SOME IDENTITIES OF DEGENERATE r-DOWLING POLYNOMIALS OF THE SECOND KIND ARISING FROM UMBRAL CALCULUS

HYE KYUNG KIM

Abstract

Recently, the author Kim and Lee [16] introduced interesting properties and identities for the degenerate r-Dowling polynomials and numbers associated with the degenerate r-Whitney numbers of the second kind. In this paper, we study methods for computing the rational coefficients of a linear combination of the degenerate r-Dowling polynomials of the second kind with degree n by using umbral calculus, for algebraic applications of [16]. We derive some interesting identities for certain special polynomials from these coefficients. Furthermore, we explore various identities of the degenerate r-Dowling polynomials arising from the falling factorials bases, the Euler polynomials bases, the Daehee polynomials bases, the degenerate r-Bell polynomials bases, the Bell polynomials bases by using umbral calculus, respectively.

2010 Mathematics Subject Classification. 05A15, 05A18, 11B83.
Keywords and phrases. degenerate r-Whitney numbers and polynomials of the second, degenerate r-Dowling numbers and polynomials of the second, falling factorials, r-Bell polynomials, umbral calculus.

1. Introduction

As a generalization of the Whitney numbers $w_{m}(n, k)$ and $W_{m}(n, k)$ of the first and second kind associated with the Dowling lattice $Q_{n}(G)$ for a group G with order m [1, 9], Mezö [22] introduced r-Whitney numbers of the first and second kind given by

$$
m^{n}(x)_{n}=\sum_{k=0}^{n} w_{m, r}(n, k)(m x+r)^{k},
$$

and

$$
\begin{equation*}
(m x+r)^{n}=\sum_{k=0}^{n} W_{m, r}(n, k) m^{k}(x)_{k}, \tag{1}
\end{equation*}
$$

respectively. When $r=1, w_{m}(n, k)=w_{m, 1}(n, k)$ and $W_{m}(n, k)=W_{m, 1}(n, k)$.
The r-Whitney numbers of the first and second kind are applied to various fields such as physics and engineering as well as mathematical applications [2, 5, 6, 11, 12, 15, 20, 21, 24-26]. In addition, many scholars have studied degenerate special polynomials and numbers to which the strength of psychological burdens or environmental changes can be applied [4, 13-17, 20]. Recently, the degenerate r-Dowling polynomials $D_{m, r, \lambda}(n, x)$ and numbers

[^0]$D_{m, r, \lambda}(n)$ of the second kind respectively associated with the degenerate r Whitney numbers of the second kind were studied in [16, 21]. We note that $D_{m, r, \lambda}(n, x)$ are polynomials of degree n with rational coefficients for all nonnegative integer n. Thus, for each $n,\left\{D_{m, r, \lambda}(0, x), D_{m, r, \lambda}(1, x) \cdots, D_{m, r, \lambda}(n, x)\right\}$ forms bases for the $(n+1)$-dimensional space $\mathbb{P}_{n}(\mathbb{C})=\{p(x) \in \mathbb{C}[x] \mid \operatorname{deg} p(x) \leq$ $n\}$. Thus, we can express $p(x)$ by
$$
p(x)=\alpha_{0, r} D_{m, r, \lambda}(0, x)+\alpha_{1, r} D_{m, r, \lambda}(1, x)+\cdots+\alpha_{n, r} D_{m, r, \lambda}(n, x)
$$

In this paper, we study methods for computing $\alpha_{i, r}(i=0,1,2 \cdots, n)$ by using umbral calculus. Applying this result, we derive some interesting identities for certain special polynomials. In addition, we derive interesting identities of the degenerate r-Dowling polynomials which derived from the falling factorials bases, the Euler polynomials bases, Daehee polynomials bases, degenerate r-Bell polynomials bases, bell polynomials bases by using umbral calculus, respectively.

First, we introduce the basic definitions and properties of the degenerate r-Dowling polynomials and umbral calculus needed in this paper.

For any $\lambda \in \mathbb{R}-\{0\}$, the degenerate exponential function $e_{\lambda}^{x}(t)$ is given by

$$
\begin{equation*}
e_{\lambda}^{x}(t)=(1+\lambda t)^{\frac{x}{\lambda}}=\sum_{n=0}^{\infty}(x)_{n, \lambda} \frac{t^{n}}{n!}, \quad(\text { see }[4-17]) \tag{2}
\end{equation*}
$$

where $\left.(x)_{n, \lambda}=x(x-\lambda) \cdots(x-(n-1) \lambda)\right),(n \geq 1)$ and $(x)_{0, \lambda}=1$.
When $\lambda=1,(x)_{0}=1$ and $\left.(x)_{n}=x(x-1) \cdots(x-(n-1))\right),(n \geq 1)$.
The degenerate logarithm function $\log _{\lambda}(1+t)$, which is the compositional inverse of the degenerate exponential function $e_{\lambda}(t)$, is given by

$$
\begin{align*}
\log _{\lambda}(1+t) & =\sum_{n=1}^{\infty} \lambda^{n-1}(1)_{n, 1 / \lambda} \frac{t^{n}}{n!} \\
& =\frac{1}{\lambda} \sum_{n=1}^{\infty}(\lambda)_{n} \frac{t^{n}}{n!}=\frac{1}{\lambda}\left((1+t)^{\lambda}-1\right), \quad(\text { see }[14]) . \tag{3}
\end{align*}
$$

For $r \geq 0$ and $m \geq 1$, from (1), it is easy to see that the generating function of the degenerate r-Whitney numbers of the second kind is

$$
\begin{equation*}
\sum_{n=j}^{\infty} W_{m, r, \lambda}(n, j) \frac{t^{n}}{n!}=e_{\lambda}^{r}(t) \frac{1}{j!}\left(\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{j}, \quad(\text { see }[16,21]) \tag{4}
\end{equation*}
$$

