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ALMOST SURE CONVERGENCE OF WEIGHTED SUMS

FOR WIDELY NEGATIVE DEPENDENT RANDOM

VARIABLES UNDER SUB-LINEAR EXPECTATIONS
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Abstract. The sub-linear expectation space is a nonlinear expecta-
tion space having advantages of modeling the uncertainty of probability
and statistics. In this paper we study the almost sure convergence for
weighted sums of widely negative dependent random variables in the
sub-linear expectation spaces. An almost sure convergence theorem is
obtained for weighted sums of widely negative dependent random vari-
ables under sub-linear expectations. Our results extend and generalize
the corresponding ones of Hu and Wu(2021) to widely negative depen-
dent random variables under sub-linear expectation.
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1. Introduction

Limit theory is an important research topic, which is widely used in the
financial sector and other fields in the study of probability theory and math-
ematical statistics. The classical limit theorems require strict conditions for
the certainty model, whereas the certainty model hypothesis is invalid in
many areas of applications because the uncertainty phenomenon cannot be
explained by the certainty model. Many uncertainty phenomena can not be
well modeled by using additive probabilities and additive expectations, such
as most of problems in statistics, quantum mechanics, and risk manage-
ment. Non-additive probabilities and non-additive expectations are useful
tools for studying uncertainties in statistics, measure of risk, super-hedge
pricing and modeling uncertainty in finance (c.f.[9]-[13]). Motivated by the
modeling uncertainty in practice, Peng([10]-[14]) introduced a new notion of
sub-linear expectations, and an alternative to the traditional probability and
expectation into capacities and sub-linear expectations. At the same time,
Peng gave a complete axiom system of sub-linear expectation. It makes up
for the lock of application of classical probability space and its theorems
in the financial field. Since sub-linear expectation provides a very flexi-
ble framework for modeling sub-linear problems, the limit theorems under
sub-linear expectation have received more and more attention and research.
Peng([12]-[14]) established the central limit theorem and weak law of large
numbers, Chen [1], Cheng [3], Hu [4] and Hwang [6] obtained strong law
of large numbers, Chen and Hu [2] obtained a law of iterated logarithm,
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Zhang [18] studied Donsker’s invariance principle and Chung’s law of the
iterated logarithm, and also Zhang([19]-[22]) deeply studied sub-linear ex-
pectation space, and established a series of important inequalities such as
exponential inequality, Rosenthal’s inequality, the moment inequalities for
the maximum partial sums, and also Self-normalized moderate deviation.
Recently, Hwang [7] obtained strong convergence of sums of independent
random variables under sub-linear expectations and Hu and Wu [5] studied
almost sure convergence of weighted sums for END sequences in sub-linear
expectation spaces, and so on.

In this paper we study the almost sure convergence for weighted sums of
widely negative dependent random variables in the sub-linear expectation
spaces. An almost sure convergence theorem is obtained for weighted sums of
widely negative dependent random variables under sub-linear expectations.
Our results extend and generalize the corresponding result of Hu and Wu [5]
to widely negative dependent random variables under sub-linear expectation.

This paper is organized as follows: in Section 2, we summarize some basic
notations and concepts, related properties under the sub-linear expectations
and present the preliminary definitions and lemmas that are useful to obtain
the main results. In Section 3, we give the main results including the proof.

2. Preliminaries

We use the framework and notations of Peng([10]-[14]). Let (Ω,F) be a
given measurable space and let H be a linear space of real functions defined
on (Ω,F) such that if X1, X2, · · · , Xn ∈ H then ϕ(X1, X2, · · · , Xn) ∈ H
for each ϕ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of local
Lipschitz functions ϕ satisfying

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y|, ∀x, y ∈ Rn

for some C > 0, m ∈ N depending on ϕ. H is considered as a space of
”random variables”. In this case we denote X ∈ H.

Definition 2.1. A sub-linear expectation Ê on H is a function Ê : H → R̄
satisfying the following properties: for all X,Y ∈ H we have

(i) Monotonicity: If X ≥ Y then Ê[X] ≥ Ê[Y ];

(ii) Constant preserving: Ê[c] = c;

(iii) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ]; whenever Ê[X] + Ê[Y ] is
not of the form +∞−∞ or −∞+∞;

(iv) Positive homogeneity: Ê[λX] = λÊ[X], λ ≥ 0

Here R̄ = [−∞,∞]. The triple (Ω,H, Ê) is called a sub-linear expectation
space.

