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QUASI BI-SLANT SUBMANIFOLDS OF KENMOTSU
MANIFOLDS

RAJENDRA PRASAD, ABDUL HASEEB, POOJA GUPTA AND AHMED HUSSEIN
MSMALI

ABSTRACT. The fundamental motivation behind the current paper is to define
and study the notion of quasi bi-slant submanifolds of Kenmotsu manifolds
as a generalization of slant, semi-slant, hemi-slant, bi-slant and quasi hemi-
slant submanifolds. First and foremost, we obtain the necessary and sufficient
condition for the integrability of distributions of quasi bi-slant submanifolds
of Kenmotsu manifolds and afterwards, we investigate the conditions for quasi
bi-slant submanifolds of Kenmotsu manifolds to be totally geodesic. At long
last, we additionally provide some examples of such submanifolds.

1. Introduction

In 1969, Tanno [18] characterized connected almost contact metric manifold on
the basis of constant sectional curvature of the plane section containing . He classi-
fied them as: (i) if K(X,£) > 0, then the manifold is called a homogeneous Sasakian
manifold, (ii) if K (X, &) =0, then the manifold is global Riemannian product of a
line or a circle with a Kaehler manifold of constant holomorphic sectional curvature;
and (iii) if K(X,&) < 0, then the manifold is a warped product space R x C". In
1971, Kenmotsu [10] obtained some tensorial equations to characterize the man-
ifold when K(X,¢) < 0, which nowadays called as Kenmotsu manifold. It may
be noticed that a Kenmotsu manifold is not a Sasakian manifold. Also, it is not
compact because divE = 2n.

Investigation of submanifolds hypothesis has shown an expanding advancement
in image processing, economic modelling, computer design along with mathematical
physics and mechanics. As such Chen [8, 9] initiated the notion of slant subman-
ifolds as a generalization of both invariant and anti-invariant submanifolds of an
almost Hermitian manifold. After this, Papaghiuc [12] introduced a submanifold
named as semi-slant submanifold which is a generalization of CR-submanifold,
slant submanifold, invariant submanifold and anti-invariant submanifold. The idea
of bi-slant submanifolds was given by Carriazo [5, 7] and he called them anti-slant
submanifolds. Inspite of the fact that these submanifolds are proposed as hemi-
slant submanifolds by Sahin in [16](see also [14, 15, 19]). Hemi-slant submanifolds
are one of the particular case of bi-slant submanifolds. Moreover, many geometers
studied the concept of slant submanifolds (see also [1, 3, 6, 11, 17]).
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Taking into account of the above studies, we are interested to give the notion of
quasi bi-slant submanifolds in which the tangent bundle consists of one invariant
and two slant distributions and the Reeb vector field. In this paper, as a generaliza-
tion of slant, semi-slant, hemi-slant, bi-slant and quasi hemi-slant submanifolds, we
introduce quasi bi-slant submanifolds and after that we investigate the geometry of
distributions of such submanifolds in detail.

This paper consists 5 sections. In section 2, we mention the basic definitions
and formulas related to Kenmotsu manifold and their submanifolds. In section 3,
we define quasi bi-slant submanifolds and obtain some lemmas for next section.
In section 4, we give some necessary and sufficient conditions for the geometry
of distributions. Finally in the last section, we construct some examples of such
submanifolds.

2. Preliminaries

An odd dimensional C*® manifold N is said to be an almost contact metric
manifold if it admits a (1,1) tensor field ¢, a vector field &, a 1-form n with a
Riemannian metric g which satisfy the following relations [4]:

(2.1) P*U=-U+nU), nE) =1, ¢£=0, n(U)=0,

(2.2) g(U, &) =n(U), g(oU,¢V) = g(U, V) —nU)n(V),

where U,V are vector fields on N.
Now if an almost contact metric manifold N'(¢,&,n, g) holds:

(2.3) (Vo) (V) = g(oU, V)§ —n(V)oU, Vu&=U—nU)¢

for any U, V tangent to NV, where V is the Levi-civita connection, then (N, ¢, £, n, g)
is called as Kenmotsu manifold [10, 13].
Also, note that the covariant derivative of ¢ is defined as

(2.4) (Vuo)V =VyoV — ¢V V.