For $m \in \mathbb{N}$, the degenerate r-Dowling polynomials of the second kind are given by

$$
\begin{equation*}
D_{m, r, \lambda}(n \mid x)=\sum_{j=0}^{n} W_{m, r, \lambda}(n, j) x^{j}, \quad(n \geq 0), \quad(\text { see }[16,21]) \tag{5}
\end{equation*}
$$

and the generating function of degenerate r-Dowling polynomials of the second kind given by

$$
\begin{equation*}
e_{\lambda}^{r}(t) e^{x\left(\frac{e_{\lambda}^{m}(t)-1}{m}\right)}=\sum_{n=0}^{\infty} D_{m, r, \lambda}(n \mid x) \frac{t^{n}}{n!}, \quad(\text { see }[21]) \tag{6}
\end{equation*}
$$

When $x=1$, we get $D_{m, r, \lambda}(n)=D_{m, r, \lambda}(n \mid 1)$ which are called the degenerate r-Dowling numbers of the second kind [16].
When $r=1$, we get $D_{m, \lambda}(n, x)=D_{m, 1, \lambda}(n \mid x)$ which are called the degenerate Dowling polynomials of the second kind [18].

For $n \geq 0$, the Stirling numbers of the first and second kind are given by respectively
$(x)_{n}=\sum_{l=0}^{n} S_{1}(n, l) x^{l}, \quad$ and $\quad \frac{1}{k!}(\log (1+t))^{k}=\sum_{n=k}^{\infty} S_{1}(n, k) \frac{t^{n}}{n!}, \quad($ see $[8,25])$.
and
(8)

$$
x^{n}=\sum_{l=0}^{n} S_{2}(n, l)(x)_{l}, \quad \text { and } \quad \frac{1}{k!}\left(e^{t}-1\right)^{k}=\sum_{n=k}^{\infty} S_{2}(n, k) \frac{t^{n}}{n!}, \quad(\text { see }[8,25]) .
$$

The degenerate Stirling numbers of the first kind are given by
$(x)_{n}=\sum_{l=0}^{n} S_{1, \lambda}(n, l)(x)_{l, \lambda} \quad$ and $\quad \frac{1}{k!}\left(\log _{\lambda}(1+t)\right)^{k}=\sum_{n=k}^{\infty} S_{1, \lambda}(n, k) \frac{t^{n}}{n!} \quad(k \geq 0), \quad($ see $[17])$.
The degenerate Stirling numbers of the second kind are given by
$(x)_{n, \lambda}=\sum_{l=0}^{n} S_{2, \lambda}(n, l)(x)_{l} \quad$ and $\quad \frac{1}{k!}\left(e_{\lambda}(t)-1\right)^{k}=\sum_{n=k}^{\infty} S_{2, \lambda}(n, k) \frac{t^{n}}{n!} \quad(k \geq 0), \quad($ see [17]).
It is well known that the ordinary Bell polynomials and the generating function of them are given by
$b e l_{n}(x)=\sum_{k=0}^{n} S_{2}(n, k) x^{k}, \quad$ and $\quad e^{x\left(e^{t}-1\right)}=\sum_{n=0}^{\infty} b e l_{n}(x) \frac{t^{n}}{n!}, \quad($ see $[5,20,25])$,
respectively.
Let $s \in \mathbb{N} \bigcup\{0\}$, the s-Stirling numbers $S_{2, s}(n, j)$ of the second kind are given by

$$
\begin{equation*}
\frac{1}{j!} e^{s t}\left(e^{t}-1\right)^{j}=\sum_{n=j}^{\infty} S_{2, s}(n+s, j+s) \frac{t^{n}}{n!}, \quad(\text { see }[3,4,21,28]) . \tag{12}
\end{equation*}
$$

Bell polynomials are also well known in enumerative combinatorics, whose coefficients are Stirling and s-Stirling numbers of the second kind, respectively $[8,4,28]$.

Kim et al. studied the unsigned degenerate s-Stirling numbers of the second kind defined by

$$
\begin{equation*}
(x+s)_{n, \lambda}=\sum_{j=0}^{n} S_{2, \lambda}^{(s)}(n+s, j+s)(x)_{j}, \quad(n \geq 0), \quad(\text { see }[21]) \tag{13}
\end{equation*}
$$

and the generating function of degenerate s-Bell polynomials given by

$$
\begin{equation*}
e_{\lambda}^{s}(t) e^{x\left(e_{\lambda}(t)-1\right)}=\sum_{n=0}^{\infty} B e l_{n}^{(s)}(x \mid \lambda) \frac{t^{n}}{n!}, \quad(\text { see }[20,21]) \tag{14}
\end{equation*}
$$

When $x=1, \operatorname{Bel}_{n}^{(s)}(\lambda)=\operatorname{Bel}_{n}^{(s)}(1 \mid \lambda)$ are called the degenerate s-Bell numbers.

The Bernoulli and Euler polynomials are defined by means of
$\frac{t}{e^{t}-1} e^{x t}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!} \quad$ and $\quad \frac{2}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}, \quad($ see $\quad[8,9,25])$.
In the special case, $x=0, B_{n}(0)=B_{n}$ and $E_{n}(0)=E_{n}$ are called the n-th Bernoulli and Euler numbers.

From (15), we note that

$$
\begin{equation*}
B_{n}(x)=\sum_{l=0}^{n}\binom{n}{l} B_{l} x^{n-l}, \quad \text { amd } \quad E_{n}(x)=\sum_{l=0}^{n}\binom{n}{l} E_{l} x^{n-l} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{n}(x)=\sum_{l=0}^{n}\binom{n}{l} E_{l} x^{n-l} \tag{17}
\end{equation*}
$$

The Daehee polynomials are given by

$$
\begin{equation*}
\frac{\log (1+t)}{t}(1+t)^{x}=\sum_{n=0}^{\infty} \widetilde{D}_{n}(x) \frac{t^{n}}{n!}, \quad(\text { see }[15]) \tag{18}
\end{equation*}
$$

When $x=0, \widetilde{D}_{n}=\widetilde{D}_{n}(0)$ are called the Daehee numbers.
Let \mathbb{C} be the complex number field and let \mathcal{F} be the set of all power series in the variable t over \mathbb{C} with

$$
\mathcal{F}=\left\{\left.f(t)=\sum_{k=0}^{\infty} a_{k} \frac{t^{k}}{k!} \right\rvert\, a_{k} \in \mathbb{C}\right\}
$$

Let $\mathbb{P}=\mathbb{C}[x]$ and $\mathbb{P}_{n}=\{P(x) \in \mathbb{P} \mid \operatorname{deg} P(x) \leq n\}, \quad(n \geq 0)$. Then \mathbb{P}_{n} is an $(n+1)$-dimensional vector space over \mathbb{C}.