Given a sub-linear expectation Ê, let us denote the conjugate expectation
Ê of Ê by

Ê [X] = −Ê[−X], ∀X ∈ H.

From Definition 2.1, it is easily shown that

Ê [X] ≤ Ê[X], Ê[X + c] = Ê[X] + c and Ê[X − Y ] ≥ Ê[X]− Ê[Y ]
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for all X,Y ∈ H with Ê[Y ] being finite. Further, if Ê[|X|] is finite, then Ê[X]

and Ê [X] are both finite, and if Ê[X] = Ê [X], then Ê[X+aY ] = Ê[X]+aÊ[Y ]
for any a ∈ R.

Next, we consider the capacities corresponding to the sub-linear expec-
tations. Let G ⊂ F . A function V : G → [0, 1] is called a capacity if
V(∅) = 0,V(Ω) = 1 and V(A ∪ B) ≤ V(A) + V(B) for all A,B ∈ G. It
is called sub-additive if V(A ∪ B) ≤ V(A) + V(B) for all A,B ∈ G with
A ∪B ∈ G.
Let (Ω,H, Ê) be a sub-linear space. We denote a pair (V,V) of capacities
by

V(A) := inf{Ê[ξ] : IA ≤ ξ, ξ ∈ H}, V(A) = 1− V(Ac), ∀A ∈ F ,

where Ac is the complement set of A. Then

Ê[f ] ≤ V(A) ≤ Ê[g], Ê [f ] ≤ V(A) ≤ Ê [g],
if f ≤ IA ≤ g, f, g ∈ H. It is obvious that V is sub-additive, i.e., V(A∪B) ≤
V(A) + V(B). But V and Ê are not. However, we have

V(A ∪B) ≤ V(A) + V(B) and Ê [X + Y ] ≤ Ê [X] + Ê[Y ]

due to the fact that

V(Ac∩Bc) = V(Ac \B) ≥ V(Ac)−V(B) and Ê[−X−Y ] ≥ Ê[−X]− Ê[Y ].

Further, if X is not in H and we define Ê by Ê[X] = inf{Ê[Y ] : X ≤ Y, Y ∈
H}, then V(A) = Ê[IA].

In this paper we only consider the capacity generated by a sub-linear

expectation. Given a sub-linear expectation space (Ω,H, Ê), we define a
capacity:

V(A) := Ê[IA], ∀A ∈ F
and also define the conjugate capacity:

V(A) := 1− V(Ac), ∀A ∈ F .

It is clear that V is a sub-additive capacity and V(A) = Ê [IA].
Definition 2.2. ([21]) (1) A sub-linear expectation Ê : H → R is called to
be countably sub-additive if it satisfies

Ê[X] ≤
∞∑
n=1

Ê[Xn], whenever X ≤
∞∑
n=1

Xn, X,Xn ∈ H,

where X ≥ 0, Xn ≥ 0 and n ≥ 1.
(2) A function V : F → [0, 1] is called to be countably sub-additive if

V(∪∞
n=1An) ≤

∞∑
n=1

V(An), ∀An ∈ F .

Also, we define the Choquet integrals/expectations (CV, CV) by

CV (X) =

∫ ∞

0
V (X > x) dx+

∫ 0

−∞
(V (X > x)− 1) dx,

with V being replaced by V and V respectively.
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The following definition and example can be found in Wu and Lu [16] (see
Wu and Jiang [15]).

Definition 2.3. A sequence of random variables {Xn, n ≥ 1} is said to
converge to X almost surely V (a.s. V ), showed by Xn → X a.s. V as
n → ∞, if V (Xn � X) = 0.

V can be replaced by V and V severally. By V(A) ≤ V(A) and V(A) +
V(Ac) = 1 for any A ∈ F , it is quite clear that Xn → X a.s. V implies
Xn → X a.s. V, butXn → X a.s. V does not signifyXn → X a.s. V. Further,
Xn → X a.s. V ⇔ V(Xn → X) = 1 ⇔ V(|Xn −X| ≥ �, i.o.) = 0, ∀� > 0,
and Xn → X a.s. V ⇔ V(Xn � X) = 0 ⇔ V(Xn → X) = 1. In
conventional probability space, it is well known Xn → X a.s. ⇔ P (Xn →
X) = 1 ⇔ P (Xn � X) = 0 from P (A) + P (Ac) = 1. Whereas, in the
sub-linear expectation space, the formula V(A) + V(Ac) = 1 is not valid,
which implies V(Xn → X) = 1 � V(Xn � X) = 0. Actually, we can have
V(Xn � X) = 0 ⇒ V(Xn → X) = 1, but V(Xn → X) = 1 � V(Xn �
X) = 0. Thus, in the sub-linear expectation space, Xn → X a.s. V cannot
be defined with V(Xn → X) = 1.

