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On r-Dynamic coloring on Mycielskian graphs

GOMATHI C S MOHANAPRIYA N2

Abstract

Mycielski graphs are based on transformation from a graph G to a new
graph, say p(G). It is well known that these graphs have same clique number as
in the graph G, but the chromatic number is defined as x (1(G)) = x(G)+1. The
Mycielskian graph G is denoted as p(G). These Mycielski graphs are colored
using - dynamic coloring which is an proper vertex k-coloring and defined as
|e(Neigh(v))| > min {r,degc(v)}, for each v € V(G). It is denoted by x,(G).
The r-dynamic chromatic number of a graph G is the minutest coloring k of G
which is r-dynamic k-colorable. In this paper, the authors investigated the r-
coloring of Mycielskian graph of Double Fan graph u(Fs ), Friendship graph
w(Fy), Pan graph p(P,) and Cocktail party graph u(CP,).

2000 Mathematics subject classification: 05C15
Keywords and phrases: r-dynamic coloring; Double Fan graph; Friendship graph;
Pan graph; Cocktail party graph.

1 Introduction

In this work, all the graphs are considered to be connected, loop less, undirected and
graphs without multiple edges. Graph coloring is widely applicable in various fields
and researchs. Here, the coloring means the vertex coloring of a graph G = (V, E)
with vertices and edges. The k-coloring of G is defined by a map ¢ from the vertex set
V(G) to the set of colors {1,2,---,k}. In this work, we investigated the r-dynamic
coloring of different graphs that are erected from Mycielskian graphs.

The concept r-dynamic coloring was first introduced by Bruce Montgomery
[11]. Tt is an proper vertex coloring such that no two vertices receives similar colors.
A r-dynamic coloring is defined as a mapping ¢ : V(G) — k which has to satisfy
two condition. The first one is no two adjacent vertices should receives same colors
i.e., ¢(v) # c(w) and the second condition is |¢(Neigh(v))| > min {r,degg(v)}, the
coloring of the neighborhood vertex Neigh(v) receives the minimal coloring from
the r-values and the degree of the vertex v which is denoted as degg(v). Thus, the
r-dynamic coloring is the minimum k-coloring of the graph G which is denoted as
Xr(G). When r = 1, the results of 1-dynamic chromatic number is same as the
chromatic number of the graph G and in the case of r = 2, the results of 2-dynamic
chromatic number is similar to the dynamic chromatic number. The one of the most
famous lower bound for the r-dynamic coloring are
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Lemma 1. x,(G) > min{r, A(G)} +1

The bounds for the r-dynamic chromatic number of different graphs and their
exact values are explained in the following papers [3], [7], [8], [11], [14].

In order to construct a triangle-free graphs with large chromatic number and
small clique number, Mycielski[12] introduced a graph transformation which trans-
forms the graph G to a new graph p(G) which can call as Mycielskian graph u(G).
It has same clique number as in G and the chromatic number will be x(G)+1. Apart
from the properties of clique number and the chromatic number, Mycielskian graph
has some other parameters which can be predicted. Larsen et.al [9] shows from the

fractional chromatic number x;(u(G)) = xf(G) + ﬁ for any graph G. Gerard

J. Chang[!] proves that for any graph G, x.(1*(G)) < x(1*(G)) — 5. Fisher[0] used
Mycielskian graph as an example for optimal fractional coloring which has large
denominators. Also, many results of Mycielskian graphs are given in [4], [2].

2 Preliminaries

[12] Mycielskian graph is extracted from the given graph G. The vertex set of
Mycielskian graph is V(u(G)) =V UV’ U{x} where V' = {u' : u ¢ V} and the edge
set are E(u(@)) = EU{w' : wv e E}U {v'z : v € V'}. The vertex v’ is called the
twin of the vertex u (also w is the twin of ') and the vertex x is the root of u(QG).
[1] Friendship graph F,, which obtained from the n copies of cycle C3 and these
n copies are joined to a common vertex w. It has 2n + 1 vertices and 3n edges.
[10] Double Fan graph F,, is the graph join of K,, and path P,. we considered
m = 2. It can also stated as P, + 2K;.
[13] Pan graph is an graph obtained by adding a singleton graph to any one of the
vertex of cycle graph C,, and it is denoted as (P,).
[5] Cocktail Party graph consists of two rows of paired vertices, where the vertices
in each rows are complete. The edges are joined between every vertices except the
paired one. It can be denoted as (CF,).

