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1. Introduction

Let A denote the class of functions of the form
f(z)=z+ Lozt (1)
k=2
which are analytic in the unit disc E:{z:|z|<1} and further normalized specifically by

1(0)=r"(0)-1=o0.

By S, we denote the subclass of 4 consisting of functions of the form (1) and which are
univalent in £.

Let U be the class of Schwarzian functions

w(z)= /ickz"

which are regular in the unit disc £ and satisf;/ing the conditions

w(0)=0 and |w(z)|<I.
For the functions f and g analytic in E, we say that f is subordinate to g, symbolically

f =g, ifaSchwarzian function w(z)e U can be found for which f(z)= g(w(z)).

For & 21, Al-Oboudi [2] introduced the following differential operator:

D;/(2)=1(2),

D;f(2)=(1-6)/(z)+&f ()

and in general

Dz f(z)=D(D7" 1(2))
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4

— 2+ Y1+ (k-1)5] 42" pe Ny =N {0}
k=2

with D2 £(0)=0.
For §=1, the operator D/ f(z)=D” f(z), the well known Saldgean operator introduced

by G. Salagean [16]. The operator D} f (z) is named as Generalized Saldgean operator.

S*(a)) and K(a) are respectively the classes of starlike and convex functions of order a (& >0). In
particular S7(0) = ", the well known class of starlike functions and K(0)=K, the class of
convex functions. Goel and Mehrok [4] studied the classes §(4 ,B) and K(4, B), the subclasses
of starlike and convex functions respectively. In particular S'(1-20,-1) = S'(a), S'(1,-1) = 5,
K(1-2a,-1) = K(a) and K(1,-1) =K.

Kaplan [6] introduced the class C of close-to-convex functions. After that various
subclasses of close-to-convex functions such as C; C(4, B), C;(4, B) were studied respectively
by Abdel Gawad and Thomas [1], Mehrok [7] and Mehrok and Singh [8]. In particular C(1,-1)
=C
and C(1,-1) = C,. Again the classes C(4,B,C,D) and C;(4,B,;C,D) were studied by Singh and
Mehrok [18]. Particularly C(1,-1;C,D) = C(C,D) and Ci(1,-1;C,D) = Ci(C,D).

The concept of close-to-star functions was established by Reade [14] and this class is denoted
by CS". Further various subclasses of close-to-star functions such as CS;", CS'(4,B), CS, (4,B)
and CS'(4,B;C.D) were studied by Mehrok et al.[10], Mehrok et al.[11] and Mehrok and
Singh [9] respectively. Specifically CS'(1,-1)=CS", CS;'(1,-1)=CS,” and CS'(1,-1; C, D) =
cs'(C, D)

Dp+l
S(p.a)= {f fe A,RC[ D"ff((zz))J >a0<a<lze E}, the class introduced by Siligean [16] and

studied further by Kadioglu [5].
DP
C(p;a;ﬁ)={f:feA, /(e)

) T2 " el s

the class introduced and studied by Porwal [13].
In particular

(i) C(0,a,8)=CS"(e,p) and C(l, e, B)=C(a, B), the classes studied by Mishra [12]
(i) €(0,0,8)=CS"(p), the class studied by Reade [14].
(i) C(1,0,8)=C(B), the class studied by Kaplan [6].

B
<ﬂ”0erf(Z)<(”Zj ’geS*(a),0£a<1,0<ﬂ£1,zeE},

p
c(p;ﬂ;A,B;c,D):{f;feA,Dpf(z)<[1+czj ,geS"(A,B),—lSDSB<A£C£1,0<,le,zEE}, the class
g(z) 1+ Dz

introduced and studied by Singh and Singh [17]. In particular, C(p, Bil— Za,—l;l,—l) = C(P,a, ﬂ)
To avoid repetition, it is laid down once for allthat 0< #<1,-1<D<B<A<C<l, z€E.

Motivated by the above work, we introduce the following subclasses of analytic univalent
functions defined with generalized Saldgean operator:
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Definition 1.1 S(5; p;a) be the class of functions in 4 of the form (1) which satisfy the

condition

D f(2)
Specifically, S(é‘; p;O) = S(é‘,p) and S(l;p,a) = S(p,a).