Suppose, M be a Riemannian manifold isometrically immersed in A associated
with the induced Riemannian metric g on M. Let us assume throughout the paper
that A represents the shape operator and h represents the second fundamental form
of immersion of M into /. Now the Gauss and Weingarten formulas of M into N’
are given respectively by

(2.5) VuV =VyV +h(U,V),
and
(2.6) VuZ =-AzU + VéZ

for any vector fields U,V € T'(TM) and Z € I'(TtM); where V denotes the
induced Riemannian connection on M and V- denotes the connection defined on
the normal bundle of M.

Moreover, Az and h are related to each other by

for any vector fields U,V € T'(TM) and Z € I'(T+M).
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The mean curvature vector is denoted and defined by the following equation
1 1 &
2.8 =—t h)=—)> hler €r),
(2.8) H mrace() m;(e er)

where m denotes the dimension of submanifold M and {e,}7-; is the local or-
thonormal basis of tangent space at each point of M.

Also, for any vector field U,V € I'(TM) if h(U,V) = 0, then M is said to
be totally geodesic and if H = 0, then M is said to be a minimal submanifold.
From the definition, it is clear that any totally geodesic submanifold is obviously a
minimal submanifold.

Furthermore, let M be a submanifold of a Kenmotsu manifold A" whose structure
tensor ¢ is tangent to the submanifold M. Since £ is tangent to M, then from (2.5)
we have

Vué = Vyé+hU,¢)
which due to equation (2.3) yields

(2.9) Vo =U—-n(U)¢

and

(2.10) h(U,€) =0  (or equivalently Az&=0).
Hence, we also have

(2.11) Vué = Vyé.

3. Quasi bi-slant submanifolds of Kenmotsu manifolds

In the current part of the paper, we present the quasi bi-slant submanifolds of
Kenmotsu manifolds and we acquire the necessary and sufficient conditions for the
distributions associated with the definition of such submanifolds to be integrable.

Definition 3.1. A submanifold M of a Kenmotsu manifold (N, ¢,&,n) is defined

as quasi bi-slant submanifold if there exist four orthogonal distributions D, D1 and

Dy of M, at the point p € M such that

(1) TM possess the orthogonal direct decomposition as
TM:D@Dl@D2@<€>,

where < € > denotes the distribution spanned by &.

(2) The distribution D is invariant under ¢, i.e., D = D.

(3) §Z5D1 1 D2 and ¢D2 1 Dl.

(4) The distributions Dy and Do are slant with slant angle 61,05, respectively.

Taking the dimension of distributions D, D1 and D2 as m,my and ms, respectively.

One can easily observe the following conditions:

o If m # 0 and my = mg =0, then M is an invariant submanifold.

o Ifm=mi =0 and my #0, 02 = 3, then M is anti-invariant submanifold.

o Ifm#0,m1 #0,0p =5 and ma =0, then M is semi-invariant submanifold.

o Ifm=0,m =0 and my # 0,0 < 8y < 3, then M is slant submanifold with

slant angle 05.

o Ifm=0m #0,0<6; <F and mg =0, then M is slant submanifold with

slant angle 0.

e Ifm=0,m; #0,0<6; < 5 and mg # 0 with 02 = 3, then M is hemi-slant

submanifold.
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o Ifm=20m; #0,0 <0, <35 andmg # 0,0 <0 < 3, then M is bi-slant
submanifold.

o Ifm#0,my #0,0 <6 <5 and my # 0 with O = 5, then we may call M as
quasi hemi-slant submanifold.

o Ifm#0,m #0,0<0; <3 andmy # 0,0 <0 <73, then M is called proper
quasi bi-slant submanifold.

