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SOME IDENTITIES OF DEGENERATE r-DOWLING

POLYNOMIALS OF THE SECOND KIND

ARISING FROM UMBRAL CALCULUS

HYE KYUNG KIM

Abstract. Recently, the author Kim and Lee [16] introduced interest-
ing properties and identities for the degenerate r-Dowling polynomials
and numbers associated with the degenerate r-Whitney numbers of the
second kind. In this paper, we study methods for computing the ra-
tional coefficients of a linear combination of the degenerate r-Dowling
polynomials of the second kind with degree n by using umbral calculus,
for algebraic applications of [16]. We derive some interesting identities
for certain special polynomials from these coefficients. Furthermore, we
explore various identities of the degenerate r-Dowling polynomials aris-
ing from the falling factorials bases, the Euler polynomials bases, the
Daehee polynomials bases, the degenerate r-Bell polynomials bases, the
Bell polynomials bases by using umbral calculus, respectively.
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1. Introduction

As a generalization of the Whitney numbers wm(n, k) and Wm(n, k) of
the first and second kind associated with the Dowling lattice Qn(G) for a
group G with order m [1, 9], Mezö [22] introduced r-Whitney numbers of
the first and second kind given by

mn(x)n =
n∑

k=0

wm,r(n, k)(mx+ r)k,

and

(mx+ r)n =
n∑

k=0

Wm,r(n, k)m
k(x)k,(1)

respectively. When r = 1, wm(n, k) = wm,1(n, k) andWm(n, k) = Wm,1(n, k).
The r-Whitney numbers of the first and second kind are applied to various

fields such as physics and engineering as well as mathematical applications
[2, 5, 6, 11, 12, 15, 20, 21, 24-26]. In addition, many scholars have studied
degenerate special polynomials and numbers to which the strength of psy-
chological burdens or environmental changes can be applied [4, 13-17, 20].
Recently, the degenerate r-Dowling polynomials Dm,r,λ(n, x) and numbers
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Dm,r,λ(n) of the second kind respectively associated with the degenerate r-
Whitney numbers of the second kind were studied in [16, 21]. We note that
Dm,r,λ(n, x) are polynomials of degree n with rational coefficients for all non-
negative integer n. Thus, for each n, {Dm,r,λ(0, x), Dm,r,λ(1, x) · · · , Dm,r,λ(n, x)}
forms bases for the (n+1)-dimensional space Pn(C) = {p(x) ∈ C[x]| deg p(x) ≤
n}. Thus, we can express p(x) by

p(x) = α0,rDm,r,λ(0, x) + α1,rDm,r,λ(1, x) + · · ·+ αn,rDm,r,λ(n, x).

In this paper, we study methods for computing αi,r (i = 0, 1, 2 · · · , n)
by using umbral calculus. Applying this result, we derive some interesting
identities for certain special polynomials. In addition, we derive interesting
identities of the degenerate r-Dowling polynomials which derived from the
falling factorials bases, the Euler polynomials bases, Daehee polynomials
bases, degenerate r-Bell polynomials bases, bell polynomials bases by using
umbral calculus, respectively.

First, we introduce the basic definitions and properties of the degenerate
r-Dowling polynomials and umbral calculus needed in this paper.

For any λ ∈ R − {0}, the degenerate exponential function exλ(t) is given
by

(2) exλ(t) = (1 + λt)
x
λ =

∞∑
n=0

(x)n,λ
tn

n!
, (see [4-17]),

where (x)n,λ = x(x− λ) · · · (x− (n− 1)λ)
)
, (n ≥ 1) and (x)0,λ = 1 .

When λ = 1, (x)0 = 1 and (x)n = x(x− 1) · · · (x− (n− 1))
)
, (n ≥ 1).

The degenerate logarithm function logλ(1+ t), which is the compositional
inverse of the degenerate exponential function eλ(t), is given by

logλ(1 + t) =

∞∑
n=1

λn−1(1)n,1/λ
tn

n!

=
1

λ

∞∑
n=1

(λ)n
tn

n!
=

1

λ

(
(1 + t)λ − 1

)
, (see [14]).