For $f(t)=\sum_{k=0}^{\infty} a_{k} \frac{t^{k}}{k!} \in \mathcal{F}$ and a fixed nonzero real number, each gives rise to the linear functional $\langle f(t) \mid \cdot\rangle$ on \mathbb{P}, called linear functional given by $f(t)$, which is defined by

$$
\begin{equation*}
\left.\left\langle f(t) \mid x^{n}\right\rangle=a_{n}, \quad \text { for all } n \geq 0 \quad \text { (see } \quad[24]\right) \tag{19}
\end{equation*}
$$

In particular $\left\langle t^{k} \mid x^{n}\right\rangle=n!\delta_{n, k}$, for all $n, k \geq 0$, where $\delta_{n, k}$ is the Kronecker's symbol.

We observe that the linear functional $\langle f(t) \mid \cdot\rangle$ agrees with the one in $\left\langle f(t) \mid x^{n}\right\rangle=a_{k}, \quad(k \geq 0)$.

For each nonnegative integer k, the differential operator on \mathbb{P} is given by

$$
\left(t^{k}\right) x^{n}= \begin{cases}(n)_{k} x^{n-k}, & \text { if } \quad k \leq n, \tag{20}\\ 0 & \text { if } \quad k \geq n, \quad(\text { see }[24]) .\end{cases}
$$

and for any power series $f(t)=\sum_{k=0}^{\infty} a_{k} \frac{t^{k}}{k!} \in \mathcal{F},(f(t)) x^{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} x^{n-k}, \quad(n \geq$ $0)$.

The order $o(f(t))$ of a power series $f(t)(\neq 0)$ is the smallest integer k for which the coefficient of t^{k} does not vanish. The series $f(t)$ is called invertible if $o(f(t))=0$ and such series has a multiplicative inverse $1 / f(t)$ of $f(t) . f(t)$ is called a delta series if $o(f(t))=1$ and it has a compositional inverse $\bar{f}(t)$ of $f(t)$ with $\bar{f}(f(t))=f(\bar{f}(t))=t[24]$.

Let $f(t)$ and $g(t)$ be a delta series and an invertible series, respectively. Then there exists a unique sequences $s_{n}(x)$ such that the orthogonality conditions holds

$$
\begin{equation*}
\left\langle g(t)(f(t))^{k} \mid s_{n}(x)\right\rangle=n!\delta_{n, k}, \quad(n, k \geq 0) \quad(\text { see } \quad[24]) \tag{21}
\end{equation*}
$$

By the uniqueness of (21), the sequence $s_{n}(x)$ is called the Sheffer sequence for $(g(t), f(t))$, which are denoted by $s_{n}(x) \sim(g(t), f(t))$.

The sequence $s_{n}(x) \sim(g(t), f(t))$ if and only if

$$
\begin{equation*}
\frac{1}{g(\bar{f}(t))} e^{x(\bar{f}(t))}=\sum_{k=0}^{\infty} \frac{s_{k}(x)}{k!} t^{k} \quad(n, k \geq 0) \tag{22}
\end{equation*}
$$

Let $s_{n}(x) \sim(g(t), f(t))$ and $r_{n}(x) \sim(h(t), l(t)),(n \geq 0)$. Then

$$
\begin{align*}
& s_{n}(x)=\sum_{k=0}^{n} a_{n, k} r_{k}(x), \quad(n \geq 0) \tag{23}\\
& \text { where } \quad a_{n, k}=\frac{1}{k!}\left\langle\left.\frac{h(\bar{f}(t))}{g(\bar{f}(t))}(l(\bar{f}(t)))^{k} \right\rvert\, x^{n}\right\rangle, \quad(n, k \geq 0), \quad(\text { see } \quad[24]) .
\end{align*}
$$

2. Identities associated with Degenerate r-Dowling polynomials BY USING UMBRAL CALCULUS

From now on, we explore combinatorial identities between degenerate r Dowling polynomials and special polynomials and numbers by using umbral calculus.

The compositional inverse of

$$
\begin{equation*}
f(t)=\log _{\lambda}(m t+1)^{\frac{1}{m}}=\frac{1}{\lambda}\left((m t+1)^{\frac{\lambda}{m}}-1\right)=\frac{1}{\lambda}\left(\sum_{i=1}^{\infty}\binom{\frac{\lambda}{m}}{i}(m t)^{i}\right) \tag{24}
\end{equation*}
$$

is $\bar{f}(t)=\frac{1}{m}\left(e_{\lambda}^{m}(t)-1\right)$.
From (22) and (24), we have the Sheffer sequence

$$
\begin{equation*}
D_{m, r, \lambda}(n, x) \sim\left((m t+1)^{-\frac{r}{m}}, \log _{\lambda}(m t+1)^{\frac{1}{m}}\right) \tag{25}
\end{equation*}
$$

From (2), we note that

$$
\begin{equation*}
e_{\lambda}^{m}(t)=(1+\lambda t)^{\frac{m}{\lambda}}=e_{\frac{\lambda}{m}}(m t) \tag{26}
\end{equation*}
$$

By (10) and (26), we have

$$
\begin{equation*}
\frac{1}{j!}\left(\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{j}=\frac{1}{m^{j}} \frac{1}{j!}\left(e_{\frac{\lambda}{m}}(m t)-1\right)^{j}=\sum_{k=j}^{\infty} m^{k-j} S_{2, \frac{\lambda}{m}}(k, j) \frac{t^{k}}{k!} \tag{27}
\end{equation*}
$$

