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NOTE ON M-LINEAR FUNCTION ARISING FROM
THE p-ADIC FERMIONIC INTEGRAL ON 2%,

HYE KYUNG KIM" AND DAE SIK LEE®*

ABSTRACT. The p-adic Fermionic integral over Z, is one of the im-
portant techniques among the many ways to investigate and construct
generating functions for special polynomials and numbers.

In this paper, we consider two A-linear functionals on C,[z] arising
from the p-adic fermionic integral on Z, and Z, = Z, X ---Zyp, re-
spectively, by using umbral calculus and A-umbral calculus. In other
word, we study to determine the linear functionals given by P(z) —

Joy P@dicr (@) and P(z) = [, o+ fy, Plarte+a)dumr (@) - dpa (a),
respectively.
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1. INTRODUCTION

The p-adic integral has a very important role in physics, mathematics and
engineering. Recently, many mathematicians have studied various degener-
ate versions of special polynomials and numbers and have yielded many
interesting results. Kim constructed the p-adic ¢-Volkenborn integration
(13]. When ¢ = —1, it is called the p-adic Fermionic integral on Z,. The
p-adic Fermionic integral over Zj, is one of the important techniques among
the many ways to investigate and construct generating functions for special
polynomials and numbers. In addition, the degenerate versions of special
numbers and polynomials have been much studied so far and have important
applications in a variety of natural and social sciences.

In this paper, first, we consider linear functional on C,[z] arising from
the p-adic fermionic integral on on Z,. We study to determine the linear
functionals given by P(z) — pr P(z)dp—1(x) which is given by the gener-
ating function of degenerate Euler polynomials. Second, we consider linear
functional on Cplx] arising from the mutivariate p-adic fermionic integral
on Zy, = Zy---Z,. We study to determine the linear functionals given by y
P(z) — pr e fzp P(x1 4 -+ x)du—1(x1) - - - dpp—1 (z) which is given by
the generating function of degenerate Euler polynomials of order r. In other
word, we show that \-differentiations of any polynomial by such generating
functions can be expressed by p-adic fermionic integrals on Z, or Zj,.
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For any A € R,
(1) 6?\( ) 1 + )‘t A= Z(w n)\ n!’ (See [5'9])7

where (z)g) =1 and (2),) = z(z — A) -+ (z — (n — 1)A)), (n > 1).

1
For r € N and A, t € Z, with ||, < p #-1, the degenerate Euler polyno-
mials Er(g(x) of order r are defined by the generating function to be

@) S ER@S = (o) S0 (e B

n=0

When z = 0, Eflrz\ = Ef:j\(O) are called the degenerate Euler numbers of
order r.
When r = 1, the ordinary degenerate Euler polynomials are given by

(3) Te,\(t Z Eo\(z (see [6]).

Let p be chosen as an odd prime number. Throughout this paper, Z,,
Qp and C,, will denote the ring of p-adic integers, the field of p-adic rational
numbers and the completion of an algebraic closure of Q,. Let| - |, be the
p-adic norm normalized as |p|, = %.

For a Cp-valued continuous function f on Z,, the p-adic Fermionic integral
on Zj, is defined by Kim [14] as follows:

pN—1
La(f) = | f@)du(x) = lim Z f@)p-r(z +p"Zp)
(4) ’ 1
= lim > f@) (=17, (see [5, 6, 12)).
=0

Let fn(z) = f(z 4+ n) for n € N. From (4), we observe that

n—1
(5)  Ta(fa) + ()" a(f) =2 (1)), (see [5, 6, 12)).
=0

In (5), when n = 1, we have
(6) Ia(fi) +1-1(f) = 2£(0).
Let f(z) = €5(t). Then

o

. - 2 - tn
g [ SOt = i = 3 Eaa
and
®) [ @nadiscs(a) = Eo.
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Let f(z) = €5 ¥(t). Then

. 2 N t"
/Zp e () du—1(y) = <e,\(t)+1>€’\(t) = ;)En,)\(x)m>

9) and

/Z (2 + Purdiior (z) = Bualz)  (sco [6).