Remark 1: Above definition can be generalised by taking TM = D @ Dy, ®
Dy, @ ... ® Dy,. Hence we can define multi-slant submanifolds, quasi multi-slant
submanifolds, etc.

Let M be a quasi bi-slant submanifold of a Kenmotsu manifold A/, then for any
X e I(TM), we have

where P, P| and P, are the projections on the distributions D, D1 and Dy, respec-
tively. For any X € I'(T M), we can write

(3.2) X =vX +wX,

where v X and wX are tangential and normal components of X on M, respectively.
Similarly, for any Z € T+ M, we have

(3.3) ¢0Z =BZ+CZ,

where BZ € T(TM) and CZ € T'(T+M). Using (3.1) and (3.2), we obtain
¢X =vPX +wPX +vPI X +wP X +vPX +whX.

Since ¢D = D, we have wPX = 0. Therefore, we get

(3.4) ¢X =vPX +vP X + wbP X +vPX +whPX.
Thus we have the following consequences:

(3.5) ¢(TM) =D &vD; §vDs,,

and

(3.6) T*M = wD; & wDy & p,

where 4 is orthogonal complement of wD; @ wDs in T+ M.
The covariant derivative of projection morphisms in (3.2) and (3.3) are defined as

[15]

(3.7) (Vyv)V =VyvV —uvVyV,
(3.8) (Vow)V = VguV —wViV,
(3.9) (VuB)Z =VyBZ — BV Z,
(3.10) (VuC)Z =VECZ - COVEZ

for any U,V € I'(TM) and Z € T'(T+M). Taking into account of the condition
(3) in Definition 3.1, (3.2) and (3.3), we have the followings observations [2]:

(a) vD; C Dy, (0)BwD; =D;  for anyi=1,2.
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Lemma 3.2. Let M be a quasi bi-slant submanifold of a Kenmotsu manifold N.
Then we have the following identities:

(2) I/2X1 + BwX; = —Xq,

(1)  wrX;+CwX; =0,

(ZZZ) l/2X2 + BwXs = — X,

(iv) wrvXe +CwXs =0

for any X1 € D1 and X € Ds.

Proof. Using (2.1), (3.2) and (3.3) and then comparing tangential and normal com-
ponents, one can easily get these assertions. O

Lemma 3.3. Let M be a quasi bi-slant submanifold of a Kenmotsu manifold N,
then we have the following conditions:

(7) 12X, = —(cos?0,) X1,

(i) g(vXi,vY1) = (cos’01)g(X1, Y1),

(1) g(wX1,wY1) = (sin?61)g(X1,Y1)

for any X1,Y, € T'(Dy)

Proof. (i) For any X1,Y; € T'(D1), we have

_ g(eXivX1) _ —g(X1,v°X1) _ v Xal
cost1 = axii X = Xl nd also, costh = fax .

Thus we have, (cos20;)||X1|]> = —g(X1, v?X}), which implies that g(Xy, X;)cos?6; =
—g(X1,v%2X1). Hence, v2X; = —(cos?0;) X;.
(#3) For any X;,Y; € I'(D4), using (3.2) and Lemma 2(4), we have

g(vX1,vY1) = g(¢X1 — wXy,vY7)
= —g(X1,*Y})
= (c0s?01)g(X1,Y1).
(i44) Using (3.2), Lemma 3.3(i) and Lemma 3.3(44), we have g(wX;,wY7) = (sin?6,)g(X1,Y1).
0

In a similar way as above, one can obtain the following lemma:

Lemma 3.4. Let M be a quasi bi-slant submanifold of a Kenmotsu manifold N,
then we have the following conditions:

(i) 12Xy = —(c0s%03)Xo,

(ii)  g(vXa2,vYa) = (cos?0s)g(X2,Ya),

(iii)  g(wXa2,wYa) = (sin?02)g(Xa, Y2)

for any X5,Ys € T(D2).