Now, we will show an example (see [15],[16]) which satisfiesXn → X a.s. V
but not Xn → X a.s. V as follows.

Example 2.4. Let Xn be independent G-normal random variables with

Xn ∼ N (0, [1/42
n
, 1]) in a sub-linear expectation space (Ω,H, Ê). Ê and V

are continuous. Then Xn → 0 a.s. V; but not Xn → 0 a.s. V.

The following lemmas show that some important inequalities in classical
probability theory still hold in sub-linear expectation spaces.

Lemma 2.5. (Markov’s inequality) For any X ∈ H, we have

V(|X| ≥ x) ≤ Ê[|x|p]
xp

for any x > 0 and p > 0.

The following lemma is introduced by Zhang [20].

Lemma 2.6. (Borel-Cantelli’s lemma) Let {An, n ≥ 1} be a sequence of
events in F . Suppose that V is a countably sub-additive capacity. If∑∞

n=1V(An) < ∞, then V(An, i.o.) = 0, where {An, i.o.} = ∩∞
n=1 ∪∞

i=n Ai.

Now we give the definition of widely negative dependence on the sublinear

expectation space (Ω,H, Ê). The concept of widely negative dependence is
introduced by Lin and Feng [8] as follows.

Definition 2.7. Let X1, X2, · · · , Xn+1 be real measurable random vari-
ables of (Ω,F).

(1) Xn+1 is called widely negative dependence of (X1, · · · , Xn) under Ê if
for every nonnegative measure function ϕi with the same monotonicity on
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R and Ê[ϕi(Xi)] < ∞, i = 1, 2, · · · , n + 1, there exists a positive finite real
function g(n+ 1) such that

Ê

[
n+1∏
i=1

ϕi(Xi)

]
≤ g(n+ 1)Ê

[
n∏

i=1

ϕi(Xi)

]
Ê [ϕn+1(Xn+1)] .

(2) {Xi}∞i=1 is said to be a sequence of widely negative dependent random

variables under Ê if for any n ≥ 1, Xn+1 is widely negative dependence of
(X1, X2, · · · , Xn).
(3) {Xni, 1 ≤ i ≤ n, n ≥ 1} is said to be an array of rowwise widely negative

dependent random variables under Ê if for any n ≥ 1, {Xni, 1 ≤ i ≤ kn} is a
sequence of widely negative dependent random variables

Remark 2.8. For a sequence of widely negative dependent random variables
{Xi, i ≥ 1}, we have

Ê

[
n∏

i=1

ϕi(Xi)

]
≤ g̃(n)

n∏
i=1

Ê [ϕi(Xi)] , where g̃(n) =
n∏

i=1

g(i)

for any n ≥ 1 and every nonnegative measurable function ϕi(·) with the

same monotonicity on R and Ê[ϕi(Xi)] < ∞, i = 1, 2, · · · , n, where g(·) is a
positive finite real function as in Definition 2.7(1).

Remark 2.9. Without loss of generality, we will assume that g(n) ≥ 1 for
any n ≥ 1 in the sequal.

The following lemma is introduced by Lin and Feng [8].

Lemma 2.10. Suppose that {Xi}∞i=1 is a sequence of widely negative depen-

dent random variable under Ê, and {ψi(x)}∞i=1 is a sequence of measurable
function with the same monotonicity. Then {ψi(Xi)}∞i=1 is also a sequence
of widely negative dependent random variables.

It is necessary to note that widely negative dependence under sub-linear
expectations is defined through continuous functions in Cl,Lip and the indi-
cator function I(|x| ≤ a) is not continuous. Therefore, we should modify
the indicator function by functions in I(|x| ≤ a) to ensure that the sequence
of truncated random variables is also widely negative dependence.

For 0 < μ < 1, let h(x) ∈ Cl,Lip(R) be an even function such that h(x)
is a non-increasing function for any x > 0 and 0 ≤ h(x) ≤ 1 for all x and
h(x) = 1 if |x| ≤ μ, h(x) = 0 if |x| > 1, then

I(|x| ≤ μ) ≤ h(x) ≤ I(|x| ≤ 1), I(|x| > 1) ≤ 1− h(x) ≤ I(|x| > μ).

