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A ROOT OF xλ + ax+ b = 0 USING DEGENERATE

LAMBERT W FUNCTION

SUNG-SOO PYO

Abstract. Lambert W function is the inverse function of the function
L(x) = xex. And it is useful tool for finding a root of ax + bx + c = 0.
The degenerate exponential function eλ(t) has been studied by many
mathematicians, and numerous related results have been published. In
this paper, we define the inverse function Wλ(x) of the function Lλ =
xeλ(x). Taylor expansion of Wλ(x) are presented and a range of radius
of convergence of the series is presented. We apply this Wλ(x) to find a
root of xλ + ax+ b = 0.
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1. Introduction

Let us consider the transcendental function xex where e is the base of
the natural logarithm. In this article, we put xex as L(x). The solution of
transcendental equation

L(x) = c

were studied by Euler and by Lambert [5]. The inverse of the function L(x)
is called the Lambert function and is denoted by W . If −1/e < c < 0,
there are two real solutions, and thus two real branches of W . If we allow
complex values of c, we get many solutions, and W has infinitely many
complex branches. For the remainder of this paper, all parameters will be
assumed to be real, and our concern will be real-valued functions of real
variables. It turned out to be useful tool in combinatorics, for instance, in
the enumeration of trees [4, 9]. It can be used to solve various equations
involving exponentials and also occurs in the solution of delay differential
equations, such as y′(x) = ay(x − 1) [26]. The Lambert W relation cannot
be expressed in terms of elementary functions [1].

After Carlitz [2, 3], various number of degenerate versions of some special
polynomials and numbers are studied. In recent years, studying degenerate
versions of various special polynomials and numbers have regained interests
of many mathematicians [6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25]. The researches have been carried out by several different
methods like generating functions, combinatorial approaches, p-adic analysis
and differential equations. This idea of studying degenerate versions of some
special polynomials and numbers turned out to be very fruitful so as to
introduce degenerate Laplace transforms and degenerate gamma functions
(see [15]).
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The Taylor expansion of Lambert W function is well known as follows.

W (x) =

∞∑
n=1

(−n)n−1x
n

n!
.

This series converges if |x| < 1
e .

The Lambert W function is used to solve equations in which the unknown
quantity occurs both in the base and in the exponent, or both inside and
outside of a logarithm. The strategy is to convert such an equation into one
of the form xex and then to solve for x using the W function.

For example, the equation

ax + bx+ c = 0

can be solved by rewriting it as

a−x
(
−x− c

b

)
=

1

b

e−x ln a
(
−x− c

b

)
=

1

b

ln a
(
−x− c

b

)
eln a(−x− c

b) =
ln a

b
e−

c
b
ln a

Since W (xex) = x, apply to the last line, then we get

x = − 1

ln a
W

(
ln a

b
e−

c
b
ln a

)
− c

b

For any nonzero λ ∈ R (or C), the degenerate exponential function is
defined by

eλ(t) = (1 + λt)
1
λ (see [2], [10],[15]).

In accordance with the exponential sense, log(1 + λt)
1
λ can be used for t

to study degenerate numbers and polynomials. It is natural to think of a
degenerate log function as the inverse function of the degenerate exponential
function. The degenerate log function, denoted by logλ(t), is defined by the
generating function to be

logλ(t) =
tλ − 1

λ
(see [16], [17],[18]).

As λ goes to 0, eλ(t) converges to e
t and logλ t converges to ln(t) of natural

log. From these two degenerate function eλ(t) and logλ(t), many results are
published.

In this paper, we introduce degenerate Lambert W function and its ap-
plications for finding a root of xλ + ax+ b = 0.

2. The function Lλ(x) = x(1 + λx)
1
λ

For a real number λ with λ �= 0 and λ �= ±1, from now on, we consider
this condition at the rest of this article. We define

Lλ(x) = x(1 + λx)
1
λ = xeλ(x).

As λ goes to 0, the function Lλ(x) goes to L(x) = xex.



489

A ROOT OF xλ + ax+ b = 0 USING DEGENERATE LAMBERT W FUNCTION 3

Figure 1. The graph of L−√
2 = x(1−√

2x)
− 1√

2

As if L(lnx) = x lnx,

Lλ(logλ x) = x logλ(x).

If λ > 0, then

Lλ

(
− 1

λ

)
= 0.

And Lλ(x) goes to positive infinity as x goes to positive infinity.
If λ < 0,

lim
x→− 1

λ
−
Lλ (x) = ∞.