In this work we investigated the r-dynamic coloring of Mycielskian graphs and
obtained the exact results of some special graphs such as p(Fs ), p(Fn), p(Fn) and
w(CPy,).

3 r-dynamic coloring of Mycielskian graph of Double
Fan graph

Theorem 1. For m = 2, n > 4, the r- dynamic coloring of Mycielskian graph of
Double Fan graph u(Fa,) are



On r-dynamic coloring on Mycielskian graphs 175
4, for1 <r <2
5, forr=23
6, forr=4, n=1,3(mod4)
7, forr =4, n# 1,3(mod4)
r+3, forr=5
Xr[1(Fon)] =
4 forr=6, n=>5
T b)
for6 <r<7n#5
for6 <r <A, n=4
r+ 9, fori<r<An=5
for8<r <A mn#45
Proof : Let V[u(F2n)] = {z} U{pi, P}, 4. ¢; : i€[1,n], je[1, 2]}, where p; are the
vertices of path graph and g; are the vertices of complement of complete graph. The
vertices z, q}, p; are added by using the operation Mycielski. The degrees of u(F3 )
19 -2
are § = 4and A = 2n. Then, [V[u(Fy,)]| = 2n+5 and | E[u(Fa)]| = %
Then, the r-dynamic coloring are as follows;
Case: 11<r<2
Based on the lemma the lower bound are x,[1(F>)] > 4. To find the upper
bound x,[p(F2,,)] < 4, define a bijection ¢ : V{u(Fa )] — {1,2,3,- -+, |[V[u(Fan)]|}-

Consider, ¢1(p;) and ¢1(p;) = 1,2 for 1 < i < n. Next, c1(gj) and c1(g;) = 3

for1 <j<2.

Since, the vertex z is adjacent to p} and qg- forl<i<nandl<j<2 we
must include a new color. So, ¢1(z) = 4. Hence, x,[1(F2,)] < 4. Based on the

lemma, it is clear that x,[u(Fs )] = 4.

Case: 2r=3

Based on the lemma the lower bound are x,[u(F2,)] > 5. To find the upper
bound x, [11(F2,n)] < 5, consider amap ¢z : V[u(Farn)] — {1,2,3,- -+, |V[u(Fen)]|}

such that

ca(pi)and ca(p;) = 1,2,3 for 1 <i < n. Then, cz(g;) =4,5 for 1 < j <2.

Next, color the vertices ¢f and ¢j with color 4. So the vertices p} and ¢/ has
{1,2,3,4} colors for 1 <i<mnand 1 < j < 2. Thus, ca(z) = 5, which implies

Xrlp(Fa,n)] < 5. Thence, x,[u(Fap)] = 5.

Case: 3r=4

From the lemma the lower bound are given as x,[u(Fa,)] > 6. To get the
exact values of r-dynamic coloring of p(F,) we need to calculate the upper
bound as x;[pu(Farn)] < 6. So, define a map c3 : V{u(Fs )] — {1,2,3,--- ,k}.

Here, the results are followed from two subcases.

e When n = 1, 8(mod 4), color the vertices c3(p;) = 1,2,3,4 for 1 <1i < n,
so that the vertex p, has either color 1 or color 2. Next, c3(g;) and
c;;(q;) =5,6 for 1 < j < 2. Then, c3(p;) =4,1,2 for 1 < i <n according

to r-adjacency condition.
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Finally, the last vertex are colored as c3(z) = 3, so that vertex z also
satisfy the 4-adjacency condition. Thence, x,[(F2rn)] < 6. Therefore,
Xr[(Fon)] = 6.

e When n # 1,3(mod 4), we need one more color to satisfy the lower
bound, so x,[(F2)] > 7. Thus, the r-coloring are as follows:
Color the vertices p;, ¢; and q;- as given in n = 1,3(mod 4). Next,
e3(ph) =4,3,1,2 for 1 <4 < n in order to 4-adjacency condition. Finally,
the vertex z need one more color to satisfy the condition. Thus, c3(z) = 7.
Thence, x;[(Farn)] < 7. Therefore, it is easy to check that x,[u(Fa )] =
7.

