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SOME IDENTITIES OF TYPE 2 DEGENERATE POLY-GENOCCHI
NUMBERS AND POLYNOMIALS
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ABSTRACT. The purpose of this paper is to introduce a new version of the de-
generate poly-Genocchi polynomials and numbers called the type 2 degener-
ate poly-Genocchi polynomials and numbers by the modification of degenerate
polyexponential function in the generating function. To investigate the properties
of the proposed polynomials and numbers, we derive several explicit expressions
and identities induced from new generating function. Also, we present some re-
lations between the type 2 degenerate poly-Genocchi polynomials and numbers
and some other well-known special polynomials and numbers. In addition, we
consider the higher-order type 2 degenerate Genocchi polynomials and show
some interesting identities involving those polynomials and the type 2 higher-
order Changhee polynomials.
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1. INTRODUCTION

Polynomials provides a fundamental tool in mathematics and its applications,
especially in approximation theory. There are many different kinds of expressions
for an approximation of a function in terms of difference polynomials. Even these
expressions are analytically consistent, but when calculating numerically, there
may be a big difference in terms of stability, efficiency and accuracy due to the
difference in expression method. For example, the barycentric Lagrange inter-
polation polynomial is a variant of the Lagrange interpolation polynomial, but it is
faster and more stable than the original one[1]. Therefore, it is important to develop
various types of polynomials and find their properties for approximation theory as
well as many different applications.

As a new branch of study for special polynomials and numbers, Carlitz in [3]
introduced the degenerate types of special polynomials and numbers by modifi-
cation of generating functions using new parameter λ , and found interesting re-
lationships between Bernoulli polynomials and Eulerian polynomials and some
important numbers in combinatorics. It turns out that these degenerate versions of
special polynomials and numbers provide many useful properties and identities for
the new type of functions as well as the original polynomials since the degenerate
polynomials are approaching to the original ones as λ goes to 0. Especially, much
attention has been paid to develop various degenerate types of Genocchi polyno-
mials and numbers focusing on the relations and applications among them (see
[7, 8, 23, 24, 26]). Genocchi numbers have applications in many different branches
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of mathematics such as elementary number theory, complex analytic number the-
ory, p-adic analytic number theory, differential topology, theory of modular forms,
quantum physics, and the combinatorial relations (see [2, 4, 5, 28, 30, 31] and
references therein).

The main goal of this paper is to introduce a new type of degenerate version
of Genocchi polynomials called type 2 degenerate poly-Genocchi polynomials and
provide several identities and relations related to the well-known polynomials such
as the degenerate Euler polynomials, the type 2 Changhee polynomials. To do
this, we recall several preliminary definitions and properties. The polyexponential
function firstly introduced by Hardy is defined by

(1) e(x,a|s) =
∞

∑
n=0

xn

(n+a)sn!
, (Re(a)> 0), (see [9,15]).

Recently, the modified polyexponential function was introduced by Kim-Kim
and is given by

(2) Eik(x) =
∞

∑
n=1

xn

(n−1)!nk , (k ∈ Z), (see [11,12,13,15]).

From (1) and (2), we note that

xe(x,1|k) = Eik(x).

The degenerate exponential functions are defined as

(3) ex
λ (t) = (1+λ t)

x
λ , eλ (t) = e1

λ (t) = (1+λ t)
1
λ , (see [6,7,8,11−14]).

Here we note that

(4) ex
λ (t) =

∞

∑
n=0

(x)n,λ
tn

n!
, (see [12,13,14]),

where (x)0,λ = 1, (x)n,λ = x(x−λ )(x−2λ ) · · ·(x− (n−1)λ ),(n ≥ 1).

Let logλ (t) be the compositional inverse function of eλ (t) such that

eλ (logλ (t)) = logλ (eλ (t)) = t.

The Genocchi polynomials Gn(x) are defined by

2t
et +1

ext =
∞

∑
n=0

Gn(x)
tn

n!
, (see [2,4,5,6,23,25,26,28,29]).

When x = 0,Gn = Gn(0) are called the Genocchi numbers.
The degenerate Genocchi polynomial gn,λ is defined as

(5)
2t

eλ (t)+1
ex

λ (t) =
∞

∑
n=0

gn,λ (x)
tn

n!
,

which is introduced by Lim at [24]. The degenerate Genocchi numbers correpond-
ing to the degenerate Genocchi polynomials are defined as gn,λ = gn,λ (0) when
x = 0.

