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A SERIES TRANSFORMATION FORMULA AND RELATED DEGENERATE
POLYNOMIALS

TAEKYUN KIM, DAE SAN KIM, AND JONGKYUM KWON

ABSTRACT. The aim of this paper is to express several identities involving ‘degenerate formal power
series’ as those including degenerate Stirling numbers of the second kind, degenerate Bell polyno-
mials, degenerate Fubini polynomials and degenerate poly-Bernoulli polynomials.

1. INTRODUCTION

In recent years, studying degenerate versions of some special polynomials and numbers regained
interests of some mathematicians, which include the degenerate Bernoulli numbers of the second
kind, the degenerate Stirling numbers of both kinds, the degenerate Cauchy numbers, the degen-
erate Bell numbers and polynomials, the degenerate complete Bell polynomials and numbers, and
so on (see [7,9,10,13,14,16,18]) and the references therein). It is remarkable that this study of
degenerate versions is not only limited to polynomials and numbers but also extended to transcen-
dental functions like the gamma functions (see [11,12]). They have been studied by various means
like combinatorial methods, generating functions, differential equations, umbral calculus, A-umbral
calculus, p-adic analysis, and probability theory.

The aim of this paper is to express several identities involving ‘degenerate formal power series’
as those including degenerate Stirling numbers of the second kind, degenerate Bell polynomials,
degenerate Fubini polynomials and degenerate poly-Bernoulli polynomials (see Theorems 2,5,6,9-
12). Along the way, we also obtain some related identities which involve the A-falling factorials,
the degenerate Stirling numbers of both kinds, the degenerate Bernoulli numbers, the degenerate
Fubini polynomials and the degenerate Euler polynomials. For the rest of this section, we recall the
facts that will be used throughout this paper.

For any A € R, the degenerate exponential function is defined by

(1) e(t) = i (xii"”‘t (see [4,7,9,10)),
n=0 :

where the A-falling factorials are given by (x)ox =1, (x),2 = x(x = A)(x =24)---(x — (n —
DHA), (n>1).
When x = 1, we write e, (1) = e} (¢). Note that %irr})e’i (1) =e€".
—

Let us consider the ‘degenerate formal power series’ which is given by

@ F10) =Y alt)en = a0+ ar(t)1.4+ax(t)an+-- € I,
k=0
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where the als are constant complex numbers. Then we let

3) f(t) = lim f,(t) Zakr € C[[r], (see [3D).

=0

The Carlitz degenerate Bernoulli polynomials are defined by

t

) OB ZBM L (see ).
Note that lgn B2 = Bu(x), where B, (x) are Bernoulli polynomials given by
n—soo
L =Y By, (see (1,14 18)).
e —1 o n!’ ’

Kim-Kim considered the degenerate Stirling numbers of the first kind defined by

5) W= Y S Wzs (120), (see[5.7]),
k=0

where (x)o=1, (x), =x(x—1)---(x—n+1), (n>1).
As the inversion formula of (5), the degenerate Stirling numbers of the second kind are given by

©) (ar = Y Soa(m k)@, (1>0), (see [7,9,10]).
k=0

In [13], the degenerate Bell polynomials are defined by

_ . 1"
7 Men-1) _ Z Pur (x)f‘
n=0
Note that ¢, (x Z Sya(nk)x". Whenx =1, ¢, = ¢, (1) are called the degenerate Bell
numbers.

For any A € R, the degenerate Fubini polynomials are defined by Kim-Kim as
1 o n

t
T—xe =1 W;)Fn,z(x)a, (see [14)).

It is well known that the polylogarithmic function is defined by

®)

o

) Liy (x Z (keZ), (see]2]).

Note that Li; (x) = —log(1 —x).

