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Abstract

In this paper, we study the controllability of generalized proportional-
Caputo fractional differential equations (GPC-FDE). The main key in
this investigation is the Krasnoselskii’s fixed point theorem.
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1 Introduction

Fractional differential equations have been studied extensively in the litera-
ture because of their applications in various fields of engineering and science
(see, for example, the monographs [17, 19, 20], and the cited therein refer-
ences).

There are several definitions of fractional derivative operators, the most
famous of which are Riemann-Liouville fractional derivative, Caputo frac-
tional derivative, Hadamard fractional derivative (see [16, 21]), and others
that were soon discovered, such as Atangana-Baleanu fractional derivative
and Caputo-Fabrizio fractional derivative (see [5, 10]).

Recently, Khalil et al. [15] introduce a new definition of fractional deriva-
tive, called the conformable fractional derivative, with an obstacle that it
does not tend to the original function as the order « tends to zero. The new
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definition has attracted good efforts of many researchers to establish some
useful results (see, for example, [7, 8, 9, 18, 24]).

In control theory, a proportional derivative controller for controller out-
put u at time ¢ with two tuning parameters has the algorithm

d
u(t) = kp&(t) + mdﬁf(t),
where kp and k4 are the proportional control parameter and the derivative
control parameter, respectively. The function £ is the error between the
state variable and the process variable. This control law enables Dawei et
al. [11] to present the control of complex networks models.

Inspired by the above concept of the proportional derivative controller,
Anderson et al. [4] were able to define the proportional (conformable) deriva-
tive of order a by

BDfg(t) = ki(o, t)g(t) + ko(or, 1)g' (1),

where g is differentiable function and kg, k1 : [0, 1] x R — [0, co) are contin-
uous functions of the variable ¢ and the parameter o € [0, 1] which satisfy
the following conditions for all ¢ € R:

lim ko(a,t) =0, lim ko(o,t) =1, ko(a,t) #0, a € (0,1], (1.1)

a—07t a—1"

lim ki(o,t) =1, lm ki(a,t) =0, ki(a,t)#0, a€[0,1). (1.2)
a—0 a—1—

This newly defined local derivative tends to the original function as the or-
der « tends to zero and hence improved the conformable derivatives. In [14],
Jarad et al. discussed a special case of the proportional derivatives when
ki(a,t) =1 -« and ko(a,t) = a.

On the other hand, controllability is one of the fundamental notions of
modern control theory, which enables one to steer the control system from
an arbitrary initial state to an arbitrary final state using the set of admis-
sible controls where initial and final state may vary over the entire space.
The problem of controllability of nonlinear systems represented by fractional
differential equations has been extensively studied by several authors (see,
for example, [1, 2, 3, 12, 13]).

In this paper, we study the controllabilty of the following GPC-FDE:

PCDea(t) = f(t,x(t)) + Bu(t), 0<a<1,teJ=][0,b], b< oo,
z(0) = xg,
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(1.3)

where PG D¢ denotes the proportional-Caputo fractional derivative of order
a, f:J xR xR — R is a continuous function, the control function u(-) is
given in L2(J7 U), a Banach space of admissible control functions with U as
a Banach space, B is a bounded linear operator from U to R and xg € R.

It is worth noting that the results of this paper are novel; this is the first
paper dealing with the controllabilty of GPC-FDE.

2 Preliminaries

In this section we collect some definitions, properties and propositions of the
new generalized proportional-Caputo hybrid fractional derivative.

Definition 2.1. [6] The proportional-Caputo hybrid fractional derivative of
order a € (0, 1) of a differentiable function g(t) is given by

PGDES(0) = e [, (e a0+l D) () t=) " dr, (2:1)

where the function space domain is given by requiring that g is differentiable
and both g and g’ are locally L' functions on the positive reals.

Definition 2.2. [6] The inverse operator of the proportional-Caputo hybrid
fractional derivative of order is given by

t t L RLlea
PCIog(t) :/ exp (— 1(a’8)ds) 6Dy 9(u) du
0

w ko(a, s) ko(a, ) ’ (2:2)

where PE DL~ denotes the Riemann-Liouville fractional derivative of order
1 — « and is given by

1—a — L d ! a-1
Do) = g [ =)o) s 23)

For more details, we refer the reader to the book of Kilbas et al. [16].

Proposition 2.3. [6] The following inversion relations:

PODF PG g(t) = g(t) — =) lim RoIfg(t), (2.4)
t a, S
PGr T G0ga(0) = o) e (- [ 1% ) g(0 (25)

are satisfied.
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Proposition 2.4. [6] The proportional-Caputo hybrid fractional derivative
operator P¢ D is non-local and singular.