Therefore, it is necessary to observe the Lλ(x) according to λ. To obtain
the minimum or maximum value of Lλ(t), differentiation of Lλ(t) gives the
following.

L�
λ(x) = (1 + (1 + λ)x)(1 + λx)

1
λ
−1.

Therefore we need to divide λ into three intervals: λ < −1, −1 < λ < 0
and 0 < λ.

In the case of λ < −1 except for 1
λ or λ being odd integer, the function

Lλ(x) is strictly increasing in x < − 1
λ . And the function goes to positive

infinity as x goes to − 1
λ , the function goes to negative infinity as x goes to

negative infinity. In this case, the range of the function Lλ(x) is every real
number. The Figure 1. shows the graph of Lλ(x) if λ = −√

2.

In the case of −1 < λ < 0 except for 1
λ or λ being odd integer. In this

case, the function fλ(x) has minimum value −
(

1
1+λ

) 1
λ
+1

at x = − 1
1+λ . In

this case, the function fλ(x) decreases in the region x < λ and increases
λ < x < − 1

λ . The function goes to positive infinity as x goes to − 1
λ , the

function goes to 0 as x goes to negative infinity. The Figure 2. shows the
graph of Lλ(x) if λ = − 1

π .

In case 0 < λ, the domain of fλ(x) is 1
λ < x. In this case, the function

fλ(x) decreases in the region where − 1
λ < x < λ and increases x > λ. The

value of the function is 0 at x = − 1
λ , the function goes to positive infinity
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Figure 2. The graph of L−1/π = x(1− 1
πx)

−π

Figure 3. The graph of L√
3 = x(1 +

√
3x)

1√
3

as x goes to positive infinity. The Figure 3. shows the graph of Lλ(x) if
λ =

√
3.

The following Table 1. summarizes the above results. It shows the max-
imum and minimum values of L(x) according to the domain of definition,
and shows where the minimum value is obtained.

Lλ(x) λ < −1 −1 < λ < 0 0 < λ

domain x < − 1
λ x < − 1

λ - 1
λ < x

minimum none −
(

1
1+λ

) 1
λ
+1 −

(
1

1+λ

) 1
λ
+1

where L has minimum none x = − 1
1+λ x = − 1

1+λ
maximum ∞ ∞ ∞

Table 1

The Lambert W function is known to be a good tool for solving vari-
ous differential equations. We are going to observe how Lλ relates to the
differential equation. For a natural number N , F (N) to denote the N -th
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derivative of F , that is,

F (0) = F (t), F (N) =
d

dt
F (N−1).

Then we know that

e
(N)
λ (t) =

(
(1 + λx)

1
λ

)(N)
=

(
1

λ

)

N

(
λ

1 + λt

)N

eλ(t)

=
(1)N,λ

(1 + λt)N
eλ(t)

where (x)N denote, and from now on, N -th falling factorial of x, that is,
(x)N = x(x − 1)(x − 2) · · · (x − N + 1) and (x)N,λ denote the generalized
falling factorial x(x−λ)(x−2λ) · · · (x− (N −1)λ). This yields the following
theorem.

Theorem 2.1. For any positive integer N , the differential equation

F (N) = Ne
(N−1)
λ (t) + te

(N)
λ (t)

has a solution
F (t) = L(t) = teλ(t) = t(1 + λt)

1
λ
.

3. The degenerate Lambert Wλ(z)

We define the degenerate Lambert W function W, which is the inverse of
Lλ(x), as,

Wλ(Lλ(x)) = Lλ(Wλ(x)) = x.

For the Taylor expansion of inverse function, Lagrange Inversion theorem
says that the following theorem

(1) f−1(y) =
∞∑
n=1

[
dn−1

dxn−1

(
x

f(x)

)n]

x=0

yn

n!
.

Note that, (
x

Lλ(x)

)n

= (1 + λx)−
n
λ ,

we get,[
dn−1

dxn−1
(1 + λx)−

n
λ

]

x=0

= (−1)n−1n

λ
(
n

λ
+ 1) · · · (n

λ
+ (n− 2))λn−1

= (−1)n−1(n+ λ)(n+ 2λ) · · · (n+ (n− 2)λ)

= (−1)n−1 < n >n−1,λ

(2)

where < x >m,λ denotes the generalized rising factorial < x >m,λ= x(x +
λ)(x+ 2λ) · · · (x+ (m− 1)λ).

By (1) and (2), we get the following theorem.