2. REVIEW OF A-UMBRAL CALCULUS

In this section, we introduced A-Sheffer sequences.
Let F = {f(t) =300 ak% ar, € C, ¢ be the algebra of all formal power

series in ¢ with coefficients in C,,. Let P = Cp[x] be the ring of all polynomials
in o with coefficients in C,, and let P+ denote the vector space of all linear
functionals on P (see[9, 18, 19]). Let (L|P(x)) denote the action of the linear
functional L on the polynomial P(z).

o0 k
t
For f(t) = E a7y € F and a fixed nonzero real number A, each A gives
k=0 ’

rise to the linear functional (f(¢) | -)» on P, called A-linear functional given
by f(t), which is defined by

(10) (f(t) | (@)pp)r = an, forall n>0 (see [9]).

In particular (t* | (@)na)x = nlop g, for all n, k& > 0, where 6, is the
Kronecker’s symbol.

For A = 0, we observe that the linear functional (f(t) | -)o agrees with the
one in {f(t) | ") = an, (k>0).

For each A € R and each nonnegative integer k, the A-differential operator
t* on P is defined by

(M)k(@) =k, if kE<mn,
(11) (tk)/\(x)”’A - {O if k>n, (see][9]),
and for any power series f(t) = i aktk—k' € F,
k=0 ’
FEO@nr =D (7 )ar@nrr (1>0).
A A kZ:O <k> k kA

The order o( f(t)) of a power series f(t)(# 0) is the smallest integer k for
which the coefficient of t* does not vanish. The series f(t) is called invertible
if o( f(t)) = 0 and such series has a multiplicative inverse 1/f(t) of f(t). f(t)
is called a delta series if o(f(t)) = 1 and it has a compositional inverse f(t)
of f(t) with f(f(t)) = f(f(t)) = t.

Let f(t) and g(t) be a delta series and an invertible series, respectively.
Then there exists a unique sequences sy x(z) such that the orthogonality
conditions holds

(12) (g (f)" | sal@)r = o, (0, k>0) (see [9)).
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The sequence sy \(z) is called the A-Sheffer sequence for (g(t), f(t)), which

are denoted by s, x(x) ~ (g(t), f())x.
The sequence s, x(z) ~ (g(t), f(t))x if and only if

I o = sea(@)
(13) g(ﬂmek(f(t)) = kZ:O . t* (n,k>0) (see [9]).

Assume that for each A € R* of the set of nonzero real numbers, s, ()
is A-Sheffer for (gx(t), fa(t)). Assume also that limy o fa(t) = f(¢) and
limy_,0 ga(t) = g(t), for some delta series f(t) and an invertible series g(t).
Then limy_,o f,(t) = f(t), where is the compositional inverse of f(t) with
FF@) = f(£(t)) = t. Let limyoo sp(2) = si(x).

The sequence sy (z) is called the Sheffer sequence for (g(t), f(t)), which
are denoted by s, () ~ (g(t), f(t)).

The sequence s,(x) ~ (g(t), f(¢)) if and only if

[e.e]

1 T (F _ sk(a:)
(7)) () = kzzo St (mk>0) (see [18]).

(14)

Let sy (z) ~ (g(¢), f(¢)) and rp(x) ~ (h(¢),g(¢)), (n > 0). Then
(15)

n

sp(x) = Z Znirr(x),  (n>0),

k=0
where zp 1 = 1 W7 (1))
bere - 2nk <g(f(t))

" (T 1a"), (k2 0), (oo [15),

Let uy(t) = %(e” —1). Then the compositional inverse function of wy(t)

(16) uy(t) = ilog(l + At).

Let f(t),g(t) € F with o(f(t)) = 1 and o(g(¢)) = 0. From (13) and (14),
we observe that

Spa(@) ~(g(ur(t)), f(ur(?)))