Remark 2.5. [6] In the limiting cases « — 0 and o — 1, we recover the
following special cases:

t
tiw "SDRg() = [ ot ar
o—! 0

lim PGDRg(1) = (1),

Theorem 2.6. (Krasnoselskii’s fized point theorem [23]) Let Q be a
closed convexr and non-empty subset of a Banach space X. Let Py and Pa,
be two operators such that

(i) Prx+ Poy € Q, for all z,y € Q;
(i) Py is compact and continuous;
(#ii) Pa is a contraction mapping.

Then there exists z € Q such that z = P1z + Paz.

3 Controllability Results

In this section, we employ the generalized proportional Caputo fractional
derivative operator to discuss the controllability of the given GPC-FDE
(1.3).

Let C(J,R) be the Banach space of all real-valued continuous functions
from J into R equipped by the norm ||z[| = sup;e(o 77 [z (?)]-

The following lemma is considered the linear issue of the GPC-FDE (1.3).

Lemma 3.1. Let 0 < a < 1 and h € C(J,R). Then the solution of the
following linear fractional differential equation

{P%Dgx(t) =h(t), , tel 3.1)

z(0) = xo,
is equivalent to the Volterra integral equation:

o= (- e e ) oo (L Raie) S o

(3.2)
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Proof. Applying the operator "GIf(-) on both sides of (3.1), we get
PG 10 PG D2a(t) = PGISR().

Using (2.2) and (2.3) together with the proposition 2.3, we get

t t t RL pl—a
kl(a78) > / < / kl(aa S) ) OD h(u)
z(t)—exp [ — ds | z(0)= [ exp|— ds v du.
e (= [ parayts) w0 = [low (= [ REas) <0
In view of the following elementary relations between the Riemann-Liouville
fractional derivative and fractional integral:
FED,h(w) = "G1, " Vh(w)

= gL ()

~ e [ e a

= Ta-1) /s u—T T) dr,

the formula is directly concluded (3.2).
The converse follows by direct computation. This completes the proof [

Definition 3.2. The GPC-FDE (1.3) is said to be controllable on the in-
terval J if, for every xo,x1 € R, there exists a control u € L*(J,U) such
that a solution x of Eq. (1.3) satisfies x(b) = x7.

We consider the following assumptions.
(A1) The function f:J x R — R is continuous.

(A2) There exists a constant L > 0 such that

|f(t,x) — f(t,y)| < Lz —y|, forall teJ, x,yeR.

(A3) The linear operator W : L2(J,U) — R, defined by

1 bopu b k1(a, s) (u— 7')“’2
Wu = 7/ / ex (— ’ ds) Bu(r) dr du
Ta—1Jo Jo 7 u ko(a,s) ko(a, u) ")
has an induced inverse operator W ~! which takes values in L2(.J,U)/ ker W,
where the kernel space of W is defined by ker W = {x € L*(J,U) :

Wz = 0} and there exist constants M, My > 0 such that ||B|| < M;
and || W_l|| < M.

Now we formulate the main theorem of the paper.

Theorem 3.3. If the assumptions (A1) — (A2) are satisfied. Then the
GPC-FDE (1.3) is controllable on J provided that

My My M2b2 L,

M (a+1) (3.3)

239



240 M. I. Abbas

Proof. Let us set sup,cy |f(t,0)] = My, sup;c; Wlat)\ = M}, and define the
two constants A1 > 0 and 0 < Ay < 1 by

M Msb™ My MyMb®
Tla+1) Ia+1)

My Myb®
Pla+ 1)

Ar = fao| + (11| + [zo] +

Ay =

MkLba ( MlMQMkba)
T(a+1) T(a+1)

Consider the set B, = {z € C(J,R) : ||z|| < r)} with r > 11\}\2.

We define the control u,(t) by

ug(t) = Wt {1’1 — exp (— /Ob Z;EZ 3ds> T

T(a—1) / / P < k12a75;ds> %&;}:;f(ﬂx(ﬂ) dr dul(t), t € J.