Case: 4r=>5

Observing the lemma the lower bound are x,[u(Fz,)] > r + 3. To find
the upper bound X, [pu(Fon)] < r+ 4, we define a map cs @ V[u(Fapn)] —
{1,2,3,--- ,7 + 3} such that

ca(pi) = {1,2,3,4} for 1 <i < n and cs(q1) and ca(g2) = 5, 6.

Next, es(q;) = {r+1,7+2} for 1 < j < 2. Then, c4(g3) = c4(py) and color the
remaining vertices of p; with the colors from the set {1,2,3,4}. But, the color
of the vertices p,_; and p/, depends on the color of the vertices p,—1 and py,
so that the vertices p/,_; and p), get any of the colors from the set {1,2,3,4}.
At the end, c4(z) = r+3. Therefore, x,[u(Fon)] < r+3. Hence, xr[p(Fon)] =
r+ 3.

Case : 5 r 4 4-coloring

Observing from the lemma the lower bound are x,[u(F>,)] > r + 4. To find
the upper bound x,[pu(Fon)] < r+ 4, we define a map c5 : V[u(Fapn) —
{1,2,3, -+ ,r +4}. The r + 4-coloring are given in the following two cases;

e When r =6 and n =5, ¢5(p;) = {1,2,--- ,5} for 1 <i<n.
c5(qj) = 6,7 and ¢c5(q) = 8,9 for 1 < j < 2.
Next, ¢5(¢h) = ¢5(p}) and the remaining vertices of p) are colored from
the set {1,2,3,4}. Atlast, c5(z) = 7 + 4, since the vertices p; and ¢}
are with colors from the set {1,2,---,7+ 3}. Thus, x,[u(Fopn)] <7+ 4.
Therefore, x,[u(Fan)] =1 + 4.

e When 6 < r < 7andn #5, cs(pi) = {1,2,---,r —1} for 1 < i < n.
Next, ¢5(gj) = r,7+ 1 and 05(q§-) =r+2,r+3forl1<j<2
Then, ¢5(p}) = r+3 and the leftover vertices of p; are with colors from the
set {1,2,--- ,r—1} with r-adjacency condition. Thus, x,[u(F2,)] < r+4.
Therefore, x,[1(Fap)] = r + 4.

Case : 6 r + 5-coloring

From the lemma the lower bound are x,[t(F2,)] > r + 5. To find the upper
bound x,[p(F2,n)] < r+5, we define amap cg : V[u(Forn)) — {1,2,3,--- ,7+5}.
The r + 5-coloring are consider in the following cases:

e When 6 <r <A andt =4, cs(p;) ={1,2,--- ,n} for 1 <i < n. Then,
co(qj) =n+1,n+2for 1 <j<2andcg(q;) =n+3,n+4forl <j<2
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Next, ¢s(p;) = {n +5,n+6,---,7+4,1,2} in accordance with the r-
adjacency condition. Atlast, cg(z) = r + 5. ie., xr[p(Fon)] < r + 5.
Therefore, x,[p(Fapn)] =r+5, for 6 <r <A and t = 4.

e When 7 <r < A and n = 5, color the vertices p;, ¢; and q;- as given above
forl<i<nand1<j<2 Atr =7, c(p}) and c(ph) =n+5,n+6.
Then, the leftover vertices of p} are with colors from the set {1,2,--- ,n}
for 3 < < n with r-adjacency condition and c¢(z) = r + 5.

At r =38, cs(p;) ={n+5,n+6,n+ 7} for 1 <i < 3 and the remaining
vertices of p} are with any of the colors from {1,2,--- ,n} for4 <i<n
and ¢¢(z) = r+5. Similarly, when r = A, ¢6(p}) = {n+5,n+6,--- ,r+4}
for 1 <4 <mn and ¢s(z) = r+ 5. Thus, x,[u(Fapn)] < r+ 5. Therefore,
Xrlp(Fan)] =7+5,for 7<r <A and n = 5.
e When8<r<Aandn#4,5
1. For, 6 <n < 7, we color the vertices p;, ¢; and q;- as given above for
1<i<nand1<j<2.

