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Abstract

In this study, we establish some results related to the existence of solutions
for nonlinear functional integral equations, by Darbo’s fixed point theorem in
Banach algebra, which contains several functional integral equations that arise
in mathematical analysis. As an application, we also provide an example of
functional integral equations.
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1 Introduction

Integral equation is an important branch of mathematical analysis and equations of
such type are applicable in many physical problems such as in the integro-differential,
optimal control, control theory and mathematical physics(see [9, 17]). Recently the
theory of such functional integral equations is developed effectively and emerge in the
field of analysis, engineering, applied mathematics and nonlinear functional analysis
(see [1, 2, 7, 10, 11, 12, 13, 14, 24] and references therein). Here, we try to prove
the solvability of generalized FIE:

3Corresponding author.
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o(s) = <f(s,x(s)) 4 (s,/osr(s,z,x /0 o5, 2 0(2))dz x(s)))
X (h(s,x(s))JrG(s, /Obp(s 2, ( /Obq (s, 2, 2 dz,x(s))), (1)

for s € [0, b].

The FIE (1) consists many special type of functional integral equations. The goal
of this paper is to investigate the method to prove the existence of solutions of (1)
with the help of the MNC in [0, b].

1.1 Applications and comparison with some previous well known
results

Our proposed integral equation contains several integral equations, considered by
several authors as a special case.

o If F(s,x1,x9,23) = F(s,22,23) and G(s,x1,x2,x3) = G(s,z2,23), then equa-
tion reduces in the FIE, which studied in [16]

2(s) = (f(s,a:(s)) +F <S,/Osg(s,z,x(z))dz,m(s)>> X

0 (s [ torz @iz a(s)).

In this article, authors consider solvability of a certain functional-integral equa-
tion which contains as particular cases a lot of integral and functional-integral
equations, which are applicable in several real world problems of engineering,
mechanics, physics, economics and so on. The main tool used in our result is
a fixed point theorem which satisfies the Darbo condition with respect to a
measure of noncompactness in the Banach algebra of continuous functions in
the interval [0, a].

(2)

e Taking F'(s,z1,x2,23) = F(s,x2,23), and G(s,z1,x2,23) = 1, equation (1)
convert into the following form which has been studied in [22].

z(s) = f(s,z(s)) + F <s, /Osg(s,z,x(z))dz,x(s)) . (3)

In this artcle, authors established an existence of solutions for some nonlinear
functional- integral equations which include many key integral and functional
equations that appear in nonlinear analysis and its applications. By using
the techniques of noncompactness measures, they applied the basic fixed point
theorems such as Darbos theorem to obtain the mentioned aims in Banach
algebra.
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e On putting f(s,z1) = 0, F(s, 1, x2, x3) = F(s,21,22), and G(s, 21, 22,23) =
G(s, 22, x3) we obtain the following FIE studied in [6, 21].

o) = F (s [ alo.zalndz o) =

G <s, /Obq(s, z,x(z))dz,x(s)) .

In this article the method of measure of noncompactness with Darbo’s fixed
point theorem is used to obtain the existence results.

(4)

o If F(s,x1, 22, 23) = x2 and G(s, 1,22, 23) = 1, then we get the following FIE
studied in [5].

z(s) = f(s,2(s)) + /OS 9(s, z,x(2))dz. (5)

In this article authors prove an existence theorem for a nonlinear integral
equation being a Volterra counterpart of an integral equation arising in the
traffic theory. The method used in the proof allows us to obtain additional
characterization in terms of asymptotic stability of solutions of an equation in
question. The methods used by authors are measure of noncompactness and
Darbo’s fixed point theorem.

e Taking G(s,x1,x2,23) = 1 and F(s,z1,x2,23) = f(57$)1’27 then equation (1)
has the following form studied in [23].