41
Re(D‘ff(Z)j >a,0<a<l.

Definition 1.2 Let C(5; p; f3; 4, B;C, D) denote the class of functions f(z) of the form (1)
and satisfying the condition that
P B ®
D;é ()Z) {E = ) where g(2) =2+ 3ozt €5°(4.8)

We have the following observations:
() C(8;psl;4,B;C,D)=C(8; p; 4,B,C,D)
(i) C(;p;/5:4,8,C,D)=C(p; 5;4,8,C, D)
(i) C(1; p; Bl —2a,~1;1,-1)=C(p, ez, B).
(iv) C(L;LL;4,B;C,D)=C(4;B;C, D).
v) C(;0;1,-1;C, D)= CS*(C, D).
(vi) C(1;0;51,~L1,-1)=CS".
(vii) C(LLL1,-1;C,D)=C(C, D).
(viii) C(1;1;1;1,-1;1,-1)=C.

Definition 1.3 Let C, (5; ;B A4,B;C, D) denote the class of functions f (z) of the form (1)
and satisfying the condition that

D;’;(J;()Z) =< G:gzzjﬁ where h(z) =z+ gdkzk € K(A, B).
The following observations are obvious:

() C(8;pil;4,B,C,D)=C,(5;p;4,B,C,D).

(i) C,(1; p;8;4,B;C,D)=C,(p; 3, 4,B;C,D)

(i) C,(1;1;1; 4, B;C,D)=C,(4; B;C, D).

(iv) C (1:0;51,-1;C,D)=CS,"(C,D).

™) C(L0;1L-L1L,-1)=CS,".

i) C,(;1:11,-1,C,D)=C,(C, D).

(vii) C,(LLLL-L1,-1)=C,.

The paper in hand studies the classes C(é’; p; B A, B; C,D) and C, (5, ;P A4,B; C,D)
focusing on coefficient estimates, distortion theorems, argument theorems and the relation of
these subclasses with some other classes. The results already proved by various authors follow as
special cases.
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2.  Preliminary Lemmas
Lemma 2.1[15] If P(z)= (”g& J —1+Zpk k then
lp,|< B(C- D)n>1
Lemma 2.2[4] If g(z)e5"(4,B), then for 4—(n—1)B>(n—2),n>3,
1

gmH(A—(j—l)B).

- =2

b

Lemma 2.3[4] If g(z)eS"(4,B), then for |z|=r <1,

r(l —Br)%g < ‘g(z} < r(l + Br)AT;B,B #0;
e <‘g ]<re”" B=0.
Lemma 2.4[4] If g(z)eS (A,B), then for 7| =r<1,

(A B)S.

arg £/ in"'(Br),B #0;

Lemma 2.5[18] If h(z)e K(4,B), thenfor A-(n-1)B>(n-2)n>3,
1

J S;ﬁ(A—(j—l)B).

n
=2

< Ar,B=0.

Lemma 2.6[18] If 4(z)e K(4,B), then for |7=r<1,
;[1—(1—&)3} <|n(z) < ;[(I+Br); —1},3 #0;
l —Ar Ar
—|t- h ~1}B=0.
Ui J<fhtz) < Le -1]
Lemma 2.7[18] If /(z)e K(4,B), then for |2|=r<1,

argh(zz) < %sin’l(Br),B #0;

argh(z) <Ar,B=0.

z
3. The class C(5;p;3;4,B;C,D)
Theorem 3.1. If f(z)e C(&;p;ﬂ; A, B; C,D), then

”S[I+(n1—1)§] {n 1)']"[ ~(j-1)8 +,BC—D){1+::(kl_l.ﬁ(A—(j—l)B)}, n=2. (2)

The bounds are sharp.
Proof. In Definition 1.2, using Principle of subordination, we have
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1+ Cw(z) g
D? = U.
11010 e wle)e o)
On expanding (3), it yields
) P © 0
Z+Z[l+(k—1)§] a,z" :[Z+Zbkzk\J(l+Zpkzk} “4)
k=2 k=2 k=1
Equating the coefficients of z" in (4), we have
[1+(n-1)5a,=b,+pb, ,+p.b, ,+...4p,,. )
Applying triangle inequality and Lemma 2.1 in (5), it gives
[1+(n=1)5]"|a (C= D)o, + |, |+ +|ps] +1] (6)