Theorem 2.1. Let $p(x) \in \mathbb{P}_{n}(\mathbb{C})$ with $p(x)=\sum_{k=0}^{n} \alpha_{k, r} D_{m, r, \lambda}(k, x)$. Then we have

$$
\alpha_{k, r}=\frac{1}{\lambda^{k} k!} \sum_{j=0}^{k} \sum_{l=0}^{\operatorname{deg} p(x)}\binom{l}{j}\binom{\frac{1+\lambda j}{m}}{l}(-1)^{k-j} m^{l} p^{(l)}(0)
$$

where $p^{(n)}(0)=\left.\frac{d^{n} p(x)}{d x}\right|_{x=0}$.
Proof. Let $p(x)=\sum_{k=0}^{n} \alpha_{k, r} D_{m, r, \lambda}(k, x)$. Then, from (21) and (25), we observe that

$$
\begin{align*}
& \left\langle\left.(m t+1)^{-\frac{r}{m}}\left(\log _{\lambda}(m t+1)^{\frac{1}{m}}\right)^{k} \right\rvert\, p(x)\right\rangle \\
& \quad=\sum_{k=0}^{n} \alpha_{k, r}\left\langle\left.(m t+1)^{-\frac{r}{m}}\left(\log _{\lambda}(m t+1)^{k}\right) \right\rvert\, D_{m, r, \lambda}(k, x)\right\rangle \tag{28}\\
& \quad=\sum_{k=0}^{n} \alpha_{k, r} n!\delta_{n, k}=k!\alpha_{k, r}
\end{align*}
$$

By (20) and (28), we have

$$
\begin{align*}
\alpha_{k, r} & =\frac{1}{k!}\left\langle\left.(m t+1)^{-\frac{r}{m}}\left(\log _{\lambda}(m t+1)^{\frac{1}{m}}\right)^{k} \right\rvert\, p(x)\right\rangle \\
& =\frac{1}{\lambda^{k} k!}\left\langle\left.(m t+1)^{\frac{1}{m}}\left((m t+1)^{\frac{\lambda}{m}}-1\right)^{k} \right\rvert\, p(x)\right\rangle \\
& =\frac{1}{\lambda^{k} k!} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j}\left\langle\left.(m t+1)^{\frac{1}{m}+\frac{\lambda}{m} j} \right\rvert\, p(x)\right\rangle \tag{29}\\
& =\frac{1}{\lambda^{k} k!} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} \sum_{l=0}^{\operatorname{deg} p(x)}\binom{\frac{1+\lambda j}{m}}{l} m^{l}\left\langle t^{l} \mid p(x)\right\rangle \\
& =\frac{1}{\lambda^{k} k!} \sum_{j=0}^{k} \sum_{l=0}^{\operatorname{deg} p(x)}\binom{l}{j}\binom{\frac{1+\lambda j}{m}}{l}(-1)^{k-j} m^{l} p^{(l)}(0)
\end{align*}
$$

where $p^{(n)}(0)=\left.\frac{d^{n} p(x)}{d x}\right|_{x=0}$.
From (29), we attain the desired result.

Some Applications of Theorem 1. Let $p^{(n)}=\frac{d^{n} p(x)}{d x}$. Then we give some Applications of Theorem 1.
(a) Let $p(x)=\sum_{k=0}^{n} B_{k}(x) B_{n-k}(x) \in \mathbb{P}_{n}(\mathbb{C})$.

Then, by (16), we easily have

$$
\begin{aligned}
p^{(1)}(x) & =\sum_{k=1}^{n} k B_{k-1}(x) B_{n-k}(x)+\sum_{k=0}^{n-1}(n-k) B_{n-k-1}(x) B_{k}(x) \\
& =2 \sum_{k=1}^{n} k B_{k-1}(x) B_{n-k}(x) \\
p^{(2)}(x) & =2(n+1) \sum_{k=2}^{n}(k-1) B_{k-2}(x) B_{n-k}(x)
\end{aligned}
$$

$$
\begin{equation*}
p^{(l)}(x)=2 \frac{(n+1)!}{(n-l+2)!} \sum_{k=l}^{n}(k-l+1) B_{k-l}(x) B_{n-k}(x) . \tag{30}
\end{equation*}
$$

Combining (30) with Theorem 1, we have

$$
\begin{aligned}
& \sum_{k=0}^{n} B_{k}(x) B_{n-k}(x)=\frac{1}{\lambda^{k} k!} \sum_{k=1}^{n-1}\left(\sum_{j=0}^{k} \sum_{l=0}^{\operatorname{deg} p(x)} \sum_{k=l}^{n}\binom{l}{j}\binom{\frac{1+\lambda j}{m}}{l}\right. \\
&\left.\times \frac{(n+1)!2(k-l+1)(-1)^{k-j} m^{l}}{(n-l+2)!} B_{k-l} B_{n-k}\right) D_{m, r, \lambda}(k, x)
\end{aligned}
$$

(b) Let $q(x)=\sum_{k=0}^{n} E_{k}(x) E_{n-k}(x) \in \mathbb{P}_{n}(\mathbb{C})$.

Then, by (17), we note that

$$
\begin{equation*}
q^{(l)}(x)=\frac{2(n+1)!}{(n+2-l)!} \sum_{k=l}^{n}(k-l+1) E_{k-l}(x) E_{n-k}(x) \tag{31}
\end{equation*}
$$

Combining (31) with Theorem 1, we have

$$
\begin{aligned}
\sum_{k=0}^{n} E_{k}(x) E_{n-k}(x)=\frac{1}{\lambda^{k} k!} & \sum_{k=1}^{n-1}\left(\sum_{j=0}^{k} \sum_{l=0}^{\operatorname{deg} q(x)} \sum_{k=l}^{n}\binom{l}{j}\binom{\frac{1+\lambda j}{m}}{l}\right. \\
& \left.\times \frac{(n+1)!2(k-l+1)(-1)^{k-j} m^{l}}{(n-l+2)!} E_{k-l} E_{n-k}\right) D_{m, r, \lambda}(k, x)
\end{aligned}
$$