Carlitz [3] introduced the degenerate Euler polynomials given by

(6)
2

eλ (t)+1
ex

λ (t) =
∞

∑
n=0

En,λ (x)
tn

n!
.
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In particular, the numbers En,λ = En,λ (0) when x = 0 are called the degenerate
Euler numbers.

Dolgy-Jang in [4] introduced poly-Genocchi polynomials arising from polyex-
ponential function as

(7)
2Eik(log(1+ t))

et +1
ext =

∞

∑
n=0

G(k)
n (x)

tn

n!
,

and defined the poly-Genocchi numbers as G(k)
n = G(k)

n (0).
Note that Gn(x) = G(1)

n (x), (n ≥ 0), are the Genocchi polynomials.
In [20], Kim-Kim introduced the degenerate Fubini polynomials given by

(8)
1

1− x(eλ (t)−1)
=

∞

∑
n=0

Fn,λ (x)
tn

n!
.

In [10], the degenerate Bernoulli polynomials of the second kind are defined by
the generating function to be

(9)
t

logλ (1+ t)
(1+ t)x =

∞

∑
n=0

bn,λ (x)
tn

n!
.

Note that limλ→0 bn,λ (x) = bn(x),(n ≥ 0).
For n ≥ 0, the Stirling numbers of the first kind are defined by

(10) (x)n =
n

∑
l=0

S1(n, l)xl, (see [4−26]).

where (x)0 = 1,(x)n = x(x−1) · · ·(x−n+1) (n ≥ 1).
From (10), it is easy to see that

(11)
1
k!
(log(1+ t))k =

∞

∑
n=k

S1(n,k)
tn

n!
.

In the inverse expression to (10), for n ≥ 0, the Stirling numbers of the second
kind are defined by

(12) xn =
∞

∑
l=0

S2(n, l)(x)l, (see [4−26]).

From (12), it is easy to see that

(13)
1
k!
(et −1)k =

∞

∑
n=k

S2(n,k)
tn

n!
.

The degenerate Stirling numbers of the first kind are defined by

(14) (x)n =
n

∑
l=0

S1,λ (n, l)(x)l,λ , (n ≥ 0), (see [10]).

Note here that limλ→0 S1,λ (n,k) = S1(n,k), where S1(n,k) are the Stirling num-
bers of the first kind.

From (14), we easily get
(15)
1
k!

(
logλ (1+t)

)k

=
∞

∑
n=k

S1,λ (n,k)
tn

n!
, (k≥ 0), (see[7,8,11−15,17,18,20,21,22]).
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As an inversion formula of (14), the degenerate Stirling numbers of the second
kind are given by

(16) (x)n,λ =
n

∑
l=0

S2,λ (n, l)(x)l, (n ≥ 0), (see [10]).

Observe here that limλ→0 S2,λ (n, l) = S2(n, l), where S2(n, l) are the Stirling
numbers of the second kind.

From (16), we note that
(17)
1
k!

(
eλ (t)−1

)k

=
∞

∑
n=k

S2,λ (n,k)
tn

n!
, (k≥ 0), (see[7,8,11−15,17,18,20,21,22]).

The type 2 degenerate Genocchi polynomials Gn,λ (x) and the type 2 degenerate
Euler polynomials En,λ (x) are defined

(18)
2t

eλ (t)+ eλ (−t)
ex

λ (t) =
∞

∑
n=0

Gn,λ (x)
tn

n!
,

and

(19)
2

eλ (t)+ eλ (−t)
ex

λ (t) =
∞

∑
n=0

En,λ (x)
tn

n!
,

respectively.
When x = 0, Gn,λ = Gn,λ (0) and En,λ = En,λ (0) are called the type 2 degenerate

Genocchi numbers and the type 2 degenerate Euler numbers, respectively.

To study the type 2 degenerate poly-Genocchi numbers and polynomials, we
consider the modified degenerate polyexponential function which is given by

(20) Eik,λ (x) =
∞

∑
n=1

xn(1)n,λ

(n−1)!nk , (k ∈ Z), (see [7,11,12,13]).

Note that Ei1,λ (x) = ∑∞
n=1(1)n,λ

xn

n! = eλ (x)−1.