2(s) = f(s,2(s)) /0 g5, 7 2(2))dz. (6)

Again, the method of measure of noncompactnes and Darbo’s fixed point the-
orem is used by authors to establish the main results in this article.

e On putting G(s,z1,z2,23) = 1 and F(s,z1,22,23) = a(s) + x2, then we get
following non-linear Volterra integral equation

x(s) = a(s) + /Osg(s, z,2(z))dz. (7)

e Taking F(s,z1,22,23) = 1 and G(s, 1,22, 23) = n(s) + x2, then we obtain
Urysohn integral equation

b
x(s) = n(s) —l—/o q(s, z,2(2))dz. (8)

The method of measure of noncompactness together with Darbo’s fixed point
is used in almost all the research article cited above. In present article we also
apply the same method but advantage of our work over above cited work is that our
equation contains all the equations that are studied in above articles. So our work
is a generalization of above cited work.
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2 Preliminaries

Assume that X is a real Banach space with the norm ||.||. Denote by B(x,#) the
closed ball centered at zy with radius 7. For P a nonempty subset of X, denote
by P and ConvP the closure and convex closure of P respectively. Moreover, Mx
denote the family of bounded subsets of X and Nx denote its subfamily contains of
all relatively compact sets.

Definition 2.1. [3] Assume P € Mx and
n
w(P) = inf{s >0:P= U P; with diamP; <e, j= 1,2,...,71} .
i=1

where,
diam P = sup{|ja — 8| : o, 8 € P}.

Hence, 0 < pu(P) < co. p(P) is called the Kuratowski MNC.

Theorem 2.1. Assume P, P* € Mx and A € R. Then

(1) u(P)=0if and only if P € Nx;

(i) PC P = p(P) < p(Pr);

(iii) u(P) = p(ConvP) = p(P);

(iv) #(PUP*) = max{u(P), u(P*)};

(v) u(AP) = [M\p(P), where AP = {A\x : x € P};

(vi) u(P+ P*) < pu(P)+ pu(P*), where P+ P* ={zx+2*: z € P,x* € P*};

(vii) |u(P) — p(P*)| < 2d; (P, P*), where d; (P, P*) denotes the Hausdorff metric
of P and P*, i.e.

d;(P,P*) = max{ sup d(z*, P),sup d(:v,P*)} .
z*eP* zeP

where d(.,..) is the distance from an element X to a set of X.

Further, facts concerning MNC may be found in [3].

Suppose that @ is a nonempty subset of a Banach space X and H : Q@ — X is a
continuous operator which transforming bounded subsets of ) into bounded ones.
Moreover, let p be a regular measure of non-compactness in X.

Definition 2.2. [3] Let @ be a nonempty, convex, bounded and closed subset of X
and let H : QQ — @ be continuous mapping such that 3 a constant k € [0, 1), with

u(HP) < kp(P)

for any subset of P of Q. Then H has a fixed point in Q.
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Now, we discuss on C[0, b] which contains set of all real continuous functions defined
on the interval [0, b] with the standard norm

|lz|| = sup{|a(s)] : s € [0, 0]},

Clearly, the space C[0,b] has also the structure of Banach algebra.
Now, we will focus on a regular MNC defined in [4] (cf also [3]).

Now, we fix a set P € X¢jop). For € P and given € > 0 denote by w(z,€) the
modulus of continuity ofz, i.e.,

w(z, €) = sup{|z(s) — x(8)] : 5,5 € [0,b],]s — §] < €}.
Further,

w(Pye) = sup{w(z,€):x € P},
wo(P) = lii%w(P,e).

Thus wp(P) is a regular measure of non-compactness in C10, b].

Theorem 2.2. [/] Suppose that Q is a closed, conver and bounded subset of C|0,b]
and Hy and Hy be the operators which transform continuously the set Q into C|[0, b
in this way that Hi1(Q) and H2(Q) are bounded. Again, suppose that operator H =
Hy.Hy transform @ into itself. If the operators Hy and Ha satisfies the Darbo’s
condition on the set Q@ with the constant K1 and Kso, respectively, then the operator
H satisfies the Darbo’s condition on @Q with the constant

[[H1(Q)]| K2 + || H2(Q)[| K1
If || H1(Q)|| K2 + ||H2(Q)|| K1 < 1, then H will be called contraction with respect to
the measure wy and has a fixed point in the set Q.
3 Main Results

In this article, we study about the solvability of the FIE (1) for = € C[0,b] under
the following estimate.