Further, with the help of (2.3), (2.5), (2.6), (3.2) and (3.3), one can easily obtain
the following lemma:

Lemma 3.5. Let M be a quasi bi-slant submanifold of Kenmotsu manifold N,
then for any U,V € T'(T M), we have

(i)  VyvV —A,wU —vVyV — BR(U, V) = g(vU, V)¢ = n(V VU,

(1) h(U,vV)+ VEwV —wVyV — Ch(U,V) = —n(V)wU.

Proof. Since N is a Kenmotsu manifold, so we have
(Vuo)(V) = g(oU, V)& —n(V)oU.
By using (2.4) and (3.2), we have
Vu(@V) = (Vo V) = g +wU, V)¢ = n(V)(WU +wU).



190

R. Prasad, A. Haseeb, P. Gupta and A. H. Msmali

Now by using (2.5) and (3.2) the above equation becomes
VvV + VywV — ¢(VyV) — ¢(h(U, V) = gwU,V)é —n(V)vU — n(V)wU.
Again with the help of (2.5), (2.6), (3.2) and (3.3), the last equation leads to
VoV + h(U,vV) — Aoy U + ViwV — vV V — wVyV — BW(U,V) — Ch(U, V)
=gwU, V)¢ —n(V)vU — n(V)wU.
On comparing the tangential and normal parts in the last equation we get the

required assertion. O

Using equations (3.7) and (3.8) in Lemma 3.5, we have the following :

Lemma 3.6. Let M be a quasi bi-slant submanifold of Kenmotsu manifold N .
Then, we have (Vyv)V = A,yvU + Bh(U, V) + g(vU, V)¢ — n(V)vU,

(Vyw)V = Ch(U, V) — h(U,vV) — n(V)wU

for any U,V € T(TM).

4. Integrability of distributions and totally geodesic foliations

This part comprises the necessary and sufficient condition for integrability of the
distributions D, D, and Ds.

Theorem 4.1. Let M be a quasi bi-slant submanifold of Kenmotsu manifold N .
The invariant distribution D is integrable if and only if

(4.1) g(VyvV —=VyvU,vPi X +vPX) = g(h(V,vU) — h(U,vV),wP X + wPe X)
fO’F any U,V € F(D) and X = PLIX +P,X € F(Dl D Dg)

Proof. The invariant distribution D is integrable on M iff ¢([U,V],£) = 0 and
g([U,V],X) =0 for any U,V € I'(D), X € I'(D, & D) and £ € T'(TM).

Since M is a quasi bi-slant submanifold of Kenmotsu manifold /. So, we immedi-
ately have

g([U,V1],€) = g(Vu V. &) — g(VvU,§)
= Ug(V7 f) - g(vv ﬁUg) - Vg(Uv S) + g(U7 ﬁvf)
=g9(U,V —n(V)§) —g(V,U = n(U)§) = 0.

Thus, invariant distribution D is integrable iff g([U, V], X) = 0.
Now, for any U,V € T'(D) and X = P,X 4+ P,X € I'(D; @ D3), with the help of
(2.2), (2.4), we have

9([U, V], X) = g(o([U, V1), ¢X) + n([U, V])n(X)

(
= g(o(VuV),0X) — g(6(VvU), $X)
=g9(VuoV — (Vuo)V,¢X) — g(VyoU — (Vyo)U, ¢ X)
=g(VuoV,6X) — g(Vud)V,6X) — g(VyoU, 6X) + g(Vvo)U, ¢X).
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Now using the fact that wU = wV = 0 for any U,V € I'(D) and (2.2),(2.3) and
(3.2), we obtain
g([U V], X) = g(Vu(vV +wV),0X) — g(Vy (vU + wU), $X)
—{9(oU, V)g(§, ¢X) —n(V)g(oU, 6 X)}
+{9(0V, U)g(§, ¢X) —n(U)g(¢V, ¢ X)}
= 9(Vu(WV),9X) = (Vv (VU), 6X).