2. SOME IDENTITIES OF DEGENERATE SPECIAL POLYNOMIALS

Here we consider the ‘degenerate formal power series’ given by

(10) @)=Y a(t)ex
k=0

=ao+ai(t)+az(t)yp +a3(t)sp+--- € C[r],
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and express several identities involving ‘degenerate formal power series’ as those including degen-
erate Stirling numbers of the second kind, degenerate Bell polynomials, degenerate Fubini poly-
nomials and degenerate poly-Bernoulli polynomials (see Theorems 2,5,6,9-12). From (6), we note
that

d | v 1 & [k _
(1D ;{Szﬂ;t(n,k)a:ﬁ(ex(t)—l) :k!;o@(‘”k Leh (1)
1 & (k - £
L ()0 B0
_ 1y (R e "
-¥ k,l_zo(,)< 1 (zm}n,.

By comparing the coefficients on both sides of (11), we get

L\ (k k=1
(12) - (=D (Dnp = S22 (n,k),
K=\
with the understanding that S, ; (n,k) = 0, for 0 < n < k. It is not difficult to show that
o (m
(13) (_Y‘I’Zk)m,ﬂ = Z <l > (Zk)l,/l (y)mfl,/h (m > 0)
=0

‘We observe that

(14) (&K)pa = (k) (2k=A) - (zk = (p— 1))

=k(@), 2 =2"(k), 2, (p=0)
From (13) and (14), we note that
(1s) e 3 (L
p=0 \P *

By (12) and (15), we get

as Y (Z)(_l)k(y“‘zk)m,l =) (Z) (—1>k{ ¥ (Z)Z”(ﬁmm(k)p,@}

k=0 p=0

L)l £
1

= (_1)”n!§b <r;> m-pa (n, Z: (Z) (_l)nk(k)”"xz)

k
=(=1)"n! pgb <IZ> Zp(y)m—p,lszﬁftT (p,n).

Therefore, by comparing the coefficients on both sides of (16), we obtain the following theorem.
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Theorem 1. For n > 0, the following identity holds.
n n " m m
¥ () 040+ B = 10 ()OS 1)
k=0 p=0 \P :
Remark 2. As S, ; (n,k) =0, for k> n and k < 0, we see from Theorem 1 that we have

an (n) (=¥ +2k)pua =0, if n>m.

i \k
From (10), we note that

(17) LG+ =Y an(y+zk)ma.
m=0

By (12), (15), (17) and Theorem 1, we get

n

a ¥ ({)evnora- 3 (Z)(—l)kn;am@ﬂk)m,z

k=0 k=0

= L a7 L ()50 pmL 0
1)”n!§0am{ f‘,( > 2.2 (pyn)z (y)mp,l}'

p=0
Therefore, we obtain the following theorem.

Theorem 3. For n > 0, the following identity is valid.

n

Y (Z)( D fa(y+2k) = (—1)"n! Z am{ i (p)sli(p,n)zp(y)mpgl}.

k=0 p=0
In particular, for y =0,

=

Y (1«) (=1 fa(ek) = (=1)"n! Y, anS, 2 (m,n)2".

k=0 m=0
If n = m in Theorem 1, then we have

(19) Z (Z)( D (y+2K)z n'Z( > oS5 (p)

k=0
= (=1)"n!Z".
Therefore, by (19), we obtain the following theorem.
Theorem 4. For n > 0, we have the following identity:

n

> (Z) (=D +2k)na = (—1)"nl".

k=0
For n € N, we have
o) (s = ¥ S20 = - S2 00
Dividing (20) by x and then taking x7: 0, we have )
Q1) (1) "A n—-1)1= Z Sy (k) (= 1) (k= 1)1

k=1
Therefore, by (21), we obtain the following lemma.
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Lemma 5. Forn € N, the following identity holds true.

(=) A n—1) = Z Sy (k) (= 1) (k= 1)1

k=1

From Theorem 3, we note that

n

Z (Z) (=1 fo(zk) = (—1)"n!§0amzm52l%(m,n).

k=0
By multiplying % on both sides, we get

IZ() ) fa(zk) = (=1)"(n—1)! Zamzsl(mn)

=0 —0

wheren=1,2,3,....
Thus, by using Lemma 5, we have

(22) 2 ,11{ y (Z) (~1)"fa (zk)}

k=0

Il
Mz

"(n—1)! Zamz m,n)

m=

(—D)*(n— 1)!S27%(m7n)

(1) (ﬁ)m(m— 1

A (= 1)" A" (m— 1)1

3
Il

I
(agk
Q
3
I\l
3
(aoki

3
Il
—
3
I
—

Il
s

3
I

|
s

3
I

Therefore, by (22), we obtain the following theorem.