Theorem 3.1. Taylor expansion of Wλ(x) is the following.

Wλ(x) =
∞∑
n=1

(−1)n−1 < n >n−1,λ
xn

n!
,
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where < n >n−1,λ= n(n+ λ)(n+ 2λ) · · · (n+ (n− 2)λ).

As λ goes to 0, < n >n−1,λ converges to nn−1. This says that the Taylor
expansion of Wλ(x) goes to the Taylor expansion of W (x), that is,

lim
λ→0

Wλ = W.

Theorem 3.2. The radius convergence R(Wλ(x)) of Taylor expansion of
Wλ(x) is bounded as follows according to λ.

i) λ > 0, e−1|1 + λ|−1 ≤ R(Wλ(x)) ≤ e−1/(1+λ)|1 + λ|−1,

ii) −1 < λ < 0, e−1/(1+λ)|1 + λ|−1 ≤ R(Wλ(x)) ≤ e−1|1 + λ|−1,

iii) λ < −1, e
− 3λ−1

2λ(1+λ) |1 + λ|−1 ≤ R(Wλ(x)) ≤ e−
1+λ
2λ |1 + λ|−1.

Proof. First, let us look at the case λ > 0. In this case, n + kλ < n + lλ if
k < l. So we get the following

∣∣∣∣
< n+ 1 >n,λ /(n+ 1)!

< n >n−1,λ /n!

∣∣∣∣ =
∣∣∣∣
(n+ 1)(n+ 1 + λ)(n+ 1 + 2λ)− · · · (n+ 1 + (n− 1)λ)n!

n(n+ λ)(n+ 2λ) · · · (n+ (n− 2)λ)(n+ 1)!

∣∣∣∣

=

∣∣∣∣
(
1 +

1

n+ λ

)
· · ·

(
1 +

1

(n+ (n− 2)λ)

)(
n+ 1 + (n− 1)λ

n

)∣∣∣∣

≤
∣∣∣∣∣
(
1 +

1

n+ λ

)n−2(n+ 1 + (n− 1)λ

n

)∣∣∣∣∣
→ e|1 + λ|

(3)

as n goes to infinity. And we know that

∣∣∣∣
< n+ 1 >n,λ /(n+ 1)!

< n >n−1,λ /n!

∣∣∣∣ =
∣∣∣∣
(n+ 1)(n+ 1 + λ)(n+ 1 + 2λ)− · · · (n+ 1 + (n− 1)λ)n!

n(n+ λ)(n+ 2λ) · · · (n+ (n− 2)λ)(n+ 1)!

∣∣∣∣

≥
∣∣∣∣∣
(
1 +

1

n+ (n− 2)λ

)n−2(n+ 1 + (n− 1)λ

n

)∣∣∣∣∣
→ e

1
1+λ |1 + λ|.

(4)

The equation (3) and (4) says that e−1|1+λ|−1 ≤ R(Wλ(x)) ≤ e−1/(1+λ)|1+
λ|−1 if λ > 0.

Next, let us look at the case where −1 < λ < 0. In this case, n + lλ <
n+ kλ if k < l. So we get the following.

∣∣∣∣
< n+ 1 >n,λ)/(n+ 1)!

< n >n−1,λ /n!

∣∣∣∣ =
∣∣∣∣
(n+ 1)(n+ 1 + λ)(n+ 1 + 2λ) · · · (n+ 1 + (n− 1)λ)n!

n(n+ λ)(n+ 2λ) · · · (n+ (n− 2)λ)(n+ 1)!

∣∣∣∣

=

∣∣∣∣
(
1 +

1

n+ λ

)
· · ·

(
1 +

1

(n+ (n− 2)λ)

)(
n+ 1 + (n− 1)λ

n

)∣∣∣∣

≤
∣∣∣∣∣
(
1 +

1

(n+ (n− 2)λ)

)n−2(n+ 1 + (n− 1)λ

n

)∣∣∣∣∣
→ e1/(1+λ)|1 + λ|

(5)
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Similarly the equation (4), we get

∣∣∣∣
< n+ 1 >n,λ)/(n+ 1)!

< n >n−1,λ /n!

∣∣∣∣ =
∣∣∣∣
(n+ 1)(n+ 1 + λ)(n+ 1 + 2λ) · · · (n+ 1 + (n− 1)λ)n!

n(n+ λ)(n+ 2λ) · · · (n+ (n− 2)λ)(n+ 1)!