Using equation (2.5), we have
9([U, V], X) = g(Vu (V) = Vv (WU), $X) + g(h(U,vV) = h(V,1U), ¢ X).
Again using equation (3.2) for any X = P1X + P,X € I'(D; & D3), we get
g([U V], X) = g(VyvV = VyvU,vPi X + vPX)
+g(h(U,vV) = L(V,0U),wP X + wP X).

This proves the assertion.

O

Theorem 4.2. Let M be a quasi bi-slant submanifold of a Kenmotsu N'. The slant
distribution D is integrable if and only if

(42) g(AwV1 Ul - AwUl V17 VX) = g(Awyvl Ul - Aqul Vl, X)
+ 9(V,wWi — Vi, wUy, wPX)

for any Uy, Vi € I'(D1) and X € I'(D @ Dy).

Proof. For any Uy, V4 € I'(Dy) and X = PX 4+ P,X € I'(D @ Ds), the distribution
D; is integrable on M if and only if g([Uz, V4],€) = 0 and ¢([U3, V4], X) = 0, where
& € I(TM). Now, the first case is trivial as in above Theorem 4.1. So, the slant
distribution D, is integrable if and only if g([U3, V4], X) = 0.

Now, for any Uy, V5 € I'(D;) and X = PX + P, X € I'(D & D3), by using (2.2)
we get

g([U1, V1], X) = g(¢[Ur, V1], ¢ X) + n([U1, Vi])n(X)
g(ﬁb(le‘/l), ¢X) - g(d)(vvl U1)7¢X)

Now using (2.3), (2.4) and (3.3), we get

g([U1, V1], X) = g(Vu, (W1 + wWh), 0X) — g(Vy, (vUy + wlh), ¢X)
—{9(oU1,V1)g(&, ¢X) —n(V1)g(oU1, ¢X)}
+{9(¢V1,U1)g(& ¢ X) —n(U1)g(éV1, 9 X)}
= 9(Vu, (vN1),6X) + 9(Vu, (W), 6X) — g(Vv, (vT1), ¢X)
— 9(Vv; (W), 9X).
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In account of (2.3), (2.4) and (2.6), we have
9([U1, V1], X) = —g(Vu,6(vV1) = (Vu, 0)vVi, X) + 9(Vvi o (V) = (Vi ¢)rUs, X)
+ 9(=Ao, U + V§,wVi, ¢X) — g(—Au, Vi + Vi wUi, 6 X)
= —g(Vu,0(vV1), X) + 9(Vv,6(vU1), X) + g(—Auv, Ur + Vi wVi, ¢X)
— g(—Awr, Vi + Vi, wUi, ¢X).
Now for any X = PX 4+ P,X € I'(D & D), from (3.2) we obtain
g([U1, V1], X) = —g(Vu,v* V1, X) — 9(Vu,wv Vi, X) + g(Vv, 2 U, X) + g(Vy,wvlUs, X)
—g(Aun, U1 — Apu, V1, v X +wX)
+ 9(VE wVi — Vi wUy, PX + 9P, X)
which leads to
g([U1, V1], X) = c0s?0,9(Vy, Vi — Vi, U, X) — g(Vy,wvVi — Vy,wrlUs, X)
— 9(Av U1 — Au, Vi, vX) + g(Vi,wVi — Vi, wUy, wPaX)
= cos%019([U1, V1], X)
—g(—Au, Uh + VjU‘lwyvl + Apv, Vi — VﬁlwyUl,X)
— 9(Av Ui — Aur, Vi, vX) + g(V,wVi — Vi, wUp, wPeX)
= c0s?01g([U1, V1], X) — g(—Awsv, U1 + Awwtr, V1, X)
— 9(Auv, Ur — Au, Vi, vX) + g(Vi,wVi — Vi, wUi, wPs X)

which in view of Lemma 3.3 (7) and using the fact that wPX = 0 the above equation
leads to

sin*019([U, V1), X) = g(Awwv, Ur — Awwrr, Vi, X) — g(Awv, Ur — Awr, Vi, vX)
+g(VJU‘1wV1 — Vélel,wPQX).
Thus the proof follows. O

Likewise the above hypothesis, we have the following sufficient conditions for the
slant distribution D; to be integrable:

Theorem 4.3. Let M be a quasi bi-slant submanifold of a Kenmotsu manifold N.
If
(4.3) Awv,Ur — Auu, Vi € Dy,
A Ui — A, Vi € Dy,
Vi,wVi — Vi, wU; € wDy & p
for any Uy, Vi € T'(Dy), then the slant distribution Dy is integrable.