(1) f,h:]0,) x RxR — Rand F,H : [0,b] x R xR xR — R are continuous and
3 the constants C; and Cy > 0 such that

‘f(570)| < C,
|h(s,0)] < Ci,
|F(S7030’0)| < 027
|G(5,0,0,0)] < Cb.
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(2) There exists the continuous functions b1, be, b, ba, b5, bg, b7,bs : [0,0] — [0, D]

such that

If(s,21) = f(s,91)] < ba(s)]er —wl,

|h(s,z1) —h(s,y1)] < ba(s)|w1 — yl‘
|F'(s, 21,72, 23) — F(s,y1,92,y3)] < b3(s)|w1 — y1| + ba(s)|w2 — ya| + bs(s)|rs — y3|
|G (s, 21,72, 73) — G(5,y1,92,¥3)| < be(s)|v1 — y1| + br(s)[xa — y2| + bs(s)|z3 — ysl,

for all s € [0,b] and y1, y2, Y3, Y4, 21, 22 € R.

(3) r=r(s,z,2(2)),9 = g(s,z,2(2)),p = p(s, z,2(2)), and ¢ = q(s, z,2(2)) : [0,b] x
[0,0] x R — R transform continuously the interval [0, b] into itself.

(4) 3 a non-negative constant K such that

max{b1(s), ba(s), bs(s), ba(s),bs(s),bs(s),br(s),bs(s)} < K, for s € [0,D].

(5) (Sub-linearity condition) 3 constant ¢ and 1 such that

Ip(s,z,2(2))] < (+mnlzl,
la(s,z,z(2))] < ¢ +mnlz,
r(s,z,2(2))] < ¢+l
lg(s, 2, 2(2))] < C+nlz|.

for all s, z € [0,b] and = € R.

(6) 4yo < 1 for, vy = 2K 4+ 2Kbn and o = C; + 2Kb( + Cs.

Theorem 3.1. Under the assumptions (1)—(6) equation (1) has at least one solution
in C[0,0].

Proof. Taking operators Hy and Hj defined on C[0, b] by the formula

(Hiz)(s) = f(s,z(s))+ F (s,/os r(s,z,ac(z))dz,/OS g(&z;c(z))dz,x(z))) ,

b b
(tar)(s) = g(ssa() + G (s, [ ot zsaeis, [ ats.a()dzalo)) )
0 0
for s € [0,D].
From assumptions (1) and (3), we see that H; and Hj transform C[0,d] into itself.
Now, we put
Hzx = (Hix)(Hax).

Clearly, H transform C|0, b] into itself.
Now, fix « € C[0,b]. Then,

(Hz)(s)] = [|(Hiz)(s)|[(H2z)(s)|
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- (‘fsx +F</ 5,2, 2( /Ogszx dza:(s)))D
g(57x(s))+G</ 5,22 /Obqszm dzxs)))

<|f(8»$(8)) = f(5,0)[+[£(s,0)]

X

IN

+‘F(s, /OS r(s,z,2(z))dz, /OS g(s, z,x(z)))dz,x(s)) — F(s,0,0, 0)‘ + |F(s,0,0, 0)|>
X <|9(87$(8)) —9(s,0)[ + [g(s, 0]
+‘G(s,/0bp(s,z,x(z))dz,/ob q(s,z,z(z))dz,a:(s)) — G(s,0,0,0)‘

+/G(s,0,0, 0)I>,

IN

<b1<s>|x<s>| 1Oy 4 bs(s) / (s, 2, 2(2)))ldz

has) / (s, 22 2(2))|dz + bs|(x(s))] + C2>
b

x (b2<s>|x<s>| +C (o) [l a2l
0

b
+b7(s) /0 lq(s, 2, 2(2))|dz + bs(s)|2(s)[ + 02>

IN

<2K|x|| + Cy + 2Kb(¢ + n||z||) + C’z)

X <2K|x|| + C1 4+ 2Kb(¢ + n||z]|) +C’2>

IA

2
<(2K + 2Kbn)||z|| + C1 + 2Kb¢ + C’g)

Taking v = 2K + 2Kbn and 0 = C1 + 2Kb( + C3 then we have

(Hizl| < Allzl[ +0, (9)
[Hozl| < Allz]] + 0, (10)
[Hel| < (yllel| + o) (11)

for z € C|0, b].
From (11), we reduce the operator H maps the ball B, C C]0,b] into itself for
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r1 < r < rg, where

(1= 270) - VT=Ti5

Also, from estimate (9) and (10),

T = 272
(1 —=2v0)++/1—4vo
ro = .
HH1B,|| < ~vr+o, (12)
||HoBr|| < ~yr+o. (13)