(3)

For r ≥ 0 and m ≥ 1, from (1), it is easy to see that the generating
function of the degenerate r-Whitney numbers of the second kind is

∞∑
n=j

Wm,r,λ(n, j)
tn

n!
= erλ(t)

1

j!

(
emλ (t)− 1

m

)j

, (see [16, 21]).(4)

For m ∈ N, the degenerate r-Dowling polynomials of the second kind are
given by

Dm,r,λ(n|x) =
n∑

j=0

Wm,r,λ(n, j)x
j , (n ≥ 0), (see [16, 21])(5)

and the generating function of degenerate r-Dowling polynomials of the
second kind given by

erλ(t)e
x(

emλ (t)−1

m
) =

∞∑
n=0

Dm,r,λ(n|x) t
n

n!
, (see [21]).(6)
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When x = 1, we get Dm,r,λ(n) = Dm,r,λ(n|1) which are called the degenerate
r-Dowling numbers of the second kind [16].
When r = 1, we get Dm,λ(n, x) = Dm,1,λ(n|x) which are called the degener-
ate Dowling polynomials of the second kind [18].

For n ≥ 0, the Stirling numbers of the first and second kind are given by
respectively

(x)n =

n∑
l=0

S1(n, l)x
l, and

1

k!
(log(1 + t))k =

∞∑
n=k

S1(n, k)
tn

n!
, (see [8, 25]).

(7)

and

xn =
n∑

l=0

S2(n, l)(x)l, and
1

k!
(et − 1)k =

∞∑
n=k

S2(n, k)
tn

n!
, (see [8, 25]).

(8)

The degenerate Stirling numbers of the first kind are given by

(x)n =

n∑
l=0

S1,λ(n, l)(x)l,λ and
1

k!

(
logλ(1 + t)

)k
=

∞∑
n=k

S1,λ(n, k)
tn

n!
(k ≥ 0), (see [17]).

(9)

The degenerate Stirling numbers of the second kind are given by

(x)n,λ =
n∑

l=0

S2,λ(n, l)(x)l and
1

k!

(
eλ(t)− 1

)k
=

∞∑
n=k

S2,λ(n, k)
tn

n!
(k ≥ 0), (see [17]).

(10)

It is well known that the ordinary Bell polynomials and the generating
function of them are given by

beln(x) =
n∑

k=0

S2(n, k)x
k, and ex(e

t−1) =
∞∑
n=0

beln(x)
tn

n!
, (see [5, 20, 25]),

(11)

respectively.
Let s ∈ N

⋃{0}, the s-Stirling numbers S2,s(n, j) of the second kind are
given by

1

j!
est(et − 1)j =

∞∑
n=j

S2,s(n+ s, j + s)
tn

n!
, (see [3, 4, 21, 28]).(12)

Bell polynomials are also well known in enumerative combinatorics, whose
coefficients are Stirling and s-Stirling numbers of the second kind, respec-
tively [8, 4, 28].

Kim et al. studied the unsigned degenerate s-Stirling numbers of the
second kind defined by

(x+ s)n,λ =
n∑

j=0

S
(s)
2,λ(n+ s, j + s)(x)j , (n ≥ 0), (see [21]),(13)
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and the generating function of degenerate s-Bell polynomials given by

esλ(t)e
x(eλ(t)−1) =

∞∑
n=0

Bel(s)n (x|λ) t
n

n!
, (see [20, 21]).(14)

When x = 1, Bel
(s)
n (λ) = Bel

(s)
n (1|λ) are called the degenerate s-Bell

numbers.
The Bernoulli and Euler polynomials are defined by means of

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
and

2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
, (see [8, 9, 25]).

(15)

In the special case, x = 0, Bn(0) = Bn and En(0) = En are called the
n-th Bernoulli and Euler numbers.

From (15), we note that

Bn(x) =

n∑
l=0

(
n

l

)
Blx

n−l, amd En(x) =

n∑
l=0

(
n

l

)
Elx

n−l.(16)

and

En(x) =
n∑

l=0

(
n

l

)
Elx

n−l.(17)

The Daehee polynomials are given by

log(1 + t)

t
(1 + t)x =

∞∑
n=0

D̃n(x)
tn

n!
, (see [15]).(18)

When x = 0, D̃n = D̃n(0) are called the Daehee numbers.