Proof. From the above theorem, for any Uy, V4 € T'(D;) and X € I'(D & D), we
obtain

Sinzelg([Ulv Vvl]a X) = g(Awulel - Aqulvla X) - g(valUl - AwUl‘/h VX)
+ 9(V§,wWi — Vi, wUp,wPX)

which shows that if val Ul_AwUl Vi€ Dy, Awuvl Ul_A.wyUl Vi € Dy and Vﬁlel—
V‘l/lel € wD; @ p, then ¢g([Uy, V1], X) = 0 and hence D; is integrable. O
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In a similar way to the above theorems, we can also obtain the following asser-
tions:

Theorem 4.4. Let M be a quasi bi-slant submanifold of a Kenmotsu manifold N .
Then the distribution Dy is integrable if and only if

(44) Q(va2 U2 - AwUz‘/Q7 VX) = g(AwVVg U2 - AUJVU‘Z%? X)
+ 9(Vi,wVe — Vi, wUs, wP X)

for any Us, Vo € T'(D2) and X € T'(D & Dy).

Proof. For any Uy, Vo € T'(Dy) and X = PX + PP X € I'(D & Dy), the distri-
bution Dy is integrable on M iff g([Usz,V2],&) = 0 and g([U2, V2], X) = 0, where
& € T(TM). Now, g([Us2,V2],£) = 0 is obvious. So the slant distribution Dy is
integrable if and only if g([Us, V2], X) = 0.

Now, for any Uz, Vo € T'(D2) and X = PX + P,X € I'(D & D), with the help
of (2.2) we get

g([U27 VQ]vX) = g(¢[U27 ‘/2]’ ¢X) + U([U% ‘/2])77(X)
= g((ﬁ(vUz‘/?)v ¢X) - g(¢(vV2U2)7¢X)

Now using (2.3), (2.4) and (3.3), we get

9([U2, V2], X) = g(Vu, (vVa +wVa),¢X) — g(Vv, (WUs + wlz), ¢ X)
—{9(¢U2, V2)g(&, 9 X) — n(V2)g(8U2, $X)}
+ {9(8V2, U2)g(&, 0X) — n(U2)g(¢V2, X))}
= 9(Vu, wVa), 6X) + 9(Vu, (Wa), 6X) — g(Vv, (vU2), X)
= 9(Vv, (wl2), ¢X).

In account of (2.3), (2.4) and (2.6), we have

9([Us, Vo], X) = —g(Vu,0(vV2) = (Vu,d)vVa, X) + g(Vi, 0 (vU2) — (Vv d)vUs, X)
+ g(—Auv,Us + V$2w‘/§7 ¢X) — g(=Auuv, Vo + V\lzszm $X)

= 7g(vU2¢(VV2)7X) +g(vvz¢(VU2)7X) + g(waV2U2 + Véng?aqu)

— 9(—Au,Va + Vi, wls, X).