Using Lemma 2.2 in (6), the result (2) 1s 0bV10us.
For n =2, equality sign in (2) hold for the functions f,(z) defined by

Drf (Z)ZGLC)?ZJ (1+85,2)"5
1

On putting f=1, Theorem 3.1 gives the following result:
Corollary 3.1.1 If f(z) € C(5;p; A, B; C,D), then

(,,1_1)5] {n 1)~H {*/; ﬁ H nz2.

For §=1,p=0,f=1,4=1,B=-1, Theorem 3.1 yields the following result due to Mehrok et al. [10]:
Corollary 3.1.2. Let f(z)e CS*(C, D), then

a,|< n[l +(”‘1XC‘D)}

2
For §=1,p=0,f=1,4=1,B=-1,C=1,D=-1, Theorem 3.1 gives the following result due to Reade [14]:

Corollary 3.1.3. Let f(z)e CS™,then

(7

<n’.

a

n

Ford=1p=1=1,4=1,B=-1, Theorem 3.1 agrees with the following result due to Mehrok [7]:
Corollary 3.1.4. Let f(z)e C(C,D), then

<14 (=1kC=D)
2

For d=1,p=1p=1,A=1,B=-1,C=1,D=-1, Theorem 3.1 gives the following result due to Reade [14]:
Corollary 3.1.5. Let f(z)eC, then

a

n

Theorem 3.2. If f(z)e C(6;p;B;4,B;C,D), then for |z|=r, 0<r<1, we have

1-C s 1+CrY
(1 Br) B [1—D};’j D§f(z]£r(1+Br) B [1+Dt’) ,B#0; ®)




226

Gurmeet Singh, Gagandeep Singh and Gurcharanjit Singh

of1=crY o1+
re (I—Drj S‘Dﬁf(zXSre (1+Drj ,B=0. 9)
Estimates are sharp.
Proof. From (3), we have
B
1+C
‘D;ff(z]: HD:/((Z g(z), w(z)eU. (10)

It is easy to show that the transformation
Dl f(z) 1+Cw(2)

glz)  1+Dwl2)

maps |w(z)| <r onto the circle

Dif(z) _1-¢cDr?|_ (C-D)r

< ,  lzl=r.
| ¢(z) 1-D**| (1-D*?) i
This implies that
1-Cr _ 1+Cw(z) < 1+Cr’
1-Dr |1+ Dwz)|” 1+ Dr
which implies that
B B B
1-CrY' _ 1+Cw(z) < 1+er _ (11
1-Dr 1+ Dw(z) 1+ Dr
Using (11) and Lemma 2.3 in (10), the results (8) and (9) are obvious.
Sharpness follows for the function f,(z) defined as
B
(4-8)
1 CO2 ) (11 gs,2) 5 B #0
1+ Do,z
D f, (z)= p Jo,|=1]8,|=1. (12)
1+Co,z et B0
1+ Do,z
On substituting f=1, Theorem 3.2 gives the following result:
Corollary 3.2.1 If f(z)e C(é';p;A,B;C,D),then
A5 (1-Cr A5 (1+Cr
1-B L <pr () <r(1+ B B0,
A-r) 5 (125 < lopste) < e 55 (177
o 1-Cr < [ 1+Cr
— <Dz f(z) < B=0.
e (I—Drj ‘ éf(z] e 1+ Dr

For 6=1,p=0,6=1,4=1,B=-1, Theorem 3.2 gives the following result due to Mehrok et al.[10]:
Corollary 3.2.2. Let f(z)e CS™(C, D), then
r(1-Cr r(l+Cr
7(2 ) S‘f(z]si(z )
(1+7r)(1-Dr) (1—=r)(+Dr)
For §=1p=0,f=14=1B=-1C=1,D=-1, Theorem 3.2 gives the result below due to Goel and Sohi [3]:
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Corollary 3.2.3. Let f(z)e CS™, then