=

Theorem 6. For f; (1) Z ag(t)ra € C[t]], the following identity holds.
k=0

o (&
Z n{ )y (Z) D Al Zk)} =-z Z ap(—1)"A" " (m —1)!
‘We observe that

0) 0= 250 a1 A e 1)

I
s

> d
=) ar— ()
Lag

=0 &k

Il
—

By Theorem 6 and (23), we get

(24) ii{z (Z)( 1) fo (2k) }——zZam YA (- 1)1 =~z (0).

n=1 k=0

Therefore, we obtain the following theorem.

Theorem 7. Let f (t) Z ag(t)in € C[t]. Then the following identity is valid.

k=0
AL () enef =m0

where f; (0) = %f/l (t)|,:0
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Let us take fy (t) = (;))L = (lifg‘l , (p € NU{0}). Then we have a,, = 1.8, . (m,p >0), where

O,y is the Kronecker’s symbol.
Then, from Theorem 3, we have

" n zk n!

o5) ¥ ()0 (%) =crtis e
k=0 P/ -

Thus, we have the following lemma.

Lemma 8. For n > 0, we have the following identity.

(26) y (Z)(—l)kck)lz(—l)”":s 2 (pom)?

k=0 p p

k
Note that Z ( ) 1)k (Z ) = (—1)"7". Itis well known that the Bell polynomials are defined
k=0 nj,
by
oo o ,
Z ¢p(x)— = lim erlen(n)=1) — x(¢=1)
—

n! A—0

The compositional inverse of ey (¢) is denoted by log; ¢. So e (log, ) = log, (e, (¢)) = ¢. They are
called the degenerate logarithms and given by

1 — "
27 log/lf:I(fA*I)»logA(1+f) I((1+f) =31 I(I)n,%m~

n=1

Now, we observe that

(28) %((1 +i-1) = %(ezlogﬂm 1)’

=Y Si(m, n) (log 1+41)) Z Sa(m,m)2" Y Si(p,m)
m=n p=m

tP
!
m=n

4
"

S (o)

where S;(m,n) = limy_,S; 3 (m,n) and Sy (m,n) = limy_,(S; 5 (m,n) are respectively the Stirling
numbers of the second kind and the Stirling numbers of the first kind.

On the other hand,
(29) %((sz— 1) = %(ei(logl(l—i-t))— 1)
%(e%(zlogl(l r)-1)"
= ¥ 8, 0m) = (log, (1)

Ny - t
n)z" Z Sy (p,m

I
s
PC/)

P
—Z(Zs (m,m)S1 1 (pom )"’)’,
p=n \m=n p!

Therefore, by (27) and (29), we obtain the following theorem.
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Theorem 9. For n, p, withn > p > 0, the following holds true.
P P
Z SQ(WL,}'I)S] (p’m)zm = Z Sz,%(m7n)sl,l (p’m)zm
m=n m=n -
From Theorem 3, we note that

(30) iﬁ{i(;)( ) fa y+kZ}
)

n=0 k=0

—y 5 1)"n‘2am{ (

!
o

(V) pl}

L "
3 () 0D TS, ()

p=0

n=

3

m

oy () Ohopss”0, 1)

=0

ek iMz

m=0

From (30), we obtain the following theorem.

Theorem 10. Let f; (¢ Z ar(t)g s € C[t]. Then we have the following identity:

i f:{ i <Z)( D fo (v +kz) } 2 i(?) 022”9, ().

n=0"" Li=0
In particular, for y =0,
oo xn n n oo
31 )y .{ )y (k> (—U"ﬁ(kz)} = Y an"9,,2(—x).
=0 Li=0 m=0 ¢
Let us take x = —1 in (31). Then we have

32) i (1)"{i <Z>( 1 ;. (k2) } Zamz% iy

|
n=0 k=0

Let us take f3 (t) = (I’))/l = (t;f!'* . Then, from (31) and Theorem 3, we get

“ DRI WAEE LR

Here we observe that Y} (}) (—1)F (Z;))L = (7;)!%32.% (p,n)z? =0,if n > p.