The rest of the paper is organized as follows. In section 2, we introduce the
type 2 degenerate poly-Genocchi numbers and polynomials arising from the modi-
fied degenerate polyexponential function and investigate some properties for those
numbers and polynomials. Also, we derive some explicit identities and relations
between the type 2 degenerate poly-Genocchi numbers and other special numbers
in section 2. Section 3, we define the degenerate poly-Fubini polynomials and
study their properties. Section 4 provides several figures of the type 2 degener-
ate poly-Genocchi polynomials and their scattering of roots. Lastly, we provide a
summary in section 5.

2. TYPE 2 DEGENERATE POLY-GENOCCHI NUMBERS AND POLYNOMIALS

In this section, we consider the type 2 degenerate poly-Genocchi polynomials
given by

(21)
2Eik,λ (logλ (1+ t))

eλ (t)+ e−1
λ (t)

ex
λ (t) =

∞

∑
n=0

G(k)
n,λ (x)

tn

n!
.



Some identities of type  degenerate poly-Genocchi numbers and polynomials 531

SOME IDENTITIES OF TYPE 2 DEGENERATE POLY-GENOCCHI NUMBERS AND POLYNOMIALS5

When x = 0, G(k)
n,λ = G(k)

n,λ (0) are called the type 2 degenerate poly-Genocchi num-
bers.

From (21),we get

∞

∑
n=0

G(k)
n,λ (x)

tn

n!
=

2Eik,λ (logλ (1+ t))

eλ (t)+ e−1
λ (t)

ex
λ (t)

=

( ∞

∑
l=0

G(k)
l,λ

tl

l!

)( ∞

∑
m=0

(x)m,λ
tm

m!

)

=
∞

∑
n=0

( n

∑
l=0

(
n
l

)
(x)n−l,λ G(k)

l,λ

)
tn

n!
.

(22)

Therefore, by comparing the coefficients on the both sides of (22), we obtain the
following theorem.

Theorem 1. For n ≥ 0, we have

G(k)
n,λ (x) =

n

∑
l=0

(
n
l

)
(x)n−l,λ G(k)

l,λ .

By (15) and (20), we note that

Eik,λ (logλ (1+ t)) =
∞

∑
n=1

(1)n,λ (logλ (1+ t))n

(n−1)!nk

=
∞

∑
n=1

(1)n,λ

nk−1
1
n!
(logλ (1+ t))n

=
∞

∑
n=1

(1)n,λ

nk−1

∞

∑
m=n

S1,λ (m,n)
tm

m!

=
∞

∑
m=1

( m

∑
n=1

(1)n,λ

nk−1 S1,λ (m,n)
)

tm

m!
.

(23)

Thus, by (23), we have

2Eik,λ (logλ (1+ t))

eλ (t)+ e−1
λ (t)

ex
λ (t) =

2t
eλ (t)+ e−1

λ (t)
ex

λ (t)
1
t

Eik,λ (logλ (1+ t))

=
∞

∑
l=0

Gl,λ (x)
tl

l!

∞

∑
m=0

1
m+1

m+1

∑
j=1

(1) j,λ

jk−1 S1,λ (m+1, j)
tm

m!

=
∞

∑
n=0

( n

∑
m=0

m+1

∑
j=1

(n
m

)
m+1

(1) j,λ

jk−1 S1,λ (m+1, j)Gn−m,λ (x)
)

tn

n!
.

(24)

Therefore, by (21) and (24), we obtain the following theorem.

Theorem 2. For n ≥ 0, we have

(25) G(k)
n,λ (x) =

n

∑
m=0

m+1

∑
j=1

(n
m

)
m+1

(1) j,λ

jk−1 S1,λ (m+1, j)Gn−m,λ (x).
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From (21), we note that
2Eik,λ (logλ (1+ t))

eλ (t)+ e−1
λ (t)

ex
λ (t) =

2
eλ (t)+ e−1

λ (t)
ex

λ (t)Eik,λ (logλ (1+ t))

=
∞

∑
l=0

El,λ (x)
tl

l!

∞

∑
m=1

m

∑
j=1

(1) j,λ

jk−1 S1,λ (m, j)
tm

m!

=
∞

∑
n=1

( n

∑
m=1

m

∑
j=1

(
n
m

)
(1) j,λ

jk−1 S1,λ (m, j)En−m,λ (x)
)

tn

n!
.

(26)

Therefore, by (21) and (26), we obtain the following theorem.

Theorem 3. For n ∈ N, we have

G(k)
n,λ (x) =

n

∑
m=1

m

∑
j=1

(
n
m

)
(1) j,λ

jk−1 S1,λ (m, j)En−m,λ (x).