1+
o V=R
On putting 6=1,p=1,f=1,4=1,B=-1 in Theorem 3.2, we get the following result due to Mehrok [7]:
Corollary 3.2.4. Let f(z)e C(C,D), then
(1-cr) <lr(z) (1+Cr)
1+7)(1-Dr 1-7r)(1+Dr
(+r)(-Dr) " (1=r)(1+Dr)

and
© (1-cr) 1+ Ct)
t <
J iz =Vl j PAEY))
On putting o6=1p=1,=1,4=1,B=-1,C=1,D=-1in Theorem 3.2, we get the following result:
Corollary 3.2.5. Let f(z)e C, then

(l—r) <l (- < (1+r)
iy ey
and
| (l_t)sdts
o (1+1)
Theorem 3.3. If f(z)e C(5;p;B;4,B;C,D), then
arg%(z) < ﬁsin-l(f_cg%) " (A;B)sin'l(Br),B #0; (13)
Dif() _ 4 _l((c - D)rj _
arg . < fsin —CD +Ar,B=0. (14)
The results are sharp.
Proof. From (3), we have
Dif(z) _ 1+Cw(z) (
—= < ) 15
arg—=> ﬁgHDM“ arg=— (15)
It is well known that
1+ Cw(z) 4 ( (C - D)r)
g[1+Dw(z)J sin 1-CDr* ) (16)

Using (16) and Lemma 2.4 in (15), the results (13) and (14) can be easily obtained.

Sharpness follows for the function f, (z) defined in (12), where

n

1
1) :z{—(C+D)r+i((1—C2r2X1—D2r2))2] and &, =Z{—Br+i(1—32r2);}.
r r

1+ CD#*

On putting f=1, Theorem 3.3 gives the following result:
Corollary 3.3.1 If f(z) € C(5; p,A,B;C, D), then



228 Gurmeet Singh, Gagandeep Singh and Gurcharanjit Singh

arg Df;‘(z) <sin™ (

argw <sin™ (
z r

For d=1,p=0,f=1,4=1,B=-1, Theorem 3.3 gives the following result due to Mehrok et al. [10]:

Corollary 3.3.2. Let f(z)e CS*(C, D), then
—f(z) <sin™ ((C — D)Z j +2sin”' 7.
z 1-CDr
For §=1p=0f=14=1B=-1C=1D=-1, Theorem 3.3 gives the result below due to Goel and Sohi [3]:
Corollary 3.3.3. Let f(z)e CS™,then

/()

arg

. 2r PR
arg—— <sin" | —— |+2sin” 7.
z I+r

On putting 6=1,p=1,f=1,4=1,B=-1 in Theorem 3.3, we get the following result due to Mehrok [7]:
Corollary 3.3.4. Let f(z)e C(C,D), then

larg f(z) <sin™ Gcgg)’;j +2sin” 7.
—~CDr

On putting d=1,p=1,=1,4=1,B=-1,C=1,D=-1 in Theorem 3.3, we get the following result:
Corollary 3.3.5. Let f(z)e C, then

‘argf’(z) < sin_]( 2r2 )+2sin_] r.
1+7
Theorem 3.4. Let f(z)e C(S;p; B;4,B;C,D), then f eS(p,5) for |z|<r, where r is

the smallest positive root in (0,1) of
— ACDr* +(CD— AC — AD + 3BC — BBD)r* +(C+D— A— fC+ BD)r+1=0. 17
Proof. As f(z)e C(S; p; B; A, B;C, D), then using principle of subordination, we have

Df(z) (1+ Cw(z)]ﬁ PR

glz)  \1+Dw(z)
or
Dy f(z)=[P(z)} g(2) (18)
After differentiating (18) logarithmically, it yields
z(Dg”f(z)), _ zP'(z)  zg'(z) 19
D) R el "
Now for g € S*(4,B), we have
Re( zg'(z)J S 1-Ar .
g(z) 1-Br

Also from (11), we have
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1+Cw(z) _|P(z) < 1+Cr
1+DW(Z) - 1+Dr’
So
z2P'(z) . r(c-D)
| P(z \ (1+Cr)1+Dr)’ @0)

So using (20), (19) yields,

R{Z(D;’f(z))J R( ¢z )j PELG)

D; /() g() ) "l PG)
Jl-ar . r(C-D)
"B (1+Cr)1+Dr)
_—ACDr’ +(CD - AC - AD + 5BC - iBD)* +(C+ D— 4~ /;’C+,BD)r+1
(1 Br)(l + Cr)(l + Dr)
Hence f(z)e S( ,5) in ‘z‘ <1, where r, is the smallest positive root in (0,1) of
— ACDr* +(CD— AC — AD + BBC — BBD)* +(C+D—A— SC+ D)r+1=0.
Sharpness follows if we take f,(z) to be same as in (7).