Let C be the complex number field and let F be the set of all power series
in the variable t over C with

F =

{
f(t) =

∞∑
k=0

ak
tk

k!

∣∣∣∣ ak ∈ C
}
.

Let P = C[x] and Pn = { P (x) ∈ P | degP (x) ≤ n}, (n ≥ 0). Then Pn is
an (n+ 1)-dimensional vector space over C.

For f(t) =
∞∑
k=0

ak
tk

k!
∈ F and a fixed nonzero real number, each gives rise

to the linear functional �f(t) | ·� on P, called linear functional given by f(t),
which is defined by

�f(t) | xn� = an, for all n ≥ 0 (see [24]).(19)

In particular �tk | xn� = n!δn,k, for all n, k ≥ 0, where δn,k is the Kronecker’s
symbol.

We observe that the linear functional �f(t) | ·� agrees with the one in
�f(t) | xn� = ak, (k ≥ 0).

For each nonnegative integer k, the differential operator on P is given by

(20) (tk)xn =

{
(n)kx

n−k, if k ≤ n,

0 if k ≥ n, (see [24]).
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and for any power series f(t) =
∞∑
k=0

ak
tk

k!
∈ F , (f(t))xn =

n∑
k=0

(
n

k

)
akx

n−k, (n ≥
0).

The order o(f(t)) of a power series f(t)( �= 0) is the smallest integer k for
which the coefficient of tk does not vanish. The series f(t) is called invertible
if o(f(t)) = 0 and such series has a multiplicative inverse 1/f(t) of f(t). f(t)
is called a delta series if o(f(t)) = 1 and it has a compositional inverse f(t)
of f(t) with f(f(t)) = f(f(t)) = t [24].

Let f(t) and g(t) be a delta series and an invertible series, respectively.
Then there exists a unique sequences sn(x) such that the orthogonality con-
ditions holds

〈
g(t)

(
f(t)

)k | sn(x)� = n!δn,k, (n, k ≥ 0) (see [24]).(21)

By the uniqueness of (21), the sequence sn(x) is called the Sheffer sequence
for (g(t), f(t)), which are denoted by sn(x) ∼ (g(t), f(t)).

The sequence sn(x) ∼ (g(t), f(t)) if and only if

1

g
(
f(t)

)ex
(
f(t)

)
=

∞∑
k=0

sk(x)

k!
tk (n, k ≥ 0), (see [24]).(22)

Let sn(x) ∼ (g(t), f(t)) and rn(x) ∼ (h(t), l(t)), (n ≥ 0). Then

sn(x) =
n∑

k=0

an,krk(x), (n ≥ 0),

where an,k =
1

k!

〈
h(f(t))

g(f(t))

(
l(f(t))

)k | xn
〉
, (n, k ≥ 0), (see [24]).

(23)

2. Identities associated with degenerate r-Dowling polynomials
by using umbral calculus

From now on, we explore combinatorial identities between degenerate r-
Dowling polynomials and special polynomials and numbers by using umbral
calculus.

The compositional inverse of

f(t) = logλ(mt+ 1)
1
m =

1

λ

(
(mt+ 1)

λ
m − 1

)
=

1

λ

( ∞∑
i=1

( λ
m

i

)
(mt)i

)
(24)

is f(t) = 1
m(emλ (t)− 1).

From (22) and (24), we have the Sheffer sequence

Dm,r,λ(n, x) ∼
(
(mt+ 1)−

r
m , logλ(mt+ 1)

1
m

)
.(25)

From (2), we note that

emλ (t) = (1 + λt)
m
λ = e λ

m
(mt).(26)



H. K. Kim448

6 HYE KYUNG KIM

By (10) and (26), we have

1

j!

(
emλ (t)− 1

m

)j

=
1

mj

1

j!
(e λ

m
(mt)− 1)j =

∞∑
k=j

mk−jS2, λ
m
(k, j)

tk

k!
.(27)

Theorem 2.1. Let p(x) ∈ Pn(C) with p(x) =
∑n

k=0 αk,rDm,r,λ(k, x). Then
we have

αk,r =
1

λkk!

k∑
j=0

deg p(x)∑
l=0

(
l

j

)(1+λj
m

l

)
(−1)k−jmlp(l)(0),

where p(n)(0) = dnp(x)
dx

∣∣∣∣
x=0

.