From (20), we note that
d
dx

Eik,λ (x) =
d
dx

∞

∑
n=1

(1)n,λ xn

(n−1)!nk =
1
x

∞

∑
n=1

(1)n,λ xn

(n−1)!nk−1

=
1
x

Eik−1,λ (x).

(27)

Thus, by (27), we get

Eik,λ (x) =
∫ x

0

1
t

Eik−1,λ (t)dt

=
∫ x

0

1
t

∫ t

0
· · · 1

t

∫ t

0︸ ︷︷ ︸
(k−2)−times

1
t

Ei1,λ (t)dtdt · · ·dt

=
∫ x

0

1
t

∫ t

0
· · · 1

t

∫ t

0︸ ︷︷ ︸
(k−2)−times

eλ (t)−1
t

dtdt · · ·dt,

(28)

where k is a positive integer with k ≥ 2.

From (21) and (28), we note that

∞

∑
n=0

G(k)
n,λ

tn

n!
=

2
eλ (t)+ e−1

λ (t)
Eik,λ

(
logλ (1+ t)

)

=
2

eλ (t)+ e−1
λ (t)

∫ t

0

(1+ t)λ−1

logλ (1+ t)

∫ t

0
· · · (1+ t)λ−1

logλ (1+ t)

∫ t

0︸ ︷︷ ︸
(k−2)−times

t(1+ t)λ−1

logλ (1+ t)
dt · · ·dt

=
∞

∑
n=0

( n

∑
l=0

(
n
l

)
Gn−l,λ ∑

l1+···+lk−1=l

(
l

l1, · · · , lk−1

)
bl1,λ (λ −1)

l1 +1
bl2,λ (λ −1)
l1 + l2 +1

· · · blk−1,λ (λ −1)
l1 + · · ·+ lk−1 +1

)
tn

n!
.

(29)

where k is a positive integer with k ≥ 2.

Therefore, by comparing the coefficients on both sides of (29), we obtain the
following theorem.
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Theorem 4. For n ≥ 1, we have

G(k)
n,λ =

n

∑
l=0

(
n
l

)
Gn−l,λ ∑

l1+···+lk−1=l

(
l

l1, · · · , lk−1

)
bl1,λ (λ −1)

l1 +1
bl2,λ (λ −1)
l1 + l2 +1

· · · blk−1,λ (λ −1)
l1 + · · ·+ lk−1 +1

.

For k = 2 in (29), we get
∞

∑
n=0

G(2)
n,λ

tn

n!
=

2
eλ (t)+ e−1

λ (t)

∫ t

0

t
logλ (1+ t)

(1+ t)λ−1dt

=
2t

eλ (t)+ e−1
λ (t)

∞

∑
m=0

bm,λ (λ −1)
m+1

tm

m!

=
∞

∑
l=0

Gl,λ
tl

l!

∞

∑
m=0

bm,λ (λ −1)
m+1

tm

m!

=
∞

∑
n=0

( n

∑
l=0

(
n
l

)
Gl,λ

bn−l,λ (λ −1)
n− l +1

)
tn

n!
.

(30)

Therefore, by comparing the coefficients on both sides of (30), we obtain the
following theorem.

Theorem 5. For n ≥ 1, we have

G(2)
n,λ =

n

∑
l=0

(
n
l

)
Gl,λ

bn−l,λ (λ −1)
n− l +1

.

From (21),we note that

2Eik,λ (logλ (1+ t)) = (eλ (t)+ e−1
λ (t))

∞

∑
l=0

G(k)
l,λ

tl

l!

=

( ∞

∑
m=0

(1)m,λ
tm

m!
+

∞

∑
m=0

(1)m,λ (−1)m tm

m!

) ∞

∑
l=0

G(k)
l,λ

tl

l!

=
∞

∑
n=0

( n

∑
m=0

(1)n−m,λ G(k)
l,λ +(1)n−m,λ (−1)mG(k)

l,λ

)
tn

n!

=
∞

∑
n=1

(
G(k)

l,λ (1)+(−1)mG(k)
l,λ (1)

)
tn

n!
.

(31)

On the other hand, from (24), we have

2Eik,λ (logλ (1+ t)) = 2
∞

∑
n=1

(1)n,λ (logλ (1+ t))n

(n−1)!nk

= 2
∞

∑
n=1

(1)n,λ

nk−1
1
n!
(logλ (1+ t))n

= 2
∞

∑
n=1

(1)n,λ

nk−1

∞

∑
m=n

S1,λ (m,n)
tm

m!