3 RN S NTI0) P S
(17) @gsn,A( ) i) @) L(f@)

< Sn,/\('r) ~ (g(t)v f(t))/\
From (17), we have

(18)
Sna() ~ (g(t), FD)x < Sna(z) ~ (gur(®)), f(ua(t)))  (see [14]).

Let Spa(x) ~ (g(¢), f(¢))x. Then from (12), we observe that
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(19)
(9O F O @IASmA@)r = (g ()T [Spa(@))n = 0l s
=n(n—1)0p_1% = <g(t)f(t)k\nSn_17>\(w)>)\.
Thus, from (18) and (19), we have

(20) (f( )))\Sn,)\(x) = nSn—l,/\(x)'
Since Z =el(t) = "),
(21) (@)na ~ (Lua(t)).
From (11), (20) and (21), we note that uy(t)(x)n x = n(x)n—1,1 and
(22) (tA@)np = (W@t = (W) (@)n -
For any f(t) € F and P(z) € P = C,[z], by (22), we have
(23) (fO)rP(z) = f(ur(t))P(x).

Thus, from (20) and (23), we have
24)  (fE)aSna(@) = f(ua(®)Sna(x) = nSn_1a(z)  (see [14]).

3. THE A-LINEAR FUNCTIONAL ASSOCIATED WITH DEGENERATE EULER
NUMBERS

In this section, we introduce the A-linear functional f(¢) that satisfies

(25) FOIP@) = / p(@)dp_ (),

P

for all polynomials P(z) € P = Cplx].
Theorem 3.1. For P(z) € P, we have

REUSCE (/ S0 ) P“)>A _ <M2+1\P<x>>A.

Proof. From (1) and (25), we observe that

f(t) — ZL Z/ ]f/\dﬂ 1 k'
Eaw_l(:c) = / ex()dp-1(z) =

/Zpk 0 : Zp

Therefore, by (26), we obtain the desired result.

(26) )

ex(t) + 1

Theorem 3.2. For any P(z) € P, we have

/Zp P(z+y)du_1(y) = <M?+1>Ap(x) = (ézﬂ)p(qj).
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Proof. First, for P(x) = (2)n,», from (8) and (10), we observe that

(21) B =( [ o @)

From (3) and (17), we note that
¢
28 Epa(z) ~ Mzﬁ and F,\(z) ~ €+1t.
(28) (z) : ;

’ 2 \ * 2
From (13) and (28), we get

(29) >/\En7)\(x) ~ (1,t)x.

Moreover, we note that the compositional inverse uwy(t) = §log(1 + At) of
up(t) = 3(eM —1).

0 t’n _
Since E (@)npa— = ex(t) = e*™ O from (13) and (14), we get
n!
n=0

(30) (@)nr ~ (Lt)x and (2)px ~ (1, uxr(?)).

From (22) and (30),
(31) (t))\En,/\(x) = U)\(t)En,)\(x) = nEn—l,/\(fE)-

From (23), (29) and (31), the uniqueness of the Sheffer sequences and
noting that g(ux(t)) = et;'l, we obtain
(32)

2 ex(t)+1
- =F = E
[ vt = Foe = (5 557) (25) P
2 2
= (e,\@)H)A(qj)"’A = (M)(x)n,,\-
Therefore, from (32), we obtain the desired result. O
Examples.

(a) Choosing P(z) = z™ in Theorem 2 , we get

(b) Let P(z) = > p_o (})2" + 2™ in Theorem 2. Then, we have

[ et = ZO (1) £ + £t

P

= ;;” =FE,(z+1)+ Ep(x).
(c)Let P(z) = > p_o k1 (3)Braz™* in Theorem 2, then we obtain
n
Pt 0)dna() =3 (1) Buaesle) = Bofa).