Now for any X = PX + X € I'(D & Dy), from (3.2) we obtain

g([U27‘/2]7X) = *9(?[]21/2‘/2,)() 7g(vU2wVV27X) +g(vV2y2U27X) +g(vV2WVU2,X)

— 9(Au, Uz — A, Vo, v X + wX)
+ g(Vi,wVo — Vi wUs, §PX + P X)

193
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which leads to
([Uz, V2], X) = c052029(Vy, Vo — Vi, Us, X) — g(Vi,wr'Va — Vy,wrlUs, X)
— 9(Auv, Uz — A, Vo, vX) + g(Vi,wVo — Vi, wUs, wP X)
= c05°029([Uz, V2], X)
— g(—Auv,Ua + Vﬁzwy‘/g + Apvu, Vo — V¢2wl/U2, X)
— 9(Av,Us — A, Vo, vX) + g(Vi,wVa — Vi, wUs, wP X)
= c05%029([Us, V2], X) — g(=Awv, Uz + A, Vo, X)
— 9(Auv,Us — A, Vo, vX) + g(Vi,wVa — Vi, wUs, wP X)
which in view of Lemma 3.4(4) and the fact that wPX = 0 turns to
sin029([Uz, Vo], X) = g(Auwn Uz — Awvu, Vo, X) = g(Auv, Uz — Ay, Vo, vX)
+ 9(V,wVa — Vi, wUs, wP X).
Hence, the proof follows. O

Also, we have the following sufficient conditions for the slant distribution Dy to
be integrable:
Theorem 4.5. Let M be a quasi bi-slant submanifold of a Kenmotsu manifold N .
If
(4.5) Apv,Us — Ay, Vo € Dy
A, Us — Ay, Va € Do,
Vi,wVe — Viswls € wDs @ p
for any Us, Vo € T'(Ds), then the slant distribution Doy is integrable.
Proof. From the above theorem, for any Us, Vo € I'(D3) and X € I'(D & D), we
have the following result
sin*029([Us, Vo], X) = g(AuwnvaUs — A, Va, X) = g(Au, Uz — Ay, Va, vX)
+ 9(Vi,wVa — Viy,wUs, wP X)
which implies that if A,v,Us — Awu,Vo € Do, Aupv,Us — A, Vo € Do and

Vész? - V&szg € wDs @ p, then g([Us, Vo], X) = 0 and hence D is integrable.
O

Now, we investigate the geometry of leaves of an invariant distribution D, slant
distributions D; and Ds.
Theorem 4.6. Let M be a quasi bi-slant submanifold of N'. Then the invariant
distribution D does not define totally geodesic foliation on M.

Proof. The invariant distribution D defines a totally geodesic foliation on M iff
g(vU‘/ag) = 079(VU‘/, Z) =0 and g(vUV7W) =0, for any U,V e F(D)v
Z=PZ+P,7ZcT'(D;® D) and W € T(T+M).
Now, since we know that
9(VuV,€) = Vu{g(V.§)} — 9(V, Vi)
=Ug(V.€) — g(V,Vu§)
= —g(V,Vue) {9(V,€) =0}
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Using equation (2.3), we get
9(VuV,§) = —g(V.U —n(U)g)
=—g9(V,U) +n(U)g(V; &)
=—9(V,U)
#0 for some U,V € T'(D).

As g(VyV, &) # 0, therefore the invariant distribution D does not define totally
geodesic foliation on M. a

Similarly as above we have the following theorems for the slant distribiutions Dy
and Ds:

Theorem 4.7. Let M be a quast bi-slant submanifold of N'. Then the slant dis-
tribution Dy with slant angle 01 does not define totally geodesic foliation on M.

Theorem 4.8. Let M be a quasi bi-slant submanifold of N'. Then the slant dis-
tribution Do with slant angle 02 does not define totally geodesic foliation on M.

Example 1. Let us consider an 11-dimensional manifold
M= {(-7717$2,$37$4,$5,y17y2,y3,y4,y572) € Rll Lz # O}a Wherea (xiayhz)ai =

1,2,3,4,5 are standard coordinates in R*. We choose the vector fields

_ ,—z_ 0 _ ,—z_ 0 _ 9
€& =€ "5 €5+ =€ “pu €11 = 5

which are linearly independent at each points of M. Let g be the Riemannian
metric defined by
g=e*(dz@dr+dy®dy)+n®mn,

where 7 is the 1- form defined by 7(X) = g(X, €11) for any vector field X on M.
Hence {¢1, €2, ..., €11} is an orthonormal basis of M. We define (1,1) tensor field ¢
as (;S{Zle(xia%i + yi%) + z%} = Ele(xia%i - yi%). Thus, we get