—Atn=6andr =38, c(p}) = {r+3,r+4} for1 <i <2
and the remaining vertices of p; are with colors from the set
{1,2,--- ,n} for 3 < i < n and then, ¢s(z) =r+5. Atr =9,
we use c(p)) = {n+5,n+6,r+4} for 1 < i < 3 and the
other vertices of p} are with colors from the set {1,2,--- ,n} for
4 < i < n. Then, ¢(z) = r+ 5. Continuing this process,
cs(pl) ={n+5n+6,---,r+4} for 1 <i<nandcg(z) =r+5.
at r = A.

—Atn="Tandr =38, c(p}) = {r+4n—-1n,1,2,--- 4} for
1<i<nandcs(z) =r+5 Atr =09, c(p}) = {n+5n+
6,n,1,2,--- ,r+4} for 1 <i < n and ¢(z) = r+ 5. Continuing
by this way, cg(p}) = {n+5,n+6,--- ,r+4} for 1 < i < n.
Finally, we need one more color to satisfy the our condition, so
c6(z) = r+5. Thus, x,[u(Fa )] < r+5. Therefore, x,[pu(Fon)] =
r+5 for6<n<7and 8<r <A.

2. For, n > 8, consider the following two cases

— When 8 <r <m, cs(p;) ={1,2,--- ,r—1} for 1 <i<r—1and

the remaining vertices of p; may starts again with colors from the
set {1,2,---,r—1}.
Then, cg(qj) =7, r+1for 1 <j <2and cs(qj) =7 +2, r+3
for 1 < j < 2. Next, c(p}) = r + 4 and the leftover vertices of
p}; are with colors from the set {1,2,--- ,7 — 1} in order to the r-
adjacency condition. At the end, cg(z) = r+5. We may continue
this process till the r-value reaches n. Thus, x,[u(Fopn)] < r+5.
Therefore, x,[p(Fon)] =7+ 5, for 8 <r <n and n > 8.

— Whenn+1<r <A c(pi) ={1,2,---,n} for 1 <i <n. Next,
ce(qj) =n+1, n+2for 1 <j<2and cs(q;) =n+3, n+4 for
1<j<2
At r = n+1, cs(pj) = n+ 5 and the other vertices of p} are
with colors from the set {1,2,---,n} for 2 < i < n. Then,
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cg(z) =r+5.

At r = n+2, only the vertices p} receives different colors whereas
the other vertices z, p;, p}, g;, q;- has the same color as mentioned
for r =n+ 1. So, ¢s(p}) and c6(ph) = n+ 5,n + 6 and the other
vertices are colored from the set {1,2,--- ,¢}.

By continuing this process at r = A, ¢6(p}) = {n+5,n+6,--- ,r+
4} for 1 < i < n. Thus, x,[u(Fan)] < 7+ 5. Therefore,
Xrlp(Fap)l=r+5,forn+1<r<Aandn>8.

4 r-dynamic coloring of Mycielskian graph of Friend-
ship graph

Theorem 2. Forn > 2, the r- dynamic coloring of Mycielskian graph of Friendship
graph u(Fy,) are
4, for1<r<2

Xr[p(Fn)] = 5, forr=3
r+3, fora<r<A

Proof : Let V[u(Fy)] = {u, v/, w} U {u;, u} : ie[1,2n]}
E[p(Fn)] = {uw; : ie[l, 2n] }U{uu; : ie[1, 2n]}U{ujui 1 = de[l, 2n], iis odd} U{uj u; :
ie[l,2n], i is odd} U{u'u; : i€[1, 2n]} U{w', wu] : ie[1,2n]}. The minimum and max-
imum degree are § = 3 and A = 4n. The order of the u(F,) are |V [u(F,)]| = 4n+3.
The r-dynamic coloring of Mycielskian graph of Friendship graph are described in
the below cases:

Case: 11<r<2

From the lemma, lower bound are x.,[u(F,)] > 4. To find the upper bound
Xr[t(Fn)] < 4, define a map ¢1 : V{u(F,)] — {1,2,3,---, |V[u(Fn)]|} such
that

c1(u;) and ¢1(u}) = {1, 2} for 1 < i < 2n and the remaining vertices ¢1(u) and
c1(u) = 3. Atlast the leftover vertex w are colored with a new color in order
to satisfy the 1,2-adjacency condition so c¢j(w) = 4. Thus, x,[u(F,)] < 4.
Thence, x,[u(Fy,)] = 4.