Proof. Let p(x) =
∑n

k=0 αk,rDm,r,λ(k, x). Then, from (21) and (25), we
observe that

�(mt+ 1)−
r
m (logλ(mt+ 1)

1
m )k|p(x)�

=

n∑
k=0

αk,r�(mt+ 1)−
r
m (logλ(mt+ 1)k)|Dm,r,λ(k, x)�

=

n∑
k=0

αk,rn!δn,k = k!αk,r.

(28)

By (20) and (28), we have

αk,r =
1

k!
�(mt+ 1)−

r
m (logλ(mt+ 1)

1
m )k|p(x)�

=
1

λkk!
�(mt+ 1)

1
m ((mt+ 1)

λ
m − 1)k|p(x)�

=
1

λkk!

k∑
j=0

(
k

j

)
(−1)k−j�(mt+ 1)

1
m
+ λ

m
j |p(x)�

=
1

λkk!

k∑
j=0

(
k

j

)
(−1)k−j

deg p(x)∑
l=0

(1+λj
m

l

)
ml�tl|p(x)�

=
1

λkk!

k∑
j=0

deg p(x)∑
l=0

(
l

j

)(1+λj
m

l

)
(−1)k−jmlp(l)(0),

(29)

where p(n)(0) = dnp(x)
dx

∣∣∣∣
x=0

.

From (29), we attain the desired result.
�

Some Applications of Theorem 1. Let p(n) = dnp(x)
dx . Then we give

some Applications of Theorem 1.
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(a) Let p(x) =
∑n

k=0Bk(x)Bn−k(x) ∈ Pn(C).
Then, by (16), we easily have

p(1)(x) =
n∑

k=1

kBk−1(x)Bn−k(x) +
n−1∑
k=0

(n− k)Bn−k−1(x)Bk(x)

= 2

n∑
k=1

kBk−1(x)Bn−k(x),

p(2)(x) = 2(n+ 1)
n∑

k=2

(k − 1)Bk−2(x)Bn−k(x),

...

p(l)(x) = 2
(n+ 1)!

(n− l + 2)!

n∑
k=l

(k − l + 1)Bk−l(x)Bn−k(x).(30)

Combining (30) with Theorem 1, we have

n∑
k=0

Bk(x)Bn−k(x) =
1

λkk!

n−1∑
k=1

( k∑
j=0

deg p(x)∑
l=0

n∑
k=l

(
l

j

)(1+λj
m

l

)

× (n+ 1)!2(k − l + 1)(−1)k−jml

(n− l + 2)!
Bk−lBn−k

)
Dm,r,λ(k, x).

(b) Let q(x) =
∑n

k=0Ek(x)En−k(x) ∈ Pn(C).
Then, by (17), we note that

q(l)(x) =
2(n+ 1)!

(n+ 2− l)!

n∑
k=l

(k − l + 1)Ek−l(x)En−k(x).(31)

Combining (31) with Theorem 1, we have

n∑
k=0

Ek(x)En−k(x) =
1

λkk!

n−1∑
k=1

( k∑
j=0

deg q(x)∑
l=0

n∑
k=l

(
l

j

)(1+λj
m

l

)

× (n+ 1)!2(k − l + 1)(−1)k−jml

(n− l + 2)!
Ek−lEn−k

)
Dm,r,λ(k, x).

(c) Let u(x) =
∑n

k=0Bk(x)En−k(x) ∈ Pn(C). Then, by (16), we easily
that

u(1)(x) = (n+ 1)

n∑
k=1

Bk−1(x)En−k(x)

u(2)(x) = n(n+ 1)

n∑
k=2

Bk−2(x)En−k(x).

...

u(l)(x) =
(n+ 1)!