On substituting S =1, Theorem 3.4 gives the following result:
Corollary 3.4.1. Let f(z)eC(é';p;A,B;C,D), then f e S(5;p) for ‘z‘ <r,, where r, is the
smallest positive root in (0,1) of
— ACDr* +(CD— AC — AD + BC — BD)* +(2D— A)r +1=0.

4. The class C,(5; p; 3; 4,B;C,D)
Theorem 4.1. If f(z)e C,(5; p; B; 4, B;C, D), then

n

31)5]1{’12'!—!(14 (j-1)8)+ plC- D){H"‘;ﬁ(,q_(jq)]g)}}, n>2. 21

(n -1 k=2 R =2

The bounds are sharp.
Proof. In Definition 1.3, using Lemma 2.1 and Lemma 2.5 and following the procedure of
Theorem 3.1, the result (21) is obvious.

For n =2, equality sign in (21) hold for the function f,(z) defined by

B
1 (1+C6z 4
D? =— ! 1+ B38,z)s -1},
e e | (RSl
On putting f=1, Theorem 4.1 gives the following result:

Corollary 4.1.1. If f(z)e C,(5;p; 4,B;C,D), then

”S(nl—l)a]ﬁ{rll!g(A (j-1)B ){ ki;f! } n>2.

(22)

For 0=1,p=0,=1,4=1,B=-1, Theorem 4.1 gives the following result due to Mehrok et al.[11]:

229
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Corollary 4.1.2. Let f(z)e CS{‘< (C,D), then

a,|<1+(n-1C-D).

Onputting 6=1,p=0,=1,4=1,B=-1,C=1,D=—-1 in Theorem 4.1, we get the following result:
Corollary 4.1.3. Let f(z)e CSl*,then

‘an‘ <2n-1.
Foré=Lp=1=14=1,B=-1, Theorem 4.1 yields the following result due to Mehrok and Singh [8]:
Corollary 4.1.4. Let f(z)e C,(C,D), then
(n—1{C-D)
B
Foro=1,p=1p=1,4=1,B=-1,C=1,D=-1,Theorem 4.1 gives the following result due to Abdel Gawad

and Thomas [1]:
Corollary 4.1.5. Let f(z)e Cl’ then

la,| <L+
n

a, SZ—L
n
Theorem 4.2. If f(z)e C(5;p; B; 4,B;C,D), then for |z|=r, 0<r <1, we have
1 1-crY o, 1 o Y1+cr)
“l1=-(1- < <— — ; 23
A[l (1 Br)B}(l_Dr] <|pz /(z) A[(1+Br)8 1}(1+DJ ,B#0; (23)
1. . y71-cY 17, Ji+cY
—li- <|p2 f(z) <= -1 B=0.
A[ ¢ (I—Dr) ‘Jf(zj A[e (1+Dr)’ 0 (24)

Estimates are sharp.
Proof. Using Lemma 2.6 and following the procedure of Theorem 3.2, the results (23) and (24)
are obvious.

Sharpness follows for the function f(z) defined as

s 4
1 [1+Coz {(1+B§22)B—1}B¢0
Az\1+DJ,z

B

>

D} f, (2)=

5|=1,

5| =1. (25)

Az\ 1+ D&,z
On putting f =1 in Theorem 4.2, we obtain the results:
Corollary 4.2.1. If f(z)e C,(5; p;4,B;C,D), then for |z|=r, 0<r <1, we have

1 AN 1-Cr ) 1 4 1+Cr _
A[l—(l—Br)B}(l_DrjsDéf(zjs [(1+Br)u—l}(l+Dr),B¢O,

;[1—e-*‘f(1_cr)sz)§f(zjs e —IIHCF}B:O.