Case: 2r=3

Define a map ¢z : V{u(Fy)] — {1,2,3,---,5} such that co(u;) = {1,2} for
1 < i < 2n —1 and the vertex ug, = 3. Next, the remaining vertices are
colored as ca(uf) = 3 for 1 < ¢ < 2n — 2 and the leftover vertices ca(uf,,_1)
and ca(uj,,) = 2. Then, the other vertices are colored as ca(u) and co(u') =4
and the last vertex are colored as ca(w) = 5 since, in order to satisfy the
3-adjacency condition. Thus, x,[u(F,)] < 5. Thence, it is easy check that
Xr [ (F)] = 5.

Case: 34<r<A
Consider a function ¢z : V[u(Fy,)] — {1,2,3, -+ ,r + 3} such that
color the vertices as c3(u) =+ 1 and c3(v’) = r + 2 and the other vertex as
c3(w) =r+3.
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e When 4 < r < 2n, follow the above coloring for the vertices of u(F,)
except w; and u. So, cs(u;) = {1,2,---,r} for 1 < 4 < 2n. From
the coloring of the vertices w;, the vertices w) are colored from the set
{1,2,---,r} with respect to r-adjacency condition. We continue the same
process, upto r = 2n, but with not affecting our r-adjacency condition.

e When 2n +1 < r < A, the vertices u, ' and w are colored as given
above depending on the r-value. The vertices u; are colored as cg(u;) =
{1,2,---,2n} for 1 <4 < 2n. Only the coloring of the vertices u; may
vary for all the r-values. At r = 2n + 1, the vertices u] are colored
as c3(u;) = {2n + 1,4,5,--+,2n,1,2,--- ,r}. Then, when r = 2n + 2,
es(u)) ={2n+1,2n+2,5,--- ,2n,1,2,--- ,r}. Thus, by continuing this
process at r > A, the vertices c3(u}) = {2n +1,2n + 2,--- ,r}. Hence,
Xr[(Fy)] < r + 3. Therefore, it is easy check that x,[u(F,)] = r + 3.

5 r-dynamic coloring of Mycielskian graph of Pan graph

Theorem 3. Forn > 6, the r- dynamic coloring of Mycielskian graph of pan graph

w(Py,) are
3, forr =1, nis even
4, forr =1, nis odd
4, forr =2, n=2(mod 3)
5, for r =2,n # 2(mod 3)
lu(P)] = 5, forr =3, n=0(mod 3)

6, forr =3, n# 0(mod 3)

r+3, for4d<r <5, n#0(mod 4), n=0(mod 3,4)
r+4, ford<r <5 n=0(mod 4)

r+3, for6<r<A, n=1(mod 3)

r4+4, for6<r <A, nz1(mod 3)

Proof : Let V[u(P,)] = {pi.p},q.¢,s : ie[l,n]}. The vertices p; forms an
cycle of order n and the vertex ¢ are adjacent to p;. Here, Neigh(p;) = Neigh(p;),
where Neigh is neighborhood of the vertex. E[u(P,)] = {pipjy, : ie[l,n — 1]} U
{Pnp1, 214, 214"} UAPipi1, pivi_y < i€[2,n]} U{Pipn, prpy} U {sd’, spi < ie[l,n]}.

8 1
The order of the graph |V[u(P,)]| = 2n + 3 and the size is |E[u(P,)]| = M

The degrees are 0(u(Py,)) = 2 and A(u(Py,)) = n + 1. The r-dynamic coloring of
w(Py,) are considered in the following cases:

Case: 1r=1
From the lemma, lower bound are x,[x(P,)] > 3. To find the upper bound
Xr[(Pp)] < 3, define a map c1 : V[u(F,)] = {1,2,3, -+, [V[u(P)][}-
When n is even,
c1(p;) and ¢1(p}) = {2,1} for 1 <i <n.
c1(q) and ¢1(¢’) = 1 and finally, ¢1(s) = 3. Therefore, x,[1(P,)] < 3 and

179
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hence, x;[u(Pn)] = 3.
When n is odd, ¢i(p1) and ¢1(p}) = 3, c1(pi) and ¢1(p}) = {1,2} for 2 < i < n.
c1(¢) and c1(¢’) = 1 and finally, ¢1(s) = 4. Therefore, x,[u(P,)] < 4 and
hence, x,[u(Pn)] = 4.