(n+ 1− l)!

n∑
k=l

Bk−l(x)En−k(x).(32)



H. K. Kim450

8 HYE KYUNG KIM

Combining (32) with Theorem 1, we have

n∑
k=0

Bk(x)En−k(x) =
1

λkk!

n−1∑
k=1

( k∑
j=0

deg u(x)∑
l=0

n∑
k=l

(
l

j

)(1+λj
m

l

)

× (n+ 1)!(k − l + 1)(−1)k−jml

(n− l + 1)!
Bk−lEn−k

)
Dm,r,λ(k, x).

Gessel [11] showed a short proof of Miki’s identity for Bernoulli numbers,

n−1∑
i=1

1

i(n− i)
BiBn−i =

n−2∑
i=2

(
n

i

)
1

i(n− i)
BiBn−i + 2Hn

Bn

n
, (n ≥ 4),

where Hn = 1 + 1
2 + · · ·+ 1

n are the harmonic numbers.

Theorem 2.2. For n ≥ 0, we have

Dm,r,λ(n, x) =

n∑
d=0

( n∑
l=d

l∑
s=0

(
l

s

)
1

l!ml
(−1)l−s(r +ms)n,λS2(l, d)

)
(x)d

Proof. From (22) and (25), we consider the following two Sheffer sequences:

Dm,r,λ(m,x) ∼
(
(mt+ 1)−

r
m , logλ(mt+ 1)

1
m

)
and (x)n ∼ (1, et − 1),

(33)

since ex log(1+t) = (1 + t)x =
∑∞

n=0(x)n
tn

n! .
From (23) and (33), we have

Dm,r,λ(m,x) =

n∑
d=0

an,d(x)d,(34)

where, by (2) and (8)

an,d =
1

d!

〈
erλ(t)

(
e

emλ (t)−1

m − 1

)d

|xn
〉

=

n∑
l=d

S2(l, d)
1

l!ml

〈
erλ(t)(e

m
λ (t)− 1)l|xn

〉

=
n∑

l=d

S2(l, d)
1

l!ml

l∑
s=0

(
l

s

)
(−1)l−s

〈
er+ms
λ (t)|xn

〉

=
n∑

l=d

l∑
s=0

(
l

s

)
1

l!ml
(−1)l−s(r +ms)n,λS2(l, d).

(35)

Combining (34) with (35), we get the desired the identity. �

Theorem 2.3. For n ≥ 0, we have

Dm,r,λ(n, x) =
1

2

n∑
d=0

( d∑
l=0

(
d

l

)
(−1)d−l

d!md

( n∑
α=0

(
n

α

)
(ml)α,λDm,r,λ(n− α) + (ml + r)n,λ

)
Ed(x)
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and

Dm,r,λ(n, x) =
1

2

n∑
d=0

n∑
l=d

(
n

l

)[
1 +

n−l∑
j=0

S2, λ
m
(n− l, j)mn−l−j

]
Wm,r,λ(l, d)Ed(x),

where En(x) are the Euler polynomials.

Proof. From (15), (22) and (25), we consider the following two Sheffer se-
quences:

Dm,r,λ(n, x) ∼
(
(mt+ 1)−

r
m , logλ(mt+ 1)

1
m

)
and En(x) ∼

(
et + 1

2
, t

)
.

(36)

From (23) and (36), we have

Dm,r,λ(n, x) =
n∑

d=0

an,dEd(x),(37)

where, by (2) and (6),

an,d =
1

d!

〈
erλ(t)

(
e

emλ (t)−1

m + 1

2

)(
emλ (t)− 1

m

)d∣∣∣∣xn
〉

=
1

d!

1

2md

〈
erλ(t)

(
e

emλ (t)−1

m + 1

)
(emλ (t)− 1)d

∣∣∣∣xn
〉

=
1

d!

1

2md

d∑
l=0

(
d

l

)
(−1)d−l

〈
erλ(t)

(
e

emλ (t)−1

m + 1

)
eml
λ (t)

∣∣∣∣xn
〉

=
1

d!

1

2md

d∑
l=0

(
d

l

)
(−1)d−l

[〈
erλ(t)e

emλ (t)−1

m eml
λ (t)

∣∣∣∣xn
〉
+

〈
eml+r
λ (t)

∣∣∣∣xn
〉]

=
1

d!