From (8), we note that

G4 Y Fualg =1x(el(t)1)=§xk<ez<z>—1)k

—Zxkk'— e (t Zxk‘ZSz;Lnk
= Z <Zxkk!S2~;L(n,k))'
n=0 \k=0 n
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Thus, we have

(35) Fo(x Z k'S 5 (n, k)5, (n>0).

From Theorem 3, we have

(36) ix{ y (Z) (~1) (y+zk>}

n=0 k=0

£ el £ (Mohmissinn)
am i( ) m—pAZ {i n'Szx(P,")}
£ Qo ne{ o)

( ) m— p,lZpr7%(_x)'

Therefore, by (36), we obtain the following theorem.

L
L
Lo

Theorem 11. Let f (t) Z ay(t)ip € C[t]. Then the following identity holds true.

ixn{,g] (Z)( D fa(y +2k) } Z am Z < ) m—pa?F, 1 ().
0

n=0

In particular, for y =

gl

ixn{i() f,lzk} Zamz

n=0 k=0

Let us take f3 (¢) = (;})/,L = (sz Then we have a,, = 1.8, ,, (m,p > 0). Hence we have

EAR QG pmatn

From Theorem 11, we note that

RS B ol LAVERY: _ S " (" p [ _
o [ { ) <k>< N fx(erzk)}df P (p)<y>mp,xz [ F a0
By (35), we easily get

X .yl
(38) ) B (0= Y 8, ()

j=0

From (37) and (38), we have
oo n+1 n n
(39) )y +1{;)<k> ) y+zk>}
m m '+l
any, ( ) ) MZPZ YijIo—S, 2(p.J).

p=0 p + 1

=

S

I
3
il aok
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Thus, we see that

(40) y { y (Z) (—1)kf/1(y+zk)}

n=0 k=0
:m;()ampgo <p) (y)mfplzpj;o( 1) ]'75 ( )

Now, we consider (r — 1)-times iterated integration with respect to x as follows:

41) /i/ /Zn+1{ <Z>(1)kfl(y+zk)}dx---dx

tlmes

—ZamZ() s L5

/ / / Xdx---dx
0

llmes

- Y an Y ’") mMzZ(l ) ¥IS, 3 (p.)).

2.4 (p:J)

By (41), we get

(
@) Yo (e <y+zk>}

=0 =0
- ioam{,,zb(l’) ()m— MZPZ ’Sz-é(p’j)}(jfl)r

Let us take y = 0 in (42). Then we have

o Bt B ) L Eommim

j=0

By Theorem 11 and (35), we see that

(44) fx{ y (Z) (~1)*f (zk)}

n=0 k=0

B ;oamZmF’” Z dmz { pi_o Sz,ﬁ(mvl’)(—x)’]p!}.

m=!

Thus, we have

(45) Zx” 1{Z<k>( )’ fa zk} Zamz ZszA m,p)(—1)P plxP L.

k=0
From (45), we note that

(46) ii{Z(D( f“k} Zamz’"ZS 2 (m,p)(=1) p/xp L

n=1 k=0

Therefore, we obtain the following theorem.
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Theorem 12. Let f (t) Z ay(t)ip € C[t]. Then the following identity holds.

ix”{i(:)( ) fa Zk} Zamz Zszx(mp (—1)P(p—1)lxP.

n=1 " L=o
We define the degenerate poly-Bernoulli polynomials which are given by
Lix(1—ex (1)) v 300!
47 Y (1) = —
( ) 1-6)’(—1‘) e},( ) r;)ﬁn’l(X)n'
When x =0, ﬁn 1= ﬁnkl{ (0) are called the degenerate poly-Bernoulli numbers.
By (47), we see that