Case :

2r=2

Based on the lemma lower bound are x,[u(P,)] > 4. To prove x.[u(P,)] < 4,
define a map ¢z : V[u(P,)] — {1,2,3, -+ ,k}.

Case :

e When n = 2(mod 3), c2(p1) = 2 and c2(p}) = 3.
Then, ca(p;) and c2(p}) = {1,2,3} for 2 < i < n and the vertices c2(q) =1
and c2(q') = 3. Atlast the vertex ca(s) = 4. Thus, from the coloring of the
above vertices, we get x,[1(Py,)] < 4. Hence it is clear that, x,[u(P,)] = 4.
e When n # 2(mod 3), the r- dynamic coloring of Mycielskian graph of
pan graph splits into two subcases:

1. When n = 0(mod 3), then ca(p;) = {3,1,2} for 1 < i < n and the

singleton vertices are colored as c2(q) = 1 and co(¢’) = 1. Then,
co(pf) =4 for 1 <i<n—1 and the last vertex ca(p),) = 2. Atlast,
the vertex ca(s) = 5. Thus, from the coloring of the above vertices,
we get x,[u(Py,)] < 5. Hence it is clear that, x,[u(Py,)] = 5.

. When n = 1(mod 3), then c2(p1) = 4 and the remaining vertices

ca(pi) = {1,2,3} for 2 < ¢ < n. The other vertices are colored as
c2(p}) = 2 and the leftover vertices ca(p}) = {1,2,3} for 2 <i <n.
Then, c3(q¢) = 1 and c2(¢’) = 1 and finally, ca(s) = 5. Thus,
Xr[p(Pr)] < 5. Hence it is clear that, x,[u(P,)] = 5.

3r=3

Based on the lemma lower bound are x,[u(Py)] > 5. To prove x;,[u(P,)] < 5,
define a map c3 : V[u(P,)] — {1,2,3,--- ,k}. The results of 3-coloring are
exhibit in the following cases;

Case :

e When n = 0(mod 3), the 3-coloring of pan graph is same as given in
case-2 in n = 0(mod 3). Hence, the result is, x,[u(P,)] = 5.

We have mentioned that lower bound to be x,[u(FP,)] > 5 but in the case
of n # 0(mod 3) it is 6-colorable. So, we need extra one color. Thus,
Xr[t(Pr)] = 6. Consider the following r-coloring to find the upper bound
Xr[p(P)] < 6.

c3(pi) = {1,2,3,4} for 1 <i < n and the vertex c3(q) = 3 and c3(q¢’) = 1.
The vertices pj are colored from the set {1,2,3,4} for 1 < ¢ < n according
to the r-adjacency condition and also depending on the coloring of the
vertices p;. Finally, color the vertex cs(s) = 6. Thence, x,[u(P,)] < 6.
Hence it is checked that, x.[u(P,)] = 6.

44<r<5

Based on the lemma lower bound are x,[u(P,)] > r+3. To prove x,[u(FP)] <
r + 3, define a map ¢4 : V[u(Py)] — {1,2,3,--- ,7 + 3} such that
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e When n # 0(mod 4), color the vertices c4(p;) = {1,2,3,4} for 1 < i <
n. Based on the coloring of the vertices p;, the other vertices such as
ph,q and ¢’ for 1 < i < n are colored in accordance to the r-adjacency
condition. Thus, the vertices are colored from the set {1,2,--- 7 + 2}.
Finally, c4(s) = r + 3. Thus, x,[u(P,)] < r + 3. Hence it is proved that,
Xr[p(Pn)] =7+ 3.

e When n = 0(mod 3,4), color the vertices c4(p;) = {1,2,3} for 1 <i <n.
Then, ca(q) = 5 and c4(¢’) = 3. Next, color the leftover vertices c4(p}) =
{4,5,-+ ,r+2} for 1 < i < n according the r-adjacency condition. Atlast,
c4(s) = r+ 3. Hence, x,[u(P,)] < r+ 3. Therefore, it is proved that,
Xrlp(Po)] =7+ 3.

e We have mentioned that lower bound to be x,[u(P,)] > 7+ 3 but in the
case of n = 0(mod 4) it is r + 4-colorable. So, we need extra one color.
Thus, x,[u(Py)] > r+4. When n = 0(mod 4), color the vertices c4(p;) =
{4,1,2,3} for 1 < i < n. Next, c4(q) = 2 and c4(¢’) = 3. Similarly, the
remaining vertices p} are colored from the set {5,6,--- ,r+2}for1 <i<n
and lastly c4(s) = r + 4.