=
∞

∑
m=1

( m

∑
n=1

2(1)n,λ

nk−1 S1,λ (m,n)
)

tm

m!
.

(32)

Therefore, by (31) and (32), we obtain the following theorem.
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Theorem 6. For n ∈ N, we have

G(k)
l,λ (1)+(−1)mG(k)

l,λ (1) =
m

∑
n=1

2(1)n,λ

nk−1 S1,λ (m,n).

It is known that the type 2 Changhee numbers are defined by

(33)
2

(1+ t)+(1+ t)−1 =
∞

∑
n=0

Ĉhn
tn

n!
, (see [7,24,26]).

By replacing t by logλ (1+ t) in (18), we get

2
(1+ t)+(1+ t)−1 logλ (1+ t) =

∞

∑
m=1

Gm,λ
1

m!

(
logλ (1+ t)

)m

Thus, we have

2
(1+ t)+(1+ t)−1 =

∞

∑
m=0

Gm+1,λ

m+1
1

m!

(
logλ (1+ t)

)m

=
∞

∑
m=0

Gm+1,λ

m+1

∞

∑
n=m

S1,λ (n,m)
tn

n!

=
∞

∑
n=0

( n

∑
m=0

Gm+1,λ

m+1
S1,λ (n,m)

)
tn

n!
.

(34)

Therefore, by (33) and (34), we obtain the following theorem.

Theorem 7. For n ≥ 0, we have

Ĉhn =
n

∑
m=0

Gm+1,λ

m+1
S1,λ (n,m).

By replacing t by eλ (t)−1 in (33), we get

2
eλ (t)+ e−1

λ (t)
=

∞

∑
m=0

Ĉhm
1

m!

(
eλ (t)−1

)m

=
∞

∑
m=0

Ĉhm

∞

∑
n=m

S2,λ (n,m)
tn

n!

=
∞

∑
n=0

( n

∑
m=0

ĈhmS2,λ (n,m)

)
tn

n!

Thus, we have
∞

∑
n=1

Gn,λ
tn

n!
=

2t
eλ (t)+ e−1

λ (t)

=
∞

∑
n=0

( n

∑
m=0

ĈhmS2,λ (n,m)

)
tn+1

n!

=
∞

∑
n=1

(
n

n−1

∑
m=0

ĈhmS2,λ (n−1,m)

)
tn

n!
.

(35)

Therefore, by comparing the coefficients on both sides of (35), we obtain the
following theorem.



Some identities of type  degenerate poly-Genocchi numbers and polynomials 535

SOME IDENTITIES OF TYPE 2 DEGENERATE POLY-GENOCCHI NUMBERS AND POLYNOMIALS9

Theorem 8. For n ≥ 1, we have

Gn,λ

n
=

n−1

∑
m=0

ĈhmS2,λ (n−1,m).

For r ∈ N, we consider the type 2 degenerate Genocchi polynomials of order r
which are given by

(36)
(

2t
eλ (t)+ e−1

λ (t)

)r

ex
λ (t) =

∞

∑
n=0

Ĝ(r)
n,λ (x)

tn

n!
.

Note here that Ĝ(r)
0,λ (x) = Ĝ(r)

1,λ (x) = · · · = Ĝ(r)
r−1,λ (x) = 0. When x = 0, Ĝ(r)

n,λ =

Ĝ(r)
n,λ (0) are called the type 2 degenerate Genocchi numbers of order r.
As is known, the type 2 Changhee polynomials of order r are defined by

(37)
(

2
(1+ t)+(1+ t)−1

)r

(1+ t)x =
∞

∑
n=0

Ĉh
(r)
n (x)

tn

n!
, (see [7,21,22]).

When x = 0, Ĉh
(r)
n = Ĉh

(r)
n (0) are called the type 2 Changhee numbers of order r.

By replacing t by logλ (1+ t) in (36), we get

r!
(

2
(1+ t)+(1+ t)−1

)r

(1+ t)x 1
r!

(
logλ (1+ t)

)r

=
∞

∑
m=0

Ĝ(r)
m,λ (x)

1
m!

(
logλ (1+ t)

)m

=
∞

∑
m=0

Ĝ(r)
m,λ (x)

∞

∑
n=m

S1,λ (n,m)
tn

n!