Wt _ 1 o (I—e(=1) & (—ep(-0)/!
(48) r;)ﬁnvla - 1—6’/1(—1‘); jk 71221 jk
= (-1 L =t )
= — —1)—1)' = -1 S ,
Thus, by (47) and (48), we have
(1ripg
(49) ﬁn(kyz = j;)WSu (n,J),
(50) B = (7)1 B Wi
1=0
From (42), we note that
oo 1 n
1) Yo B (e 0tho )
n=0 =0
> o m P . 1
= m P m—p, —1)/j!S A\ j TN,
Yol ")) 2 KOV (00)

3
Il
o
S
Il
o

I I
(agEI ag
Q Q
3 3
= D=
7N /§ N =
N———
I
N
<
3
~
>
|
L
=
S
=

i
(=}
Ji
(=}

Il
013
8
I
e
)\l‘
S s
N~~~
7N\
IS
S~~~
3
<
~
3
]
<~
3
o~

3
Il
o
=
I
(=]

I
(aok
Q
3
—
3
A\l
3
=3
It
7/ N
<
N——

3
I
o

Therefore, by (51), we obtain the following theorem.

Theorem 13. Let f; (¢) Z ay(t)i 2 € C[t]. Then the following identity is valid.
k=0

£ il £ ()t} Ereny (). con

n=0 (
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In particular, for y =0, we have
Y o & () e0th@) = R a1l ez
a0 (1) LS \k m=0 "

Let f () = (t).2, and let z = 1 in Theorem 13. Then we have

2 ¥ ot {8 () 00 B f = 1Bl

n=0 k=0

in view of Remark 2.
Now, we observe that

= (=A)" (a1t & (n i :
(53) )y Tl):rl )y <k>(1)keli(z) :n;)w

n=0

Thus, we have

(st (% % 3 (1) 0 W ) 5= E sy

n=0 \m=0 k=0

Therefore, by comparing the coefficients on both sides of (54), we obtain the following theorem.

Theorem 14. For n > 0, we have the identity.

By = kzo ( mik (’Z) %(—1%) (B2
-y ¥ Z)(—l)"(_”m(l)’”*‘ﬂ e

== (m+1)!

From (8), we note that

> 1 1 2
(55) nZOF,,,A(—Z)n,:l Hea)—1)  enl)+1

n
+1 !
(ﬁ”l‘*lv/lizn n+l%)a'

n:o”+1
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In addition, we also have

i = (1
o0 01 & 2 @07
-3 S -y
P

8 |

P )

Il
S
I
o
D
\O\I v B}

Therefore, by (55) and (56), we obtain the following theorem.
Theorem 15. For n > 0, the following identity holds.

1 2 »
Fn,l(_2> I’l+1 (ﬁn+ll 2t n+1,%)

n )P p!
Z pSzA”P)

Let us take x = 5 in Theorem 11. Then we have

L
21
n

o B {EQ) o))

=)

2 m+1
=) amzmmfrl(ﬁmﬂ,g -2 ﬁm+l,2’%)'

By (8), we get

> X " 1 1—x
(58) Fua () — = B =

IEO 1—x/)m! lfm(ex(t)fl) I—x—x(ey(t)—1)

1—x
1 —xey (1)
On the other hand,
(59) i—(lfx)ixne Zx Z ’m
1—xey(t) = Al = ml

= Z ( (1—x Z xX'(n >
m=0
Therefore, by (62) and (63), we obtain the following theorem.

Theorem 16. For m > 0, the following holds true.

=

1 X
ot (75) = Lo

n=0

Let

1 1 hnd non
(60) ) = 1 T e - &R G
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Invoking Theorem 16, we obtain
d\" 1
61 — —_— | =
©D <dt> (uq(%)“)

(5) Eeuraom
i( 1Y ()" (1)

=7 ¥ (- estm) haze; ™

= ﬁ i)( #el(?’f))n(”)m,x

__r L < —Mey (yr) )
(L+Aye)m 1+ pep (ye) ™"\ 1+ pen ()
From (60) and (61), we get the following equation:

d\" —u
62 — | hy(t 0 — ), >0).
(©) (4) 0] RO =P (i) =0
Thus we have
(0) 1 u M
63 hy(t) = = F, —.
(63) (1) PR mZ 1+HZV"mx( -Hl)m!
Let us take 4 = 1 and ¥ = 1 in (63). Then we have
1 1 & 1\ "
64 ——==) F —=|—.
5 en(r)+1 2,,1;0 ’“( 2>m!