Case: 56<r<A
Based on the lemma lower bound are x,[u(P,)] > r+ 3. To prove x,[u(FPy,)] <
r + 3, define a function ¢ : V{u(P,)] — {1,2,3,--- ,r 4+ 3} such that

e When n = 1(mod 3), color the vertices c5(p;) = {1,2,3,4} for 1 <i <n.
Then, ¢5(p;) = {5,6,--- ,r + 2} for 1 < ¢ < n according the r-adjacency
condition. The coloring of the vertices ¢ and ¢’ may choosen from the
set {1,2,--- ,r+2} depending the r-adjacency condition. Atlast, c5(s) =
r+3. Thus, x,[u(P,)] < r+3. Hence it is proved that, x,[u(Py,)] = r+3.

e Whenn # 1( mod 3), we have mentioned that lower bound to be x,[u(Py,)] >
r + 3 but in the case of n £ 1(mod 3), r 4+ 3 colors are not sufficient. So,
we need extra one color. Thus, x,[u(P,)] > r + 4. These coloring are
given in two subcases;

1. When n = 0(mod 3), color the vertices ¢5(p;) = {1,2,3} for 1 <

i < n and the vertices ¢5(p}) = {4,5,---,r+3} for 1 < i <nin
accordance to r-adjacency condition. Similarly, the vertices c¢5(q)
and c¢5(q’) are colored from anyone of the colors {1,2,---,7 + 3}.

Atlast, ¢5(s) = r + 4. Thus, x.[u(P,)] < r + 4. Hence it is proved
that, x,[u(Pp)] =7 + 4.

2. When n = 2(mod 3), color the vertices c5(p;) = {1,2,3,4} for 1 <
i < n and the vertices ¢5(p}) = {5,6,--- ,r +3} for 1 < i < nin
accordance to r-adjacency condition. Then, the vertices ¢ and ¢’ are
colored from the set {1,2, - ,r+ 3} depending on the coloring of p,
and r-adjacency condition. Atlast, ¢5(s) = + 4. Thus, x.[u(P,)] <
r + 4. Hence it is cleared that, x.[u(Py)] = r + 4.
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6 r-dynamic coloring of Mycielskian graph of Cocktail
party graph

Lemma 2. Let CP, be the cocktail party graph. The lower bound for r-dynamic
chromatic number of Mycielskian graph of cocktail party graph p(CP,) are

n+1, forl<r<n
CP,)| =
Xe[p(CFn)] {rJr 1, forn<r<A

Proof : Let V[u(CPR,)] = {s”,si,s;,qi,q; : 4, je[1,n]}.
Elu(CP,)] = {sis} : 4, je[l,n],i # j} U{qs"} U{q;s"} U{aisi,qis} : i,5€[1,n]} U
{q}s,—, q;-s;v : 1, je[1,n]} where ¢; are adjacent to all other vertices of C' P, where s; are
adjacent. Similarly, the vertices q} are adjacent to the remaining vertices where s;
are adjacent.
The degrees are §(p(CP,)) = 2n — 1 and A(u(CP,)) = 4n — 4. The order of the
graph |V[u(CPR,)]| = 4n + 1.
For 1 < r < n, the vertices V' = {s;, s} persuade a clique of order n in u(CP,).
Thus, x[u(CP,)] > n. Hence, the lower bound is x,[1(CP,)] > n+1, for 1 <r < n.
Thus for n < r < A based on Lemma 1, we have x,[u(CPy,)] > min{r, A[u(CP,)]}+
1 = r 4 1. Thus, it completes the proof.

Theorem 4. For n > 3, the r- dynamic coloring of Mycielskian graph of cocktail
party graph u(CP,) are

n+1, forl<r<n

r+3, forn<r<$§

r+4, foro+1<r<A-n+1

r+5 forA—-n+2<r<A

Xr[(CP,)] =

Proof : The r-dynamic coloring of u(CP,) are considered in the following
cases:

Case: 11<r<n

Based on the lemma, x.[u(CP,)] > n+ 1. To prove x,[u(CP,)] < n+ 1,
define a function ¢; : V[u(CPR,)] — {1,2,3, -+ ,n + 1} such that ¢;(s;) and
ci(sj) ={1,2,---,n} for 1 <4 < n and also the vertices c1(¢;) and c1(q;) =
{1,2,--- ,n} for 1 <i < n. Since, these vertices form an complete graph, we
used n different colors.