(c) Let $u(x)=\sum_{k=0}^{n} B_{k}(x) E_{n-k}(x) \in \mathbb{P}_{n}(\mathbb{C})$. Then, by (16), we easily that

$$
\begin{aligned}
& u^{(1)}(x)=(n+1) \sum_{k=1}^{n} B_{k-1}(x) E_{n-k}(x) \\
& u^{(2)}(x)=n(n+1) \sum_{k=2}^{n} B_{k-2}(x) E_{n-k}(x) .
\end{aligned}
$$

$$
\vdots
$$

$$
\begin{equation*}
u^{(l)}(x)=\frac{(n+1)!}{(n+1-l)!} \sum_{k=l}^{n} B_{k-l}(x) E_{n-k}(x) . \tag{32}
\end{equation*}
$$

Combining (32) with Theorem 1, we have

$$
\begin{aligned}
\sum_{k=0}^{n} B_{k}(x) E_{n-k}(x)=\frac{1}{\lambda^{k} k!} & \sum_{k=1}^{n-1}\left(\sum_{j=0}^{k} \sum_{l=0}^{\operatorname{deg} u(x)} \sum_{k=l}^{n}\binom{l}{j}\binom{\frac{1+\lambda j}{m}}{l}\right. \\
& \left.\times \frac{(n+1)!(k-l+1)(-1)^{k-j} m^{l}}{(n-l+1)!} B_{k-l} E_{n-k}\right) D_{m, r, \lambda}(k, x)
\end{aligned}
$$

Gessel [11] showed a short proof of Miki's identity for Bernoulli numbers,

$$
\sum_{i=1}^{n-1} \frac{1}{i(n-i)} B_{i} B_{n-i}=\sum_{i=2}^{n-2}\binom{n}{i} \frac{1}{i(n-i)} B_{i} B_{n-i}+2 H_{n} \frac{B_{n}}{n}, \quad(n \geq 4)
$$

where $H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$ are the harmonic numbers.
Theorem 2.2. For $n \geq 0$, we have

$$
D_{m, r, \lambda}(n, x)=\sum_{d=0}^{n}\left(\sum_{l=d}^{n} \sum_{s=0}^{l}\binom{l}{s} \frac{1}{l!m^{l}}(-1)^{l-s}(r+m s)_{n, \lambda} S_{2}(l, d)\right)(x)_{d}
$$

Proof. From (22) and (25), we consider the following two Sheffer sequences:
$D_{m, r, \lambda}(m, x) \sim\left((m t+1)^{-\frac{r}{m}}, \log _{\lambda}(m t+1)^{\frac{1}{m}}\right) \quad$ and $\quad(x)_{n} \sim\left(1, e^{t}-1\right)$,
since $e^{x \log (1+t)}=(1+t)^{x}=\sum_{n=0}^{\infty}(x)_{n} \frac{t^{n}}{n!}$.
From (23) and (33), we have

$$
\begin{equation*}
D_{m, r, \lambda}(m, x)=\sum_{d=0}^{n} a_{n, d}(x)_{d} \tag{34}
\end{equation*}
$$

where, by (2) and (8)

$$
\begin{align*}
a_{n, d} & =\frac{1}{d!}\left\langle\left. e_{\lambda}^{r}(t)\left(e^{\frac{e_{\lambda}^{m}(t)-1}{m}}-1\right)^{d} \right\rvert\, x^{n}\right\rangle \\
& =\sum_{l=d}^{n} S_{2}(l, d) \frac{1}{l!m^{l}}\left\langle e_{\lambda}^{r}(t)\left(e_{\lambda}^{m}(t)-1\right)^{l} \mid x^{n}\right\rangle \\
& =\sum_{l=d}^{n} S_{2}(l, d) \frac{1}{l!m^{l}} \sum_{s=0}^{l}\binom{l}{s}(-1)^{l-s}\left\langle e_{\lambda}^{r+m s}(t) \mid x^{n}\right\rangle \tag{35}\\
& =\sum_{l=d}^{n} \sum_{s=0}^{l}\binom{l}{s} \frac{1}{l!m^{l}}(-1)^{l-s}(r+m s)_{n, \lambda} S_{2}(l, d) .
\end{align*}
$$

Combining (34) with (35), we get the desired the identity.

Theorem 2.3. For $n \geq 0$, we have
$D_{m, r, \lambda}(n, x)=\frac{1}{2} \sum_{d=0}^{n}\left(\sum_{l=0}^{d}\binom{d}{l} \frac{(-1)^{d-l}}{d!m^{d}}\left(\sum_{\alpha=0}^{n}\binom{n}{\alpha}(m l)_{\alpha, \lambda} D_{m, r, \lambda}(n-\alpha)+(m l+r)_{n, \lambda}\right) E_{d}(x)\right.$
and
$D_{m, r, \lambda}(n, x)=\frac{1}{2} \sum_{d=0}^{n} \sum_{l=d}^{n}\binom{n}{l}\left[1+\sum_{j=0}^{n-l} S_{2, \frac{\lambda}{m}}(n-l, j) m^{n-l-j}\right] W_{m, r, \lambda}(l, d) E_{d}(x)$,
where $E_{n}(x)$ are the Euler polynomials.
Proof. From (15), (22) and (25), we consider the following two Sheffer sequences:

$$
\begin{equation*}
D_{m, r, \lambda}(n, x) \sim\left((m t+1)^{-\frac{r}{m}}, \log _{\lambda}(m t+1)^{\frac{1}{m}}\right) \quad \text { and } \quad E_{n}(x) \sim\left(\frac{e^{t}+1}{2}, t\right) \tag{36}
\end{equation*}
$$