=
∞

∑
n=r

( n

∑
m=r

Ĝ(r)
m,λ (x)S1,λ (n,m)

)
tn

n!
.

(38)

On the other hand,

r!
(

2
(1+ t)+(1+ t)−1

)r

(1+ t)x 1
r!

(
logλ (1+ t)

)r

= r!
∞

∑
l=0

Ĉh
(r)
l (x)

tl

l!

∞

∑
m=r

S1,λ (m,r)
tm

m!

= r!
∞

∑
n=r

n

∑
m=r

(
n
m

)
Ĉh

(r)
n−m(x)S1,λ (m,r)

tn

n!
.

(39)

Therefore, by (38) and (39), we obtain the following theorem.

Theorem 9. For r ≥ 1, and n ≥ r, we have

n

∑
m=r

Ĝ(r)
m,λ (x)S1,λ (n,m) = r!

n

∑
m=r

(
n
m

)
Ĉh

(r)
n−m(x)S1,λ (m,r).
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From (36), we can derive the following equation.

1
tr

(
2t

eλ (t)+ e−1
λ (t)

)r

ex
λ (t) =

∞

∑
m=0

Ĉh
(r)
m (x)

1
m!

(
eλ (t)−1

)m

=
∞

∑
m=0

Ĉh
(r)
m (x)

∞

∑
n=m

S2,λ (n,m)
tn

n!

=
∞

∑
n=0

( n

∑
m=0

Ĉh
(r)
m (x)S2,λ (n,m)

)
tn

n!
.

(40)

On the other hand,

1
tr

(
2t

eλ (t)+ e−1
λ (t)

)r

ex
λ (t) =

1
tr

∞

∑
n=r

Ĝ(r)
n,λ (x)

tn

n!

=
1
r!

∞

∑
n=0

Ĝ(r)
n+r,λ (x)(n+r

n

) tn

n!
.

(41)

Therefore, by (40) and (41), we obtain the following theorem.

Theorem 10. For n ≥ 0, and r ≥ 1, we have

Ĝ(r)
n+r,λ (x) = r!

(
n+ r

n

) n

∑
m=0

Ĉh
(r)
m (x)S2,λ (n,m).

3. DEGENERATE POLY-FUBINI POLYNOMIALS

In this section, we study a new version of the degenerate poly-Funini polynomi-
als and investigate their properties.

We first define the degenerate poly-Fubini polynomials given by

(42)
Eik,λ (logλ (1+ t))
t(1− x(eλ (t)−1))

=
∞

∑
n=0

F(k)
n,λ (x)

tn

n!
.

Now, we consider

(43)
Eik,λ (logλ (1+ t))
1− x(eλ (t)−1)

=
∞

∑
n=0

nF(k)
n−1,λ (x)

tn

n!
.

On the other hand,
(44)

Eik,λ (logλ (1+ t))
1− x(eλ (t)−1)

=
∞

∑
�=1

(1)�,λ (logλ (1+ t))�

(�−1)!�k ×
∞

∑
j=0

x j j!
1
j!
(eλ (t)−1) j

=
∞

∑
�=1

(1)�,λ
�k−1

1
�!
(logλ (1+ t))�×

∞

∑
i=0

(
i

∑
j=0

x jS2(i, j) j!

)
ti

i!

=

(
∞

∑
m=1

m

∑
�=1

(1)�,λ
�k−1 S1,λ (m, �)

tm

m!

)
×
(

∞

∑
i=0

i

∑
j=0

x jS2(i, j) j!
ti

i!

)

=
∞

∑
n=1

(
n

∑
i=0

n−i

∑
�=1

i

∑
j=0

(
n
i

)
(1)�,λ
�k−1 S1,λ (n− i, �)x jS2(i, j) j!

)
tn

n!
.

Therefore, by comparing the coefficients on the both sides of (43) and (44), we
obtain the following result.
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Theorem 11. For n ≥ 1, we have

nF(k)
n−1,λ (x) =

n

∑
i=0

n−i

∑
�=1

i

∑
j=0

(
n
i

)
(1)�,λ
�k−1 S1,λ (n− i, �)x j j!S2(i, j).

In (8), we consider
∞

∑
n=0

Fn,λ (−
1
2
)

tn

n!
=

2
2eλ (t)+1

.

Then,

(45)

2
2eλ (t)+1

=t
∞

∑
n=0

Fn,λ (−
1
2
)

tn

n!

