear operator on a dual Banach space E
such that

�Tn − 1E� ≤ q < 1, n ∈ N,

with respect to the operator norm. Then T = 1E.

Proof. Let us apply an invariant mean I on N extended to the bounded linear
operators on E as in [5]. Let S = In(Tn). Then �S−IE� ≤ q < 1, and hence
S is invertible. By the invariance of I, we have

TS = TI(Tn) = I(Tn+1) = S,

which implies that T = 1E .

This immediately implies the following corollary.

Corollary 1. Let ϕ and ψ be unitary characters of the group Z of integers.
If

(1) |ϕ(n) − ψ(n)| ≤ q < 1

for all n ∈ Z, then ϕ = ψ.

Proof. It follows from (1) that |ϕ◦ψ−1(n)−1| ≤ q < 1 for all n ∈ N. Applying
an invariant mean I on N, we see that |S − 1| < q for S = In(ϕ ◦ψ−1(n)). It
follows from the invariance of I that Sϕ ◦ ψ−1(1) = S, where S �= 0. Thus,
ϕ ◦ ψ−1(1) = 1, ϕ(1) = ψ(1), and ϕ = ψ, as was to be proved.

§ 3. Main result

Recall a known result (Lemma 3 of [4]).

Lemma 2. Let G be an amenable group (for example, a commutative group),
let f be a one-dimensional bounded ε-quasirepresentation of G (ε > 0) satis-
fying the condition f(e) = 1. If ε < 1/3, then there is an ordinary unitary
character ψ of G for which

|f(g) − ψ(g)| < ε/(1 − 3ε) for any g ∈ G.
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If ε <
√

3/(2 + 3
√

3) (e.g., if ε < 0.24), then there is an ordinary unitary
character ψ of G such that |f(g) − ψ(g)| <

√
3/2 for any g ∈ G.

This result gives an immediate possibility to prove the desired fact.

Theorem. Every one-dimensional pseudorepresentation of an amenable
group with a defect less than 1/4 is an ordinary character of the group.

Proof. Certainly, if ε < 1/4, then there is an ordinary unitary character ψ
of G for which |f(g) − ψ(g)| < ε/(1 − 3ε) < 1. The restriction of f to every
cyclic subgroup of G is an ordinary character of the subgroup. Therefore,
for any cyclic subgroup of G, the restrictions of f and ψ to this subgroup
coincide by Corollary 1. Hence, f(g) = ψ(g) for every g ∈ G, as was to be
proved.

Corollary 2. Let G be a group, and let π and ρ be two one-dimensional
bounded (and thus unitary) pseudorepresentations of G. If |π(g) − ψ(g)| ≤
r < 1/4 for all g ∈ G, then π = ρ.

Proof. Applying Corollary 1 to the restrictions of π and ψ to every cyclic
subgroup of G, we see that these restrictions coincide, and thus π(g) = ψ(g)
for all g ∈ G.

§ 4. Comments

Thus, the “topology of uniform convergence on the group” is discrete for
one-dimensional pseudorepresentations.
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