Zp k=0
k1
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4. THE A-LINEAR FUNCTIONAL ASSOCIATED WITH
HIGHER-ORDER DEGENERATE EULER NUMBERS

1
For r € Nand A, t € Z, with |Xt|, < p #-1, the degenerate Euler polyno-
mials Eflr/)\(a:) of order r are defined by the generating function to be

o (), " 2 "
@ e = (sa) 40 el

When z = 0, Enrz\ = E(T/\(O) are called the degenerate Euler numbers of
order r.
From (9) and (33), we have

t"
[ [ e i)
Zp Zp n.

o] tn
= cen 1'1++1‘T+x ,)\dufl 1 "'d,U,71 T,)—
(34) n§:0 /Zp /Zp( In (1) (@r)

SOED @)L, (see [4)).

n=0

y (34), for n > 0, we have
(35) Eflrz\(x) = / e / (14 +ar +2)pndp—1(z1) - - - dp—1(xr),
ZP Zp
and
(36)  E\\= / / (1 + -+ ap)padp—1 (1) - - dp ().
ZP ZP

By the degenerate binomial expansion (see [17]), we note that

(37)
EnT,Z\(m): y ( ) n— J/\/ /Z T+ @) dp—1(21) - dpea ()

=0
£ (o
From (22), we note that
(38) (NEN () = ur (1) B () = nE, y(2).
We consider the A-linear functional f()(t) that satisfies
(39) ()| P(x))a :/Z . P(xy + -+ xp)dp—1(z1) - - - dp—1 (),
» »

for all polynomials P(z) € P = Cplx].
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Theorem 4.1. For any P(z) € P = Cplz], we have

/ ce P(xl +... +xr)dﬂ—1($1)"'d,u—1($r)
Zp Zp

(L[ et i)
- <(e,\( )+1)T P(QC)>A

Proof. From (34) and (39), we note that
(40)

FO@) = i wtk

= Z/ / (z1 4+ )eadp—1 (1) - dp—y () 75
k=0"Z» Zp k!

= /Zp : ~-/Zp eyt (W)dpy (21) - dper () = <e/\(t?+1>r-

Therefore, by (40), we attain the desired result.

P<x)>A

Theorem 4.2. For any P(z) € P, we have

/zpm/zp Plxi 4 +a, +2)dp_1(x1) - - du_1(z,)

(a2

Proof. For P(x) = (), from (10) and (36) we get
( )n /\> .

B = [ o) o)

From Theorem, (23), and (35) and noting that g(ux(t)) = +1 , we obtain
(42)

/ / T+ 2+ 2)padp—1 (1) - dpoq (z) = T)()
Zp Zp

(o) ). (B9) ) 2o - () @

Therefore, by linear extension, we obtain the following identity.

ZP ZP

(13) -(/ R s () dia(2) P

(et )= (2 o
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From (43), we get the desired result.

Examples.
(1) Choosing P(z) = z™ in Theorem 4, we get

/ / (w14 e+ 2) o (1) - dpa ()
Zp Zyp

2 " n T
= (et+1> x :ESL)@),

where Egl)(x) are the Euler polynomials of order 7 given by (=2+)"e® =

et+1
oo B ()5
(2) By putting P(z) = (x)y, in Theorem 4, we obtain

/ / (14 2+ 2)pdpa (1) - dp ()
T Zyp

()
- ;:0 Sya(n, k) <(€)\(7§+1) )A(fﬂ)k,x

n
=" Sialn k) B ().
k=0

where Sy \(n, k), given by (x), = > ), S1x(n, k)(2)k,, are the degener-
ate Stirling numbers of the first kind.

(3) Recall that the Bernoulli polynomials of order  are given by (=) e =

et—1
Zf:o B,(f)(g;)%'
Let P(z) = B{")(x) in Theorem , we have

/ B (w1 + -+ + 2y + a)du—1(21) - - dp_y ()
ZP ZP

(= e 5o
) () () o)
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