1

2md

d∑
l=0

(
d

l

)
(−1)d−l

[ n∑
α=0

(ml)α,λ

(
n

α

)〈
erλ(t)e

emλ (t)−1

m

∣∣∣∣xn−α

〉
+ (ml + r)n,λ

]

=
1

d!

1

2md

d∑
l=0

(
d

l

)
(−1)d−l

[ n∑
α=0

(
n

α

)
(ml)α,λDm,r,λ(n− α) + (ml + r)n,λ

]
.

(38)

Combining (37) with (38), we obtain the first identity.
In another way, we observe that by (4) and (27)

an,d =
1

d!

〈
erλ(t)

(
e

emλ (t)−1

m + 1

2

)(
emλ (t)− 1

m

)d∣∣∣∣xn
〉

=
1

2

n∑
l=d

Wm,r,λ(l, d)

(
n

l

)〈
e

emλ (t)−1

m + 1

∣∣∣∣xn−l

〉

=
1

2

n∑
l=d

Wm,r,λ(l, d)

(
n

l

)[
1 +

n−l∑
j=0

S2, λ
m
(n− l, j)mn−l−j

]
.

(39)

combining with (37) and (39), we get the second identity. �
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Theorem 2.4. For n ≥ 0, we have

Dm,r,λ(n, x) =

n∑
d=0

( n∑
l=d

n−l∑
j=0

(
n

l

)
mn−l−j

j + 1
S2, λ

m
(n− l, j)Wm,r,λ(l, d)

)
Bd(x).

where Bn(x) are the ordinary Bernoulli polynomials.

Proof. From (15), (22) and (25), we consider the following two Sheffer se-
quence as follows:

Dm,r,λ(n, x) ∼
(
(mt+ 1)−

r
m , logλ(mt+ 1)

1
m

)
and Bn(x) ∼

(
et − 1

t
, t

)
.

(40)

From (23) and (40), we have

Dm,r,λ(n, x) =

n∑
d=0

an,dBd(x),(41)

where, by (4) and (27) we get

an,d =
1

d!

〈(
e

emλ (t)−1

m − 1

)(
emλ (t)− 1

m

)−1

erλ(t)

(
emλ (t)− 1

m

)d∣∣∣∣xn
〉

=

n∑
l=d

Wm,r,λ(l, d)

(
n

l

)〈 ∞∑
j=1

1

j!

(
emλ (t)− 1

m

)j−1∣∣∣∣xn−l

〉

=
n∑

l=d

Wm,r,λ(l, d)

(
n

l

)〈 ∞∑
j=0

1

(j + 1)!

(
emλ (t)− 1

m

)j∣∣∣∣xn−l

〉

=
n∑

l=d

Wm,r,λ(l, d)

(
n

l

) n−l∑
j=0

mn−l−j

j + 1
S2, λ

m
(n− l, j).

(42)

Combining (41) with (42), we get the desired identity. �

Theorem 2.5. For n ≥ 0, we have

Dm,r,λ(n, x) =
n∑

d=0

( n∑
l=d+1

d+ 1

l
S1(l, d+ 1)Wm,r,λ(n, l − 1)

)
D̃d(x).

where D̃n(x) are the Daehee polynomials.

Proof. From (18), (22) and (25), we consider the following two Sheffer se-
quence:

Dm,r,λ(n, x) ∼
(
(mt+ 1)−

r
m , logλ(mt+ 1)

1
m

)
and D̃n(x) ∼

(
et − 1

t
, et − 1

)
.

(43)

From (23) and (43), we have

Dm,r,λ(n, x) =

n∑
d=0

an,dD̃d(x),(44)
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where, from (4) and (18), we have

an,d =
1

d!

〈(
e

emλ (t)−1

m − 1

)(
emλ (t)− 1

m

)−1

erλ(t)

(
e

emλ (t)−1

m − 1

)d∣∣∣∣xn
〉

= (d+ 1)
n∑

l=d+1

S1(l, d+ 1)
1

l!

〈(
emλ (t)− 1

m

)l−1

erλ(t)

∣∣∣∣xn
〉

= (d+ 1)

n∑
l=d+1

S1(l, d+ 1)
1

l!