=

1-Dr 1+ Dr

For 6=1,p=0,f=1,4=1,B=-1, Theorem 4.2 yields the following result due to Mehrok et al.[11]:
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Corollary 4.2.2. Let f(z)e CSI* (C,D), then

_ri=Cr) <|/() < i)
(1 + r)(l Dr) (1 r)(l + Dr)
Onputting 0=1,p=0,f=1,4=1,B=-1,C=1,D=-1 in Theorem 4.2, we get the following result:

Corollary 4.2.3. Let f(z)e CS;< ,then

r(l-r) _ r(l+r)
L
For d=1,p=1,f=1,4=1,B=-1, Theorem 4.2 gives the following result due to Mehrok and Singh [8]:
Corollary 4.2.4. Let f(z)e C|(C,D), then
(1-cr) , (1+Cr)
(1+7)1-Dr) <|re) < (1=r)1+Dr)
and
¢ (1-cr) (1+Ct)
J(1+t)(1 Dt) t“f 25 j t)(1+Dz)
For 6=Lp=1F=1,4=1,B=-1,C=1,D=-1, Theorem 4.2 gives the following result due to
Abdel-Gawad and Thomas [1]:
Corollary 4.2.5. Let f(z)e C,. then

(=r) oy < 6r)
A

and

2r 2r

Theorem 4.3. If f(z)e Cl(d;p;ﬂ;A,B;C,D),then

o220 g (1C2E ) A s
/) ¢ [ E=D)
argTSﬂsln 1—CDr +Ar,B=0. (27)

The results are sharp.
Proof. Using Lemma 2.7 and following the procedure of Theorem 3.3, the results (26) and (27)
are obvious.

Sharpness follows for f,

n

( ) to be same as in (25) where 51 and 62 are defined in Theorem 3.3.

On putting £ =1 in Theorem 4.3, it yields the following result:
Corollary 4.3.1. If f(z)e C,(5; p; 4, B;C,D), then

argD§f(Z < ml((C_D)Z)+Asinl(Br),B¢0;
z 1-CDr B
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mglkj&)

<sin™ (€-D)
1-CDr?

On putting 6=1,p=0,=1,4=1,B=—1 in Theorem 4.3, we get the following result due to

Mehrok et al. [11]:

Corollary 4.3.2. Let f(z)e CS{k (C,D), then

—f(z) <sin™ ((C — D)}; j +sin”' 7.

z 1-CDr
On putting 6=Lp=0,=1,4=1,B=-1,C=1,D=-1 in Theorem 4.3, we get the following result:

Corollary 43.3. Let /(z)€CS|', then

arg —f(z) < sinl(zr R )+ sin”' .

z 1+r
For 0=1,p=1,f=1,4=1,B=-1,Theorem 4.3 gives the following result due to Mehrok and Singh [8]:
Corollary 4.3.4. Let f(z)e C1 (C,D), then

. ((Cc-DyY . _

arg f'(z) <sin™* (7 +sin” 7.

fre /() < (I—CDrzj "

Onputting s=Lp=1=1,4A=1,B=—-1,C=1,D=-1 in Theorem 4.3, we get the following

result due to Abdel-Gawad and Thomas [1]. :
Corollary 4.3.5. Let f(z)e C, then

‘argf'(z] < sin’(lfl;z ]+sinl r.
Theorem 4.4. Let f(z)e C(S; p; B;4,B;C,D), then feS(5,p) for |z|<r, where 7 is

the smallest positive root in (0,1) of
(CD+ BBC — BD)r* +(C+ D~ fC+ D) +1=0. (28)

j+Ar,B=O.

.

Results is sharp .
Proof. Following the procedure of Theorem 3.4 and using the result that for 4 € K(4, B),

h(z) ) 1-Br
Sharpness follows for the function f,(z) defined in (22).

For =1, Theorem 4.4 gives the following result:
Corollary 4.4.1. Let f(z)e C, (6; p;4,B;C,D), then f €S(5; p) for |z| <7,, where , is
the smallest positive root in (0,1) of

(CD+BC~BDY* +2Dr+1=0.
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