∣∣∣∣

≥
∣∣∣∣∣
(
1 +

1

(n+ λ)

)n−2(n+ 1 + (n− 1)λ

n

)∣∣∣∣∣
→ e|1 + λ|

(6)

From the equations (5) and (6), we get e−1/(1+λ)|1+ λ|−1 ≤ R(Wλ(x)) ≤
e−1|1 + λ|−1 if −1 < λ < 0.

In the case λ < −1, there exist the smallest positive integer m such that
n+mλ < 0. The integer m can be expressed as m = −n

λ .

∣∣∣∣
< n+ 1 >n,λ)/(n+ 1)!

< n >n−1,λ /n!

∣∣∣∣ =
∣∣∣∣
(n+ 1)(n+ 1 + λ)(n+ 1 + 2λ) · · · (n+ 1 + (n− 1)λ)n!

n(n+ λ)(n+ 2λ) · · · (n+ (n− 2)λ)(n+ 1)!

∣∣∣∣

=

∣∣∣∣
(
n+ λ+ 1

n+ λ

)
· · ·

(
(n+ (n− 2)λ) + 1

(n+ (n− 2)λ)

)(
n+ 1 + (n− 1)λ

n

)∣∣∣∣

=

∣∣∣∣
(
n+ λ+ 1

n+ λ

)∣∣∣∣ · · ·
∣∣∣∣
(
n+ (m− 1)λ+ 1

n+ (m− 1)λ

)∣∣∣∣

×
∣∣∣∣
(
n+mλ+ 1

n+mλ

)∣∣∣∣ · · ·
∣∣∣∣
(
n+ (n− 2)λ) + 1

n+ (n− 2)λ

)∣∣∣∣
∣∣∣∣
(
n+ 1 + (n− 1)λ

n

)∣∣∣∣

≤
∣∣∣∣
(
1 +

1

n+ (m− 1)λ

)∣∣∣∣
m−1 ∣∣∣∣

(
1 +

1

n+ (n− 2)λ

)∣∣∣∣
n−m−1 ∣∣∣∣

(
n+ 1 + (n− 1)λ

n

)∣∣∣∣
→ e

3λ−1
2λ(1+λ) |1 + λ|.

(7)

Similarly the equations (4) and (6) we get

∣∣∣∣
< n+ 1 >n,λ)/(n+ 1)!

< n >n−1,λ /n!

∣∣∣∣ =
∣∣∣∣
(n+ 1)(n+ 1 + λ)(n+ 1 + 2λ) · · · (n+ 1 + (n− 1)λ)n!

n(n+ λ)(n+ 2λ) · · · (n+ (n− 2)λ)(n+ 1)!

∣∣∣∣

≥
∣∣∣∣
(
1 +

1

n+ λ

)∣∣∣∣
m−1 ∣∣∣∣

(
1 +

1

n+mλ

)∣∣∣∣
n−m−1 ∣∣∣∣

(
n+ 1 + (n− 1)λ

n

)∣∣∣∣
→ e

1+λ
2λ |1 + λ|.

(8)

From the equations (7) and (8), we get e
− 3λ−1

2λ(1+λ) |1 + λ|−1 ≤ R(Wλ(x)) ≤
e−

1+λ
2λ |1 + λ|−1 if λ < −1. �

When λ > −1, the radius convergence of Wλ(x) converges to 1/e as λ
goes to 0. This is the same as Wλ(x) converges to W (x) as λ goes to 0.

The next theorem shows how to solve an equation xλ + ax+ b = 0 using
Wλ.
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Theorem 3.3. For real a, λ and negative real b with −
(

1
1−λ

)1− 1
λ
< a(−b)

1
λ
−1

λ

if λ < 1. Then equation xλ + ax+ b = 0 has a solution

x = −bλ

a
Wλ(

a(−b)
1
λ
−1

λ
).

Proof. The equation

xλ + ax+ b = 0

can be solved by rewriting it as

xλ = (−ax− b)

x
(a
b
x+ 1

)−1/λ
= (−b)

1
λ

Replace a
bx with −λy, then x = − bλ

a y and

−bλ

a
y(1− λy)−1/λ = (−b)

1
λ

y(1− ry)−1/λ =
a(−b)

1
λ
−1

λ
.

Since Wλ(x(1 + λx)
1
λ ) = x, apply to the last line and Table 1, then we

get

y = Wλ(
a(−b)

1
λ
−1

λ
).

Therefore

x = −bλ

a
Wλ(

a(−b)
1
λ
−1

λ
).

�
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