〈
(l − 1)!

∞∑
s=l−1

Wm,r,λ(s, l − 1)
ts

s!

∣∣∣∣xn
〉

=
d+ 1

l

n∑
l=d+1

S1(l, d+ 1)Wm,r,λ(n, l − 1).

(45)

Combining (44) with (45), we get the desired identity. �

Theorem 2.6. For n ≥ 0, we have

Dm,r,λ(n, x) =

n∑
d=0

( n∑
l=d

n∑
j=l

n−j∑
i=0

(
n

j

)
(−1)i�s�imk−2j

i!mi
S1,λ(l, d)

× S2, λ
m
(n− j, j)Wm,r,λ(j, l)

)
Bel

(r)
d (x|λ),

where Bel
(s)
n (x|λ) are the degenerate s-Bell polynomials.

Proof. By (14) and (22), we note that we get

Bel(s)n (x|λ) ∼ ((1 + t)−s, logλ(1 + t)).(46)

From (4), (25) and (46), we have

Dm,r,λ(n, x) =
n∑

d=0

an,dBel
(s)
d (x|λ),(47)
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where, from (4), (9) and (27), we get

an,d =
1

d!

〈(
1 +

emλ (t)− 1

m

)−s

erλ(t)

(
logλ

(
1 +

emλ (t)− 1

m

))d

|xn
〉

=

〈(
1 +

emλ (t)− 1

m

)−s

erλ(t)
∞∑
l=d

S1,λ(l, d)
(
emλ (t)−1

m )l

l!
|xn

〉

=

〈(
1 +

emλ (t)− 1

m

)−s

erλ(t)
∞∑
l=d

S1,λ(l, d)
∞∑
j=l

Wm,r,λ(j, l)
tj

j!
|xn

〉

=
n∑

j=d

j∑
l=d

S1,λ(l, d)Wm,r,λ(j, l)

(
n

j

)〈(
1 +

emλ (t)− 1

m

)−s

|xn−j

〉

=

n∑
l=d

S1,λ(l, d)
n∑
j=l

(
n

j

)
Wm,r,λ(j, l)

〈 ∞∑
i=0

�s�i (−1)i

i!

(
emλ (t)− 1

m

)i

|xn−j

〉

=
n∑

l=d

n∑
j=l

n−j∑
i=0

(
n

j

)
(−1)i�s�i

i!mi
S1,λ(l, d)Wm,r,λ(j, l)

〈
1

i!

(
emλ (t)− 1

m

)i∣∣∣∣xn−j

〉

=
n∑

l=d

n∑
j=l

n−j∑
i=0

(
n

j

)
(−1)i�s�i

i!mi
S1,λ(l, d)Wm,r,λ(j, l)m

k−2jS2, λ
m
(n− j, j).

(48)

Combining (47) with (48), we have the identity. �

Theorem 2.7. For n ≥ 0, we have

Dm,r,λ(n, x) =
n∑

d=0

( n∑
l=d

S1(l, d)Wm,r,λ(n, l)

)
beld(x).

where beln(x) are the Bell polynomials.

Proof. From (11), (22) and (25) , we consider the following two Sheffer
sequences:

Dm,r,λ(n, x) ∼
(
(mt+ 1)−

r
m , logλ(mt+ 1)

1
m

)
and beln(x) ∼ (1, log(1 + t)).

(49)

From (23) and (49), we have

Dm,r,λ(n, x) =
n∑

d=0

an,dbeld(x),(50)
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where, from (4) and (7), we have

an,d =
1

d!

〈
erλ(t)

(
log

(
1 +

emλ (t)− 1

m

))d∣∣∣∣xn
〉

=

〈
erλ(t)

∞∑
l=d

S1(l, d)
1

l!

(
emλ (t)− 1

m

)l∣∣∣∣xn
〉

=

n∑
l=d

S1(l, d)

〈 ∞∑
j=l

Wm,r,λ(j, l)
tj

j!

∣∣∣∣xn
〉

=

n∑
l=d

S1(l, d)Wm,r,λ(n, l).

(51)

Combining (50) with (51), we get the identity. �
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