Throughout this paper, let {Xn, n ≥ 1} be a sequence of widely negative

dependent random variables in (Ω,H, Ê). C will signify a positive constant
that may have different values in different places. an = O(bn) denotes that
for a sufficiently large n, there exists C > 0 such that an ≤ Cbn and I(·)
denotes an indicator function.
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3. Main Results and Proofs

Hu and Wu [5] gave the result for identical distributed extended neg-
atively dependent random variables in the sub-linear expectation spaces.
The result in this paper do not need the random variables to be identically
distributed. We extend Theorem 1 in Hu and Wu [5] to widely negative
dependent random variables as follows.

Theorem 3.1. Let {Xn;n ≥ 1} be a sequence of widely negative dependent

random variables in (Ω,H, Ê) with Ê[Xn] = Ê [Xn] = 0 and Ê[|Xn|p] ≤
CV(|Xn|p), and let V be a countably sub-additive capacity. There exist a
r.v. X and a constant C satisfying

Ê[h(Xn)] ≤ CÊ[h(X)] for all n ≥ 1, 0 ≤ h ∈ Cl,Lip(R)(1)

and

CV(|X|1/β) < ∞ for some 0 < β ≤ 1.(2)

Suppose that g̃(x) is a nondecreasing positive function on [0,∞) such that

g̃(x) = g̃(n) when x = n, g̃(0) = 1 and
g̃(x)

xτ
↓ for some 0 < τ < 1.

(3)

Let {ank; 1 ≤ k ≤ n, n ≥ 1} be an array of real numbers satisfying

max
1≤k≤n

|ank| = O(n−β)(4)

and
n∑

k=1

|ank|p = O(n−α) for some α > 0,(5)

where p = min {1/β, 2}. Then we have

Tn =

n∑
k=1

ankXk −→ 0 a.s. V, n → ∞.(6)

Proof. Note that ank = a+nk − a−nk, where a+nk = max {0, ank} and a−nk =
max {0,−ank}, and then

Tn =

n∑
k=1

ankXk =

n∑
k=1

a+nkXk −
n∑

k=1

a−nkXk.

To prove the result, we need to show that

Tn =

n∑
k=1

a+nkXk −→ 0 a.s. V, n → ∞(7)

and

Tn =

n∑
k=1

a−nkXk −→ 0 a.s. V, n → ∞.(8)

Without loss of generality, we may assume that ank > 0 for 1 ≤ k ≤ n, n ≥
1. It suffices to prove that (7) holds, because a slight change in the proof
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of (7) actually shows that (8) holds. For any � > 0, set N = [4/α+ 1],

Ank = a−1
nkn

−αβ/2 and Bk = �kβ/(NC) for 1 ≤ k ≤ n. Let

(9)

X
(1)
nk = XkI(Xk ≤ Ank) +AnkI(Xk > Ank),

X
(2)
nk = XkI(Xk > Bk),

X
(3)
nk = Xk −X

(1)
nk −X

(2)
nk

= (Xk −Ank)I(Ank < Xk ≤ Bk)−AnkI(Xk > Bk),

T (i)
n =

n∑
k=1

ankX
(i)
nk , i = 1, 2, 3.

Let Znk = nαβ/2ankX
(1)
nk , n ≥ 1, then {Znk, 1 ≤ k ≤ n} is a sequence of

widely negative dependent random variables in (Ω,H, Ê) from Lemma 2.10,

and Znk ≤ nαβ/2ankAnk = 1 for 1 ≤ k ≤ n, n ≥ 1. Since X
(1)
nk ≤ Xk, 1 ≤

k ≤ n and Ê[Xn] = 0, n ≥ 1, we have

Ê[Znk] = nαβ/2ankÊ[X
(1)
nk ] ≤ nαβ/2ankÊ[Xk] = 0.(10)

On the other hand, since ez ≤ 1 + z + |z|p, z ≤ 1, 1 ≤ p ≤ 2, we have

eZnk ≤ 1 + Znk + |Znk|p.(11)

Note that 1 + z ≤ ez for z ∈ R, then we get from (2), (10) and (11) that

(12)

Ê[eZnk ] ≤ 1 + Ê[Znk] + Ê[|Znk|p]
≤ 1 + Ê[|Znk|p]
≤ exp

(
Ê[|Znk|p]

)

≤ exp
(
Ê[|X|p]

)
.