From (23) and (36), we have

$$
\begin{equation*}
D_{m, r, \lambda}(n, x)=\sum_{d=0}^{n} a_{n, d} E_{d}(x), \tag{37}
\end{equation*}
$$

where, by (2) and (6),

$$
\left.\left.\left.\begin{array}{rl}
a_{n, d} & =\frac{1}{d!}\left\langle\left. e_{\lambda}^{r}(t)\left(\frac{e^{\frac{e_{\lambda}^{m}(t)-1}{m}}+1}{2}\right)\left(\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{d} \right\rvert\, x^{n}\right\rangle \tag{38}\\
& =\frac{1}{d!} \frac{1}{2 m^{d}}\left\langle\left. e_{\lambda}^{r}(t)\left(e^{\frac{e_{\lambda}^{m}(t)-1}{m}}+1\right)\left(e_{\lambda}^{m}(t)-1\right)^{d} \right\rvert\, x^{n}\right\rangle \\
& =\frac{1}{d!} \frac{1}{2 m^{d}} \sum_{l=0}^{d}\binom{d}{l}(-1)^{d-l}\left\langle\left. e_{\lambda}^{r}(t)\left(e^{\frac{e_{\lambda}^{m}(t)-1}{m}}+1\right) e_{\lambda}^{m l}(t) \right\rvert\, x^{n}\right\rangle \\
& =\frac{1}{d!} \frac{1}{2 m^{d}} \sum_{l=0}^{d}\binom{d}{l}(-1)^{d-l}\left[\left\langle\left. e_{\lambda}^{r}(t) e^{\frac{e_{\lambda}^{m}(t)-1}{m}} e_{\lambda}^{m l}(t) \right\rvert\, x^{n}\right\rangle+\left\langle e_{\lambda}^{m l+r}(t) \mid x^{n}\right\rangle\right] \\
& =\frac{1}{d!} \frac{1}{2 m^{d}} \sum_{l=0}^{d}\binom{d}{l}(-1)^{d-l}\left[\sum _ { \alpha = 0 } ^ { n } (m l) _ { \alpha , \lambda } (\begin{array} { l }
{ n } \\
{ \alpha }
\end{array}) \left\langlee_{\lambda}^{r}(t) e^{e_{\lambda}^{m}(t)-1} m\right.\right. \\
m
\end{array} x^{n-\alpha}\right\rangle+(m l+r)_{n, \lambda}\right]\right] .
$$

Combining (37) with (38), we obtain the first identity.
In another way, we observe that by (4) and (27)

$$
\begin{align*}
a_{n, d} & =\frac{1}{d!}\left\langle\left. e_{\lambda}^{r}(t)\left(\frac{e^{\frac{e_{\lambda}^{m}(t)-1}{m}}+1}{2}\right)\left(\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{d} \right\rvert\, x^{n}\right\rangle \\
& =\frac{1}{2} \sum_{l=d}^{n} W_{m, r, \lambda}(l, d)\binom{n}{l}\left\langle\left. e^{\frac{e_{\lambda}^{m}(t)-1}{m}}+1 \right\rvert\, x^{n-l}\right\rangle \tag{39}\\
& =\frac{1}{2} \sum_{l=d}^{n} W_{m, r, \lambda}(l, d)\binom{n}{l}\left[1+\sum_{j=0}^{n-l} S_{2, \frac{\lambda}{m}}(n-l, j) m^{n-l-j}\right] .
\end{align*}
$$

combining with (37) and (39), we get the second identity.

Theorem 2.4. For $n \geq 0$, we have

$$
D_{m, r, \lambda}(n, x)=\sum_{d=0}^{n}\left(\sum_{l=d}^{n} \sum_{j=0}^{n-l}\binom{n}{l} \frac{m^{n-l-j}}{j+1} S_{2, \frac{\lambda}{m}}(n-l, j) W_{m, r, \lambda}(l, d)\right) B_{d}(x)
$$

where $B_{n}(x)$ are the ordinary Bernoulli polynomials.
Proof. From (15), (22) and (25), we consider the following two Sheffer sequence as follows:
(40)
$D_{m, r, \lambda}(n, x) \sim\left((m t+1)^{-\frac{r}{m}}, \log _{\lambda}(m t+1)^{\frac{1}{m}}\right) \quad$ and $\quad B_{n}(x) \sim\left(\frac{e^{t}-1}{t}, t\right)$.
From (23) and (40), we have

$$
\begin{equation*}
D_{m, r, \lambda}(n, x)=\sum_{d=0}^{n} a_{n, d} B_{d}(x) \tag{41}
\end{equation*}
$$

where, by (4) and (27) we get

$$
\begin{align*}
a_{n, d} & =\frac{1}{d!}\left\langle\left.\left(e^{\frac{e_{\lambda}^{m}(t)-1}{m}}-1\right)\left(\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{-1} e_{\lambda}^{r}(t)\left(\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{d} \right\rvert\, x^{n}\right\rangle \\
& =\sum_{l=d}^{n} W_{m, r, \lambda}(l, d)\binom{n}{l}\left\langle\left.\sum_{j=1}^{\infty} \frac{1}{j!}\left(\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{j-1} \right\rvert\, x^{n-l}\right\rangle \\
& =\sum_{l=d}^{n} W_{m, r, \lambda}(l, d)\binom{n}{l}\left\langle\left.\sum_{j=0}^{\infty} \frac{1}{(j+1)!}\left(\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{j} \right\rvert\, x^{n-l}\right\rangle \tag{42}\\
& =\sum_{l=d}^{n} W_{m, r, \lambda}(l, d)\binom{n}{l} \sum_{j=0}^{n-l} \frac{m^{n-l-j}}{j+1} S_{2, \frac{\lambda}{m}}(n-l, j) .
\end{align*}
$$

Combining (41) with (42), we get the desired identity.
Theorem 2.5. For $n \geq 0$, we have

$$
D_{m, r, \lambda}(n, x)=\sum_{d=0}^{n}\left(\sum_{l=d+1}^{n} \frac{d+1}{l} S_{1}(l, d+1) W_{m, r, \lambda}(n, l-1)\right) \widetilde{D}_{d}(x) .
$$

where $\widetilde{D}_{n}(x)$ are the Daehee polynomials.
Proof. From (18), (22) and (25), we consider the following two Sheffer sequence:

$$
\begin{equation*}
D_{m, r, \lambda}(n, x) \sim\left((m t+1)^{-\frac{r}{m}}, \log _{\lambda}(m t+1)^{\frac{1}{m}}\right) \quad \text { and } \quad \widetilde{D}_{n}(x) \sim\left(\frac{e^{t}-1}{t}, \quad e^{t}-1\right) \tag{43}
\end{equation*}
$$