Later, we shall use the following two estimations.

uall = sup |us(t)]
teJ

IN

M, sup {|1:1| + |zol
te

|k0au

F(a —1) / / (7. a(e) — F(7.0)) + F(7,0)] dr du}

IN

Mo sup {|9c1| + |zol

T / I (1 ra(e) — £ 0) 4 (7 0)]) dr du}

|k0au

1 b u(u_,r)a—2
: M2§g§{|x1|+|x0|+l“(a—l)/o o Thatew ) (L'I(”'”f”’o))d”“}
< Malel + faol + ity 35 (Bl + 047)|- (.9
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Jus =y = sup [us(t) =, (1)
< M?i‘;?{ o [ ey (r,m))f(r,y(r)ndrdu}
< rens teJ{ [ [ 2|x<7>—y<¢>|d7du}
%Hx—y\l- (3.5)

Using the control u,(t), we define the operators Py, P2 on B, as

(P1z)(t) = exp (— /Ot Z;EZ: z;ds> Zo

+ r(al— 5 /Oi /OZeXp (— /u: Z;Ezz;ds) (120(;);)_: (r, (7)) dr du
(Pa)(t) = ﬁ/{) /0 exp (—/M :(I)Ez:i;ds) (1;0_(;7)@ Bug (1) dr du

Clearly, One can notice that (P12 + P2x)(b) = x1. This means that u,
steers the GPC-FDE (1.3) from z to z in finite time b, which implies that
the GPC-FDE (1.3) is controllable on J.

The proof is divided into three main steps.

Step 1. Pixz+ Py € B, Vax,y € B,
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For each t € J and z,y € B,, using (3.4), we have

[Prz +Payll = jugl(Plx)(t)Jr(%y)(t)\
€
t
kl(av 5)
sup q exp | — ds | |x
ﬁ{ (- ecajes)
1 boru t ki (a, s) )

+ exp | — " Lds

Tla—1) /0 0o 7 / Fo(a, s)

(u—T1)2

X ml(f(ﬂ%(f)) — f(7,0)) + f(7,0)| dr du

1 bopu tkl(a,s) (u—T7)22

+ )y o (- Ben) gy B i d”}
7Mk ' uufT‘"*2 T T du

o+ gy | [ el + ) e a

Mk: /b/u o
4+ uw— 7)) 7| B||||luy|| dT du
el AR 2 1

IN

IN

Mpb* My M b M b™
< R (Lr+ My) + = " _(Lr+M
< ool i gy (M) By M [l ol e (B M)
MpMgb™ My My Myb® My Mb®
< _—
< ol + Fay T T 1 ol )
M Lb™ My Mo M b”
+ (1 )
Mo+ D\ T T(at1)
= A+ Aor <.

Thus, we conclude that Pyx + Py € B,.
Step 2. P; is compact and continuous.
First, we show that P; is continuous.

Let {x,} be a sequence such that z,, — z as n — oo in B,. Thus, for
each t € J, we have

[ Pran, — Prz|| = iup |(Pran) (t) — (P1z)(t)]

eJ
M/c /t /u 5
VTN (w =) zal) = fC2())] dr du.
Fla=1) Jo Jo
Therefore, the continuity of f implies that P; is continuous.

Next, we show that P; is uniformly bounded on B,.
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For each t € J and = € B,., we have

[Pz = 31615)|(731$)(t)|
‘ t k(e s) 1(a, 8)
< 325{@@(_/0 g il e [ oo (- [ )
(u—71)*2
o (e, w)] |(f (7, 2(7)) = S( ))+f(770)|d7du}
< |x0|+FéZkbl)(LT+Mf),

which implies that P; is uniformly bounded on B,..
It remains to show that P; is equicontinuous.

For each ty,t3 € J, t1 <ty and x € B, , we have

[(Pr)(t2) — (Prz)(t1) |

< [ew ( [ i oo (- [

o (b o (- )
x%(ﬂnx(r)) dr du

| [ (- Rt S st ar
;;gg;gm(/; 034 ) -

T Ta-D // Z;ZE (‘/05 Zégzzgds)%—tl)mumm)dfdu

* e D /tjz/ouexp(— Otl klg ; (ZO(;)Z)Q(f(T,x(T)) dr du
7|0+ T B g 20—+ T g8

where f = sup,e sy, |f(t,2(t)], €€ (t1,t2).
As t; — to, the right hand side of the above inequality tends to zero inde-
pendently of z € B,. As a consequence of the Arzela-Ascoli theorem, we
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deduce that Py is compact on B;.

Step 3. P, is a contraction on B5,.

For each t € J and z,y € B,, using (3.5), we have

[Poz = Poyll = sup |(Pax)(t) — (Pay)(1)]
teJ

= su 1 t uex — "h(a ) s
- teﬁ{wa—l)/o/o p( / kom,s)d)
T a—2

%B(uw(ﬂ —uy(7)) dr du}
My M.b*
Ma+1)
_ MMLMEL
- I2(a+1)

IN

[ = uy|

[ =yl

In view of the condition (3.3), we conclude that Py is a contraction mapping.
Therefore, all the assumptions of Krasnoselskii’s fixed point theorem (Theo-
rem 2.6) are satisfied. Hence, the GPC-FDE (1.3) is controllable on J. This

completes the proof. ]
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