=
∞

∑
n=1

nFn−1,λ (−
1
2
)

tn

n!
.

On the other hand,

(46)

2t
eλ (t)+1

=
2t

e
1
2
λ (t)(e

1
2
λ (t)+ e−

1
2

λ (t))

=2
2( t

2)

e2λ (
t
2)+ e−1

2λ (
t
2)

e−1
2λ (

t
2
)

=2
∞

∑
n=0

Gn,2λ (−1)
( t

2)
n

n!

=
∞

∑
n=0

Gn,2λ (−1)
2n−1

tn

n!
.

Thus, comparing the coefficients on the both sides of (45) and (46) provides the
following result.

Theorem 12. For n ≥ 1, we have

nF(k)
n−1,λ (x) =

Gn,2λ (−1)
2n−1 .

In (42), we consider
∞

∑
n=0

F(k)
n,λ (−

1
2
)

tn

n!
=

Eikλ (logλ (1+ t))
t(1+ 1

2(eλ (t)−1))

=
2

eλ (t)+1
Eikλ (logλ (1+ t))

t

=

(
∞

∑
j=1

jFj−1,λ (−
1
2
)

t j

j!

)
×
(

∞

∑
m=1

m

∑
�=1

(1)�,λ
�k−1 S1,λ (m, �)

tm−1

m!

)

=

(
∞

∑
j=1

jFj−1,λ (−
1
2
)

t j

j!

)
×
(

∞

∑
m=0

m+1

∑
�=1

(1)�,λ
�k−1

S1,λ (m+1, �)
m+1

tm

m!

)

=
∞

∑
n=1

(
∞

∑
m=1

m+1

∑
�=1

(
n
m

)
(n−m)Fn−m−1,λ (−

1
2
)
(1)�,λ
�k−1

S1,λ (m+1, �)
m+1

)
tn

n!

Therefore, the following result is established.
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Theorem 13. For n ≥ 1, we have

F(k)
n,λ (−

1
2
) =

∞

∑
m=1

m+1

∑
�=1

(
n
m

)
(n−m)Fn−m−1,λ (−

1
2
)
(1)�,λ
�k−1

S1,λ (m+1, �)
m+1

.

4. ILLUSTRATION OF G(k)
n,λ (x)

We finally present graphs and scattering of zeros of the proposed polynomi-
als. In order to observe the relationship among the parameters in the polynomial
G(k)

n,λ (x), we compute the polynomial G(k)
n,λ (x) by varying the parameters, n and k

for different λ , and the results are plotted in Figures 1–3 when λ = 0.5 and 1 for
k = 0,1, and 2, respectively. For further observation of the polynomials, we dis-
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FIGURE 1. The graphs of G(k)
n,λ (x), where λ = 0.5(left) and λ =

1(right) for k = 0.
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FIGURE 2. The graphs of G(k)
n,λ (x), where λ = 0.5(left) and λ =

1(right) for k = 1.

play the roots of polynomials G(k)
n,λ (x) = 0, where n = 1,2, · · · ,15 when λ = 0.1

and 1 for k = 0 and 2, which are presented in Figures 4–5.
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FIGURE 3. The graphs of G(k)
n,λ (x), where λ = 0.5(left) and λ =

1(right) for k = 2.

FIGURE 4. Scattering of roots of G(k)
n,λ (x) = 0, n = 1,2, · · · ,15

when λ = 0.1(left) and λ = 1(right) for k = 0

FIGURE 5. Scattering of roots of G(k)
n,λ (x) = 0, n = 1,2, · · · ,15

when λ = 0.1(left) and λ = 1(right) for k = 2

5. CONCLUSION

This paper introduced a new version of the degenerate poly-Genocchi polyno-
mials and numbers. We derived explicit expressions for those polynomials and
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corresponding numbers. The role of the parameters n,k and λ included in the poly-
Genocchi polynomial G(k)

n,λ (x) was investigated. Moreover, some identities involv-
ing those polynomials and numbers and some other special numbers and polynomi-
als are investigated. Also, we introduced the degenerate poly-Fubini polynomials
and their properties, which are a new version of degenerate Fubini polynomials. In
addition, to better understand the degenerate poly-Genocchi polynomials, we pro-
vided several graphs and scattering of roots for the proposed polynomials. In the
next study, we will focus on how to effectively apply the newly developed polyno-
mials to solve several partial differential equations for applications.
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