As is well known, Carlitz’s degenerate Euler polynomials are defined by

2 M t
W%(’) —ngbfg;m(x)*

When x =0, &, ; = &,4(0) are called the degenerate Euler numbers.
From (64), we note that

W o (B 5

~E (L () ma(5)emma)s

Therefore, by comparing the coefficients on both sides of (65) and (66), we obtain the folloiwnwg
theorem.

(65)

Theorem 17. For n > 0, the following identity is valid.

Epa(x) = an (;) Fun < - ;) (n-ma-

m=0

In particular, for x = 0, we have

1 2
(g;z,l :Fn,/l<_ 2) = n+1 (ﬁn+l A _2n+1[3n+17%).



134 T. Kim, D. S. Kim and J. Kwon

3. FURTHER REMARKS

Here we obtain an expression for &, 3 <5> and a general operational formula (76).
Taking x = % and z = 1 in Theorem 11, we have
oo 1 n n n i m 1
©) Y (5) 1L ()N R0+ Z an Z OhnpaFpal =5 )
n=0 k=0 m=|

By Theorem 17, we get

@ LB Q)

In particular, for y = %

o B RO Er()

Let us take f3 (t) = (t),,2- Then, ax = &, (k> 0). From (69), we have

™ () -5 {5 E) 0 G),)
LGB G,

by invoking Remark 2.
Let D = < and let =1 = ". Th te that
e 4»and let f(x) llir(l)fx(x) ngz)a,,x en we note tha
o o
(71) f(x'*D)e* = Z an(x'~*D)" le7
n=0 =0 I
= (1
_ Za’lz ( )r'zl I—nA
n=0 [=0 I
oo =] l
= Z an(z ( )T’Axlex> Ex
n=0 i !
= Z an(bn,l (x)xnl> e
n=0
On the other hand,
1-2 X - 1-4 y\n o
(72) fE D) =Y an(x' D) il
n=0 k=0 "
o | /o
=Y ( Y an(k),2x "’l)xk
k=0"" \n=0

Thus, we note that



Degenerate power series 135

Let f(¢) = Z apt", g(x) = Z cxx*. Then we have
n=0

k=0

(73) f(x]_’lD)g(x) = Z an(xl_lD)" Z Xt

n=0 k=0

= Z Ck ( Z ak(k)n’,lx")”)xk.

k=0 \n=0

By Taylor expansion, we get
= (K (0 0

%) MLALINVN

Thus, we have ¢, = g<k>,(0), k> 0).
x

From (73) and (74), we note that

o (k) oo
s) 7 200 = T 5O (L b )
k=0 n=0
oo o (k)
¥ { y & W, m}m
n=0 k=0 :
On the other hand,
o (n)
6 e D)s(s) = 3 S Aoyt
0o (n) n
=% (5 L st )
n=0 Y k=0
where we used
a7 (' AD) f(x) = x Z So(n, k)X D £ (x).
k=0

The operational formula (77) follows by induction n from the following recurrence relation:

Soa(n+1,k) =85, (n,k—1)+ (k—nd)S, 5 (n,k).

4. CONCLUSION

The Rota’s theory on umbral calculus is based on the linear functionals and the differential oper-
ators. The Sheffer sequences occupy the central position in the theory and are characterized by the
generating functions involving the usual exponential function. The motivation for [8] started from
the question that what if the usual exponential function is replaced by the degenerate exponential
functions. It may be said that this question is very natural in view of the regained recent interests in
degenerate special numbers and polynomials. As it turns out, it corresponds to replacing the linear
functional by the A-linear functionals and the differential operator by the A-differential operators.
In this way, we were led to introduce A-umbral calculus and A-Sheffer sequences.

As one of our future projects, we would like to continue to pursue our searches for A-counterparts
of some special polynomials, some special numbers, some transcendental functions and so on.
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