Next, we prove that the operator H is continuous on the ball B,.. To do this, fix
e > 0 and take arbitrary x,y € B, such that ||z — y|| < e. Then for s € [0, b], we get

|(Hz)(s) — (Hiy)(s)]

where

IN

IA

IAIA

‘f(s,x(s))JrF <s,/osr(s,z,x(z))dz,/089(5,27:10(2'))dz,x(5))

<16+ F (s [ ooz, [ ats sz )|
bi(s)z(s) — y(s)|
—I—’F <s,/os r(s,z,x(z))dz,/os g(s,z,x(z))dz,x(s))

—F (s,/osr(s,z,y(s))dz,/os g(s,&a:(z))dz,m(s)) +
F ( [ rszwonas, [ ats m(z))dz,x(s))

-F (s,/Osr(s,z,x(s))dz,/Osg(s,z,m(z))dz,x(s)) ‘
bi(s)lz(s) — y(s)|
+b4(s) /O 9(s,z,2(2)) — g(s, 2,y(s))|dz + b5 (s)|x(s)) — y(s))|

/S r(s,z,2(z))dz — /sr(s, z,y(2))dz
0 0

2K ||z — y|| + Kbw(g, €) + Kbw(r,€),

2Ke+ Kb(w(g, €) + w(r,€)),

+b3(8)

w(g, €) = sup{lg(s, z,2) — g(s, 2,y)| : 5,2 € [0,0]; 2,y € [=r,7]; ||[x — y[| < €},
w(r, 6) = S’LLp{‘T(S,Z,(IZ) - T(S,Z,y)l 5,2 € [O,b];df,y € [77‘7 T]; HI - yH S 6}’
The function r = r(s, z,x) and g = g(s, 2z, y) are uniform continuous on the bounded
subset [0,b] x [0,b] x [—r, 7], then w(r,e) and w(g,e) — 0 as ¢ — 0. Thus, H; is

continuous on B,.
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Similarly, we have

|(Hox)(s) — (Hay)(s)| =

IN

IA

IN N

where

’h(&x(s)) +G (s, /Obp(s,z,m(z))dz7/0b q(s,z,x(z))dz,x(s))

(s, y(s)) - G ( / s, u(2))de, / "ol z,y(z»dz,y(s)) ]
ba(s)l(s) — (s)]

+’G (s, /Obp(s,z,x(z))dz7/0b q(s,z,x(z))dz,x(s))
-G (s,/Obp(s,z,y(s))dz,/Obq(s,z,ﬂc(z))dz,x(s)) +

G <s,/0bp(s,z,y(s))dz,/0b q(s,z,x(z))dz,x(s))

-G <S,/Obp(s,z,x(s))dz,/Obq(s,z,x(z))dz71'(s)> ’
ba(s)|z(s) — y(s)|

+br(s) / p(s, 2, 2(2)) — p(s, z,y(s))| dz

+bs(s)z(s)) — y(s))|

b
b (s) / la(s, 2, 2(2) — (s, 2 y(2))| dz
0
2K ||z — y|| + Kbw(p, €) + Kbw(q, €),
2Ke+ Kb(w(p, €) +w(g,€)),

w(p,€) = sup{|p(s, z, ) — (s, z,y)| : s, 2 € [0,0]; x,y € [=r,7]; ||z — y[| < €},
w(QvE) = Sup{|q(s,z,x) - q(s,z,y)| 18,z € [O,b];.’t,y € [77"7 T]; HI - y” < 6}7
The function p = p(s, z,z) and ¢ = ¢(s, 2z, y) are uniform continuous on the bounded

subset [0,b] x [0,b] x [—

r,7], then w(p,€) and w(q,e) — 0 as e — 0. Thus, H is

continuous on B,. Hence, H is a continuous operator on B;.
Now, we prove that the H; and Hy satisfy the Darbo’s condition with respect to the

measure wop, defined in sect

ion 2, in the ball B,.. Assume that a non empty subset

P of B, and x € P, Let € > 0 be fixed and s1, s2 € [0,b] such that, without loss of
generality, then we put s1 < s9 and so — 51 < €, we obtain

|(Hy7)(s2) — (Hiz)(s1)] =

IN

\ﬂsz,x(sz»

+F <32,/082 T(SQ,Z,x(z))dz,/Oszg(SQ,z,x(z))dz,x(z)>
—f(s1,2(s1))