From (23) and (43), we have

$$
\begin{equation*}
D_{m, r, \lambda}(n, x)=\sum_{d=0}^{n} a_{n, d} \widetilde{D}_{d}(x) \tag{44}
\end{equation*}
$$

where, from (4) and (18), we have
(45)

$$
\begin{aligned}
a_{n, d} & =\frac{1}{d!}\left\langle\left.\left(e^{\frac{e_{\lambda}^{m}(t)-1}{m}}-1\right)\left(\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{-1} e_{\lambda}^{r}(t)\left(e^{\frac{e_{\lambda}^{m}(t)-1}{m}}-1\right)^{d} \right\rvert\, x^{n}\right\rangle \\
& =(d+1) \sum_{l=d+1}^{n} S_{1}(l, d+1) \frac{1}{l!}\left\langle\left.\left(\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{l-1} e_{\lambda}^{r}(t) \right\rvert\, x^{n}\right\rangle \\
& =(d+1) \sum_{l=d+1}^{n} S_{1}(l, d+1) \frac{1}{l!}\left\langle\left.(l-1)!\sum_{s=l-1}^{\infty} W_{m, r, \lambda}(s, l-1) \frac{t^{s}}{s!} \right\rvert\, x^{n}\right\rangle \\
& =\frac{d+1}{l} \sum_{l=d+1}^{n} S_{1}(l, d+1) W_{m, r, \lambda}(n, l-1) .
\end{aligned}
$$

Combining (44) with (45), we get the desired identity.

Theorem 2.6. For $n \geq 0$, we have

$$
\begin{aligned}
D_{m, r, \lambda}(n, x)=\sum_{d=0}^{n}\left(\sum_{l=d}^{n} \sum_{j=l}^{n} \sum_{i=0}^{n-j}\right. & \binom{n}{j} \frac{(-1)^{i}\langle s\rangle_{i} m^{k-2 j}}{i!m^{i}} S_{1, \lambda}(l, d) \\
& \left.\times S_{2, \frac{\lambda}{m}}(n-j, j) W_{m, r, \lambda}(j, l)\right) B e l_{d}^{(r)}(x \mid \lambda),
\end{aligned}
$$

where $\operatorname{Bel}_{n}^{(s)}(x \mid \lambda)$ are the degenerate s-Bell polynomials.

Proof. By (14) and (22), we note that we get

$$
\begin{equation*}
B e l_{n}^{(s)}(x \mid \lambda) \sim\left((1+t)^{-s}, \quad \log _{\lambda}(1+t)\right) \tag{46}
\end{equation*}
$$

From (4), (25) and (46), we have

$$
\begin{equation*}
D_{m, r, \lambda}(n, x)=\sum_{d=0}^{n} a_{n, d} B e l_{d}^{(s)}(x \mid \lambda) \tag{47}
\end{equation*}
$$

where, from (4), (9) and (27), we get

$$
\begin{align*}
a_{n, d} & =\frac{1}{d!}\left\langle\left.\left(1+\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{-s} e_{\lambda}^{r}(t)\left(\log _{\lambda}\left(1+\frac{e_{\lambda}^{m}(t)-1}{m}\right)\right)^{d} \right\rvert\, x^{n}\right\rangle \tag{48}\\
& =\left\langle\left.\left(1+\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{-s} e_{\lambda}^{r}(t) \sum_{l=d}^{\infty} S_{1, \lambda}(l, d) \frac{\left(\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{l}}{l!} \right\rvert\, x^{n}\right\rangle \\
& =\left\langle\left.\left(1+\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{-s} e_{\lambda}^{r}(t) \sum_{l=d}^{\infty} S_{1, \lambda}(l, d) \sum_{j=l}^{\infty} W_{m, r, \lambda}(j, l) \frac{t^{j}}{j!} \right\rvert\, x^{n}\right\rangle \\
& =\sum_{j=d}^{n} \sum_{l=d}^{j} S_{1, \lambda}(l, d) W_{m, r, \lambda}(j, l)\binom{n}{j}\left\langle\left.\left(1+\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{-s} \right\rvert\, x^{n-j}\right\rangle \\
& =\sum_{l=d}^{n} S_{1, \lambda}(l, d) \sum_{j=l}^{n}\binom{n}{j} W_{m, r, \lambda}(j, l)\left\langle\left.\sum_{i=0}^{\infty}\langle s\rangle_{i} \frac{(-1)^{i}}{i!}\left(\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{i} \right\rvert\, x^{n-j}\right\rangle \\
& =\sum_{l=d}^{n} \sum_{j=l}^{n} \sum_{i=0}^{n-j}\binom{n}{j} \frac{(-1)^{i}\langle s\rangle_{i}}{i!m^{i}} S_{1, \lambda}(l, d) W_{m, r, \lambda}(j, l)\left\langle\left.\frac{1}{i!}\left(\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{i} \right\rvert\, x^{n-j}\right\rangle \\
& =\sum_{l=d}^{n} \sum_{j=l}^{n} \sum_{i=0}^{n-j}\binom{n}{j} \frac{(-1)^{i}\langle s\rangle_{i}}{i!m^{i}} S_{1, \lambda}(l, d) W_{m, r, \lambda}(j, l) m^{k-2 j} S_{2, \frac{\lambda}{m}}^{m}(n-j, j) .
\end{align*}
$$

Combining (47) with (48), we have the identity.