The common vertex ci(s”) = n + 1, since this vertex is adjacent to other
vertices which are n colors, we used n + 1 color for the common vertex s”.
Thus, from the above coloring, we get x,[1(C'P,)] < n + 1. Hence, it is clear
that, x,[u(CP,)] =n+ 1.

Case: 2n<r<$§
Define a map cg : V[u(CP,)] — {1,2,3,--- ,7 + 3} such that

e At, n <r < — 1, the coloring of the vertices are generalised as, when
r = n, cos;) and ea(q;) = {1,2,---,r} for 1 < i < n and the other
vertices co(s}) and c2(q;) = {r + 1L,r +2,3,4,--- ,r} for 1 < j < n.
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Atlast, the vertex ca(s”) = r + 3 since, the vertex s” are adjacent to all
other vertices which are already colored with r + 2 colors.

At r=n+1, ca(s;) and ea(q;) = {1,2,--- ,n} for 1 < i < n and the other
vertices 02(59) and CQ(q;) ={rr+1,r+234,--- ,n}forl <j<n.
Finally, the common vertex ca(s”) = r + 3.

By continuing this process, at r = § — 1, the r-coloring are, ca(s;) and
c2(qi) = {1,2,---,n} for 1 <4 < n and the other vertices cz(s) and
CQ((]}) ={n+1ln+2,n+3---,2n} for 1 < j < n. At the end, the
common vertex ca(s”) = r + 3. Hence, from the above lemma, it is clear
that, x,[u(CP,)] =71+ 3.

e At, r = 0, consider the below r-dynamic coloring, ca(s;) = {1,2,--- ,n}
for 1 <i < n and the remaining vertices c2(s) and ca(g}) = {n + 1,n +
2,---,2n} for 1 < j < n. Then, the vertices ca(¢;) = {2n + 1,2n +
1,3,--- ,n} for 1 <i < n. At the end, the common vertex cy(s”) = r+ 3.
Here, in coloring of the vertices ¢; the 2n + 1 color is repeated twice for
the vertex g1 and gs since, r-dynamic is an minimal coloring, the repeated
values will not affect the r-adjacency condition. Hence, from the above
lemma, it is clear that, x,[u(CP,)] = r + 3.

Case: 30+1<r<A-n+1

We define a map c3 : V[u(CP,)] — {1,2,3,--- ,r + 4} such that color the
vertices s;, s’ and ¢} as given in case-2 at r = d.

When r = § + 1, colored the vertices ¢3(¢;) = {2n+1,--- ,r+3,5,--- ,n} for
1 <4 < n and then color the vertex c3(s”) = r+4. By continuing this process,
at the case of r = A —n+1, the vertices ¢3(¢;) = {2n+1,2n+2,--- ,r+3} for
1 < i < n and finally color the vertex c3(s”) = r + 4. Hence, from the above
lemma, it is clear that, x,.[u(CP,)] = r + 4.

Case: 4 A—n+2<r<A

We define a map ¢4 : V[u(CP,)] — {1,2,3,--- ,r + 5} such that the coloring
of the vertices s;, 59 and g; are same as given in case-3 at A —n + 1. Only
the coloring of the vertices q;- and s” varies depending on the r-adjacency
condition.

When r = A —n+ 2, color the vertices 04(q;) ={r+3,r+4,9,10,--- ,2n} for
1 < j < n and the leftover vertex c4(s”) =r + 5. Then, at r = A —n + 3, the
coloring are, 04(q§) ={3n+1,3n+2,--- ,r+4,10,--- ,2n} for 1 < j < n and
the last vertex c4(s”) = r + 5. By extending the above r-coloring, at r > A
the coloring are 04(q3) ={3n+1,3n+2,---,r+4} for 1 < j < n and the
leftover vertex c4(s”) = r + 5. Hence, from the above lemma, it is clear that,
Xr[(CPy)] =7+ 5.
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