_F <31,/081 r(sl,z,x(z))dz,/OSI g(sl,z,x(z))dz,x(z)> ‘
|f(s2,2(s2)) — f(s2,2(s1))] + | f(s2,2(s1)) — f(s1,2(51))]
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52
+|F <52, r(se, z,x(2))dz, / g(s2,2,2(2))dz, z(s )
0
S] S1
—F <52, r(sl,z,x(z))dz/ g(s1,2,2(2))dz, z(s1) >
0 0

+|F <52,/081 7”(81727:10(,2))6&,/081 9(s1,2,2(2))dz, x(s1))
bi(s)|z(s2) — z(s1)| + wy(e)
+bg(s)|/0 r(se, z,z(2))dz — r(s1, 2, z(2))dz|

IN

+b4(s)

/082 9(s2, 2, 2(2))dz — /051 9(s1,2,2(2))dz

+b5(s)|z(s2) — x(s1))[ + wr (€)
Kw(z,e) +wyrle) + Kw(z,€)) + wr(e)

+K{/032 r(se,z,x(2))dz — r(s1, z,2(2))|dz

IN

+/SQ 17 (59, 2, 2(2))]d=)
+K{/ g(s2,2,2(2))dz — g(s1, 2, 2(2))|dz
+ [ lgtoa,z (2 ldz)

w(Hiz,e) < Kw(z,€) +wyi(e) + Kw(z,€) + wr(e)
+ K{w,(€)b+ K€} + K{wy(e)b+ K€}, (14)

where
wi(e,..) = sup{|f(s,s1) — f($,51)] : 5,6 € [0,b];|s — §| < €: 51,80 € [-r,7]}
wr(e,..) = sup{|r(s,z,x) —r(4,z,2)| : s, € [0,b];|s — §| < e:x € [-r,7]}
wgle,..) = sup{|g(s,z,z) — g($,2z,x)| : 5,§ € [0,0];|s — §| < e:x € [-rr]}
wr(e,..) = sup{|F (s, z1,2x2,23) — F($,y1,Y2,93)| : 5, € [0,0];|s — §] < ¢
cx3 € [—r,7]; 21, 20 € [—K1b, K1)}

Ky = sup{|r(s, z,x)|,|9(s, z,2)| : s,z € [0,b]; x € [-r, 7]}
Since the function f = f(s,z1) and F = F(s,x1,x2,23) are uniform continuous
on the set [0,0], [0,0] x R x R and [0,b] x R x R x R, respectively. The function
r=r(s,z,2) and g = g(s, z,x) are uniform continuous on the set [0,b] x [0,d] x R.
Hence we infer that wy(e...) = 0,wr(e...) = 0,wy(e...) = 0 and wp(e...) = 0 as
€ — 0, we get

wo(Hl.P) S ZKWO(P). (15)

Similarly, we write

|[(Hax)(s2) — (Haw)(s1)] = ‘h(52,x(52))
+G <32,Abp(52,z,x(z))dz, /Ob q(sz,z,x(z))dz,m(z)>
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—h(s1,z(s1))

b b
-G <517/ p(sl,z,x(z))dz,/ q(s1, 2z, x(2))dz, z( )
0 0

|h(s2,x(s2)) — h(s2,x(s1))] + [h(s2, 2(s1)) — h(s1,2(s1))]

<
+‘G <82,/0bp(52,z,x(z))d /Obq(SQ,Z x(2))dz, z(s9 )
-G <52,/obp(sl,z,x(z))dz/obq(sl,z x(2))dz, z(s1 ) ’
+‘G (327/0bp(31,z,x(z))dz,/ob (s1,2,2(2))dz, x 31))) I
< bz(s)lx(SZZ —z(s1)| + wn(e)
+b0(s)| [ plon0(2)dz = plsr, 2, (2))
+b7(s) /Obq(SQ,z,x(z))dz - /Ob q(s1, 2, x(2))dz
+bs(s)|z(s2) — x(s1))[ + wa(e)
< Kulz,€) +wn(e) + Kuw(z, ) +wale

b
—l—K{/O p(s2, z,2(2))dz — p(s1, z,2(2))|dz
b
+ [Mpton sz}
b
([ a2, 5 0(:))ds (o1, 2, 0(2)]d=
0

b
+ /O lg(s2, 2, 2(2))|dz)