Theorem 2.7. For $n \geq 0$, we have

$$
D_{m, r, \lambda}(n, x)=\sum_{d=0}^{n}\left(\sum_{l=d}^{n} S_{1}(l, d) W_{m, r, \lambda}(n, l)\right) b e l_{d}(x) .
$$

where bel $l_{n}(x)$ are the Bell polynomials.
Proof. From (11), (22) and (25), we consider the following two Sheffer sequences:
$D_{m, r, \lambda}(n, x) \sim\left((m t+1)^{-\frac{r}{m}}, \quad \log _{\lambda}(m t+1)^{\frac{1}{m}}\right) \quad$ and $\quad b e l_{n}(x) \sim(1, \log (1+t))$.
From (23) and (49), we have

$$
\begin{equation*}
D_{m, r, \lambda}(n, x)=\sum_{d=0}^{n} a_{n, d} b e l_{d}(x) \tag{50}
\end{equation*}
$$

where, from (4) and (7), we have

$$
\begin{align*}
a_{n, d} & =\frac{1}{d!}\left\langle\left. e_{\lambda}^{r}(t)\left(\log \left(1+\frac{e_{\lambda}^{m}(t)-1}{m}\right)\right)^{d} \right\rvert\, x^{n}\right\rangle \\
& =\left\langle\left. e_{\lambda}^{r}(t) \sum_{l=d}^{\infty} S_{1}(l, d) \frac{1}{l!}\left(\frac{e_{\lambda}^{m}(t)-1}{m}\right)^{l} \right\rvert\, x^{n}\right\rangle \tag{51}\\
& =\sum_{l=d}^{n} S_{1}(l, d)\left\langle\left.\sum_{j=l}^{\infty} W_{m, r, \lambda}(j, l) \frac{t^{j}}{j!} \right\rvert\, x^{n}\right\rangle=\sum_{l=d}^{n} S_{1}(l, d) W_{m, r, \lambda}(n, l)
\end{align*}
$$

Combining (50) with (51), we get the identity.

References

[1] M. Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996) 13-33.
[2] M. Benoumhani, On some numbers related to Whitney numbers of Dowling lattices, Adv. Appl. Math. 19 (1997) 106-116.
[3] A.Z. Broder, The r-Stirling numbers, Discrete Math. 49 (1984) 241-259.
[4] N.P. Cakic, G.V. Milovanovic, On generalized Stirling numbers and polynomials. Math. Balk. 18 (2004), 241-248 .
[5] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51-88.
[6] J.A D. Cillar, R.B. Corcino, A q-analogue of Qi formula for r-Dowling numbers, Commun. Korean Math. Soc. 35 (2020), No. 1, 21-41.
[7] G.-S. Cheon, J.-H. Jung, r-Whitney numbers of Dowling lattices, Discrete Math. 312 (2012), no. 15, 2337-2348. https://doi.org/10.1016/j.disc.2012.04.001
[8] L. Comtet, Advanced Combinatorics: The art of finite and infinite expansions, Reidel, Dordrecht (1974)
[9] G. V. Dunne, C. Schubert, Bernoulli number identities from quantum field theory and topological string theory, Commun. Number Theory Phys. 7 (2013), no. 2, 225-249.
[10] T.A. Dowling, A class of gemometric lattices bases on finite groups, J. Combin. Theory Ser. B, 14 (1973), 61-86.
[11] I. M. Gessel, On Mikis identities for Bernoulli numbers, J. Number Theory 110 (2005), no. 1, 75-82.
[12] E. Gyimesi, A comprehensive study of r-Dowling polynomials, Aequationes Math. 92 (2018), no. 3, 515-527. https://doi.org/10.1007/s00010-017-0538-z
[13] E. Gyimesi, G. Nyul, New combinatorial interpretations of r-Whitney and r-Whitney-Lah numbers, Discrete Appl. Math. 255 (2019), 222-233. https://doi.org/10.1016/j.dam.2018.08.020
[14] D.S. Kim, T. Kim, A note on a new type of degenerate Bernoulli numbers, Russ. J. Math. Phys. 27 (2020), no. 2, 227-235.
[15] D.S. Kim, T. Kim, Daehee numbers and polynomials, Appl. Math. Sci. 7 (2013), 5969-5976. https://doi.org/10.12988/ams.2013.39535
[16] H.K. Kim, D.S. Lee, Some properties of degenerate r-Dowling polynomials and numbers of the second Kind, CMES, (2022), pp 18. DOI: 10.32604/cmes.2022.022103
[17] T. Kim, A note on degenerate Stirling polynomials of the second kind, Proc. Jangjeon Math. Soc. 20(3) (2017), 319-331.
[18] T. Kim, D.S. Kim, Degenerate Whitney numbers of the first and second kinds of Dowling lattics, Russ. J. Math. Phys., 29(3) (2022), arXiv:2013.08904v1.
[19] T. Kim, D.S. Kim, D.V. Dolgy, S.H. Rim, Some identities on the Euler numbers arising from Euler basis polynomials, Ars. Combin. 109 (2013), 433-446.
[20] T. Kim, D.S. Kim, G-W. Jang, Extended stirling polynomials of the second kind and extended Bell polynomials, Proc. Jangjeon Math. Soc. 20(3), 365-376 (2017)
[21] T. Kim, D.S. Kim, Degenerate r-Whitney numbers and degenerate r-Dowling polynomials via boson operator, Advances in Applied Mathematics, 140 (2022), 102394. https://doi.org/10.1016/j.aam.2022.102394.
[22] I. Mezö, A new formula for the Bernoulli polynomials, Results Math., 58 (2010) 329-35.
[23] H. Miki, A relation between Bernoulli numbers, J. Number Theory, 10 (1978), no. 3, 297-302.
[24] S. Roman, The umbral calculus, Pure and Applied Mathematics, 1984.
[25] G.-C. Rota, On the foundations of combinatorial theory I, theory of Mobius functions, Z. Wahrscheinlichkeitstheorie, 2 (1964) 340-368.
[26] M. Shattuck, Some combinatorial identities for the r-Dowling polynomials, Notes on Number Theory and Discrete Math. 25 (2019), No.2, 145-154, DOI:107546/nntdm.2019252145-154.
[27] K. Shiratani, S. Yokoyama, An application of p-adic convolutions, Mem. Fac. Sci. Kyushu Univ. Ser. A 36 (1982), no. 1, 73-83.
[28] Y. Simsek, Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications, Fixed Point Theory and Applications (2013), 2013:87.

Department of Mathematics Education, Daegu Catholic University, Gyeongsan
38430, Republic of Korea
E-mail address: hkkim@cu.ac.kr

[^0]: This work was supported by the Basic Science Research Program, the National Research Foundation of Korea, (NRF-2021R1F1A1050151).