Since p < 1/β and CV
(|X|1/β) < ∞, we have

Ê[|X|p] ≤ CV(|X|p) < ∞.(13)
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From Definition 2.7, (1), (3), (5), (12) and (13), we have

(14)

Ê
[
exp

(
nαβ/2T (1)

n

)]
= Ê

[
n∏

k=1

exp(Znk)

]

≤ g̃(n)

n∏
k=1

Ê [exp(Znk)]

≤ g̃(n)

n∏
k=1

exp
(
CÊ [|Znk|p]

)

= g̃(n)

n∏
k=1

exp
(
Cnpαβ/2apnkÊ

[∣∣∣X(1)
nk

∣∣∣
p])

≤ g̃(n) exp

(
Cnα/2

n∑
k=1

apnkÊ [|Xk|p]
)

≤ g̃(n) exp
(
Cn−α/2Ê [|X|p]

)

≤ Cnτ exp
(
Cn−α/2

)

≤ Cnτ

for sufficiently large n, where C is a constant. For any � > 0, we have, for
sufficiently large n,

�nαβ/2 > lnn2.

By Lemma 2.5 (Markov’s inequality) and (14), we have

(15)

∞∑
n=1

V
(
T (1)
n ≥ �

)
≤

∞∑
n=1

exp
{
−�nαβ/2

}
Ê
[
exp

(
nαβ/2T (1)

n

)]

≤ C
∞∑
n=1

nτ exp
{
−�nαβ/2

}

≤ C
∞∑
n=1

exp {−(2− τ) lnn}

= C
∞∑
n=1

n−(2−τ) < ∞,

where 0 < τ < 1. From Lemma 2.6 (Borel-Cantelli’s lemma) and V being
the countably sub-additivity, we have for any � > 0

V
(
lim sup
n→∞

T (1)
n ≥ �

)
≤ V

(
T (1)
n ≥ �, i.o.

)
= 0,

and hence

lim sup
n→∞

T (1)
n ≤ 0 a.s. V(16)

Note that

CV

(
|X|1/β

)
=

∫ ∞

0
V
(
|X|1/β > x

)
dx =

∫ ∞

0
V
(
|X| > xβ

)
dx,
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then

CV

(
|X|1/β

)
< ∞ ⇐⇒

∞∑
n=1

V
(
|X| > nβ

)
< ∞.

Also, we have

∞∑
n=1

V
(
|X| > nβ

)
< ∞ ⇐⇒

∞∑
n=1

V
(
|X| > cnβ

)
< ∞, ∀c > 0(17)

(See [15], [16] for more details). From (1), (2) and (17), we have

(18)

∞∑
k=1

V (|Xk| > Bk) =
∞∑
k=1

V
(
|Xk| > �kβ

NC

)

≤
∞∑
k=1

Ê
[
1− h

(
NC

�kβ
Xk

)]

≤ C

∞∑
k=1

Ê
[
1− h

(
NC

�kβ
X

)]

≤ C

∞∑
k=1

V
(
|X| > μ

�kβ

NC

)
< ∞.

By Lemma 2.6, (18) and the countably sub-additivity of V, we have

V (|Xk| > Bk, i.o) = 0,

and hence ( ∞∑
k=1

X2
kI (|Xk| > Bk) = ∞

)
⊂ (|Xk| > Bk, i.o.) ,(19)

it follows from (19) that

∞∑
k=1

X2
kI (|Xk| > Bk) < ∞ a.s. V.(20)

From Schwarz’s inequality, (5) and (20), we have

(21)

T (2)
n =

n∑
k=1

ankX
(2)
nk ≤

(
n∑

k=1

a2nk

)1/2( n∑
k=1

X2
kI (|Xk| > Bk)

)1/2

≤
(

n∑
k=1

apnk

)1/2( ∞∑
k=1

X2
kI (|Xk| > Bk)

)1/2

≤ Cn−α/2

( ∞∑
k=1

X2
kI (|Xk| > Bk)

)1/2

−→ 0 a.s. V, n → ∞.