w(Hox,€) < Kw(z,€) + wp(€) + Kw(x,€) + wa(e)
+ K{wp(€)b+ K€} + K{wq(€)b+ Kae}, (16)

where
wp(€,..) = sup{|h(s,s1) — h($,s1)] : 5,6 € [0,b];|s — 5| < e€: 581,52 € [-r,7]}
wp(e, ..) = sup{|p(s, z,x) — p($,z,x)| : 5,§ € [0,b];|s — §| <e:x € [-rr]}
wqle,..) = sup{lq(s,z,x) — q($,z,z)| : 5,5 € [0,b];|s — §| < e:x € [-r,7]}
wale,..) = sup{|G(s, x1, x2,x3) — G($,y1,Y2,93)| : ,§ € [0,0];|s — §| < e
txg € [—r,1]; 31, k2 € [—Kab, Kobl}
Ky = sup{|p(s, z, )|, |q(s, z,x)| : s,z € [0,b]; 2 € [-r, 7]}
Since the function h = h(s,z1) and G = G(s,x1,x2,23) are uniform continuous
on the set [0,5], [0,b] x R x R and [0,b] x R x R x R, respectively. The function
p = p(s,z,x) and ¢ = ¢(s, z,x) are uniform continuous on the set [0, ] x [0,b] x R.
Hence we infer that wp(e...) = 0,wp(e...) = 0,wq(e...) — 0 and wg(e...) — 0 as
e — 0, we get
wO(HQP) S 2Kw0(P). (17)

167
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Finally, we get H satisfies the Darbo condition on B, with respect to the measure
wp with constant (yr + o) 2K + (yr + o) 2K. Now, we have

(yr+o0) 2K+ (yr+0) 2K = 4AK(yr+ o)

= 4K(yr1 + o)
_ 4K (1=2y0)—+/1—4dvo ”
_ 4}(271(\/1—4;;2 >+ )
cr 7

Hence, H is a contraction on B, with respect to wg. Thus, H has at least one fixed
point in the ball B,, by applying Theorem 2.2. Consequently, the nonlinear FIE (1)
has at least one solution in ball B;.

4 An example

Now, we present an example of a functional-integral equation and consequently, see
the existence of its solutions by using Theorem 3.1.

Example 4.1. Consider the following nonlinear functional integral equation:

52 ) s [ ssinz(y/2)
)] sinz(s) + - b/ { (2 +(2+s)In(1+ x(\/2)|)>

N (W + (2 + s) arctan <m> > }dzl

y [i arctan [z(s)] + i /1 { (W + 35” arctan (W»

0

+ <tsmz(ﬁ) +382In(1 + |x(\/2)|)> }dz], (18)

where s € [0, 1].

Observe that equation (18) is a particular case of equation (1). Let us take f,h :
0, ]xRxR—=>R;F,H:[0,1]xRXxRXxR =R andr,g,p,q:[0,1] x[0,1]] xR - R
and comparing (18) with equation (1), we get

x(s) =

2
S .
f(S,fL'l) = mslnﬂjl,
52
h(s,z1) = ﬁarctan|x1|,
F(57m17I27$3) = §$27

7
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1
G(s,r1,72,73) = 2%
ssinx
(s ze) = 224 (04 5)n(1 + ),
o5, 2m) = scgs$+(2+s)arctan<1_|::|w>,
cosx 9 ||
= 3 t
(s, z,x) 5 + 3s“ arc an(1+|x|>,
als,z,2) = T 4357 (1 + [al),

then we can easily check that the assumptions of Theorem 3.1 are satisfied with
1 1

1
constants by = E,bg = 12,1)3 =by =bg=bg =0,by = ?7()7 =1
In this case, we have
1 1 1 1 1
K= — . —.0,=,— ==
max{m’ 207 14} 7
Further,
1
[p(s, 2,2)| < 5 + 3|z,

1

1
|r(s,z7x)| S 5 + 3|$|,

1
|g(8,2’,$)‘ < 5 +3|ZE|,

1
It is observed that C; = Cy =0,( = 5,77 =3 andb=1.
Finally, we see that

dyo = 4(2K + 2Kbn)(C1 + 2Kb( + Cs) < 1.

Hence, all the assumptions from (1) to (6) are satisfied. Now, based on result ob-
tained in Theorem 3.1, we deduce that equation (18) has at least one solution in
Banach algebra C|0, 1].
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