¢(e1) = €6, P(e2) = €7, P(e3) = €s,

P(e1) = €9, P(e5) = €10, B(e6) = —e,

P(e7) = —e2, P(es) = —e3, P(e9) = —ea,

d(€10) = —¢€5, p(e11) = 0.
The linearity property of g and ¢ yields that

n(enn) = glewr, enn) = 1, ¢*X = =X +n(X)enr, 9(6X,0Y) = g(X,Y) —n(X)n(Y)

for any vector fields X, Y on M. Thus, for €7 = &, M(¢,£,n,g) defines an almost
contact metric manifold. We can easily show that for any vector fields X, Y, Z on
M, M(¢,&,m,g) is a Kenmotsu manifold.

Now, let M be a subset of M and consider the immersion f : M — M defined as:
flu,v,w,r s, t,2) = (u,0,w,0, s, vcosby, vsinby, rcosls, rsinfs, t, z).

If we take

X1 =€, Xo=cosbieg+ sinbre;, X3 =¢e€3, X4 = cosbreg+ sinbseqg

X5 = ¢s, X6 = €10, X7 =¢§=-en,

then the restriction of X7, X, ..., X7 to M forms an orthonormal frame of the tan-
gent bundle 7T M. Obviously, we get

¢X1 = €6, ¢X2 = —0089161 — Sin91€2,

¢X3 = €8, ¢X4 = —6089263 — Sin92€4,

¢ X5 = €10, $Xe = —¢s, $X7=0.
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Let us put Dy = span{X1, X2}, Do = span{ X3, X4} and D = span{ X5, X}. Then
obviously D1, D2 and D satisfy the definition of quasi bi-slant submanifold of a Ken-
motsu manifold. Hence, submanifold M defined by f is quasi bi-slant submanifold
of R with bi-slant angles 6; and 6.

Example 2. Consider, (x;,y;, z) be cartesian coordinates on R?**! fori =1,2,....,n
with an almost contact metric structure (¢, &, n,g) which is defined as follows:
¢(Z?:1(aia%i + biaiyi) + C%) = - Z?:l bia%i + Z?:l aiaiyiv
where, £ = % and a;, b;,c are C™ real valued functions defined on R?**!. Let
n = dz, g is Euclidean metric and {%, 8%,-’ %},i =1,2,...,n is orthonormal base
field of vectors on R2"*1. We can easily show that (¢, &, 7, g) is Kenmotsu structure
on R?™*!, Hence, it is a Kenmotsu manifold.
Consider, a submanifold M of R! defined by

flu,v,w,r,s,t,q) = (u, 5,0, 5,0, ?r, 5 %, %,q).
By direct computation it is easy to check that the tangent bundle of M is spanned
by the set {Xl, XQ, Xg, X4, X5, X67 )(7}7 where

< - 9 — 19 0
Xl ~ Bz’ X2 = By’ XS - 2((')$2 +\/§8y3)7

< 19 4 9 — 0 —¢c= 90
X4_6w3’ X5_ﬁ(6w4+8y5)’ X6—3y47X7_§—az-

Obviously, we get

_ 0 _ ol _ 170 o)
PN=g $Xe=oan o Xe=3(h; - Vi),
1
60Xy = 5o, 0X5 = 75(5y; ~ 3 )> X6 = —gur oX7 =0.

Hence the distributions D = span{ X1, Xz}, D1 = span{Xs, X4} and Dy = span{Xs, Xs}

are invariant, slant with slant angle % and slant with slant angle 7, respectively.

6
Also the distributions D, D, D5 satisfy the definition of quasi bi-slant submanifold

of Kenmotsu manifold. Hence submanifold M defined by f is quasi bi-slant sub-

manifold of R with bi-slant angles & and 7.
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