Our next claim is that

lim sup
n→∞

T (3)
n ≤ 0 a.s. V.(22)
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By (4), we have

(23)

ankX
(3)
nk ≤ ank(Xk −Ank)I (Ank < Xk ≤ Bk)

≤ ankBk ≤ Cn−β �kβ

NC

≤ Ck−β �kβ

NC
=

�

N
,

where 0 < � < 1. By the definition of X
(3)
nk and (23), we get that if Xk /∈

(Ank, Bk], then ankX
(3)
nk ≤ 0; if Xk ∈ (Ank, Bk], then ankX

(3)
nk ≤ �/N . So in

order to make T
(3)
n =

∑n
k=1 ankX

(3)
nk > �, there must exist at least a positive

integer N indices k such that Ank < Xk ≤ Bk, which yields, for any � > 0,
(24){

T (3)
n ≥ �

}

=

{
n∑

k=1

ank(Xk −Ank)I (Ank < Xk ≤ Bk)−
n∑

k=1

ankAnkI (Xk > Bk) ≥ �

}

⊂
{

n∑
k=1

ank(Xk −Ank)I (Ank < Xk ≤ Bk) ≥ �

}

⊂ {there exists at least N indices k such that Ank < Xk ≤ Bk}
⊂ {there exists at least N indices k such thatXk > Ank} .

Since {Xn, n ≥ 1} is a sequence of widely negative dependent random vari-

ables in (Ω,H, Ê) such that there exist a random variable X and a constant

C satisfying Ê[h(Xn)] ≤ CÊ[h(X)] for all n ≥ 1, 0 ≤ h ∈ Cl,Lip(R), and
Ê[|X|p] ≤ CV(|X|p) < ∞, we have by (1), (5) and (24)

(25)

V
(
T (3)
n ≥ �

)
≤

∑
1≤k1<···<kN≤n

V
(
Xk1 > Ank1

, · · · , XkN > AnkN

)

≤
∑

1≤k1<···<kN≤n

Ê

[
N∏
i=1

(
1− h

(
Xki

Anki

))]

≤ g̃(N)
∑

1≤k1<···<kN≤n

N∏
i=1

Ê
[
1− h

(
ankin

αβ/2Xki

)]

≤ g̃(N)

(
n∑

k=1

Ê
[
1− h

(
ankn

αβ/2Xk

)])N

≤ g̃(N)

(
C

n∑
k=1

Ê
[
1− h

(
ankn

αβ/2X
)])N

≤ Cg̃(N)

(
n∑

k=1

V
(
|X| > μa−1

nkn
−αβ/2

))N
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≤ Cg̃(n)

(
n∑

k=1

apnkn
αβp/2Ê [|X|p]

)N

≤ Cnτn−αN/2 = Cn−(αN
2

−τ).

Set N = [4/α+ 1], then αN ≥ 4 ⇔ αN
2 ≥ 2, and hence αN

2 −τ ≥ 2−τ > 1
for 0 < τ < 1, it follows from (25) that

∞∑
n=1

V
(
T (3)
n ≥ �

)
< ∞

for any � > 0. From Borel-Cantelli’s lemma and V being the countably
sub-additivity, it follows that (22) holds.

Since Tn =
∑3

i=1 T
(i)
n in (9), it follows from (16), (21) and (22) that we get

lim sup
n→∞

Tn ≤ 0 a.s. V.(26)

On the other hands, since {Xn;n ≥ 1} a sequence of widely negative depen-
dent random variables, then {−Xn;n ≥ 1} is a sequence of widely negative
dependent random variables by the definition of widely negative dependent
random variables. Thus if we consider −Xn instead of Xn in the arguments

above, then a slight change in the proof actually like as Ê (−Xk) = −Ê (Xk)
shows that we have directly the following

lim inf
n→∞ Tn ≥ 0 a.s. V.(27)

Therefore, from (26) and (27), we obtain (6), which completes the proof.

Widely negative dependent random variables include extended negatively
dependent random variables in sub-linear expectation space, so for extended
negative dependent random variables under sub-linear expectations, the fol-
lowing corollary 3.2 holds and is in Hu and Wu [5].

Corollary 3.2. Let {Xn;n ≥ 1} be a sequence of identically distributed

END random variables in (Ω,H, Ê) with Ê[X1] = Ê [X1] = 0, Ê[|X1|p] ≤
CV(|X1|p), and

CV(|X1|1/β) < ∞ for some 0 < β ≤ 1,

where p = min {1/β, 2}, and let V be a countably sub-additive capacity. Let
{ank; 1 ≤ k ≤ n, n ≥ 1} be an array of real numbers satisfying

max
1≤k≤n

|ank| = O(n−β)

and
n∑

k=1

|ank|p = O(n−α) for some α > 0,

where p = min {1/β, 2} , 0 < β ≤ 1. Then we have

Tn =

n∑
k=1

ankXk −→ 0 a.s. V, n → ∞.
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