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Abstract: Assume that [V is a sufficiently large positive number. In this paper we show that
for a small constant € > 0, the logarithmic inequality

p1logpy + p2logps +p3logps — N| < ¢

has a solution in prime numbers p1, p2, 3.
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1 Introduction and statements of the result

One of the most remarkable diophantine inequality with prime numbers is the ternary
Piatetski-Shapiro inequality. The first solution is due to Tolev [13]. In 1992 he considered
the the diophantine inequality

Ipf +p5 +p5—N|<e, (1)

where N is a sufficiently large positive number, p1, p2, p3 are prime numbers, ¢ > 1 is not
an integer and £ > 0 is a small constant. Overcoming all difficulties Tolev [13] showed that

(1) has a solution for

1< <15
c< —.
14

Afterwards the result of Tolev was improved by Cai [3] to
13

l<e< —,
D)

by Cai [4] and Kumchev and Nedeva [9] to

| <e< 2
T
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by Cao and Zhai [6] to

DIV
by Kumchev [10] to
61
l<e< —,
“< 55
by Baker and Weingartner [2] to
10
l<e< —,
‘=7
by Cai [5] to
1<e< 13
c< =
36’
by Baker [1] to
6
l<e< =
S5

and this is the best result up to now.

Inspired by these profound investigations in this paper we introduce new diophantine
inequality with prime numbers.

Consider the logarithmic inequality

p1logp1 + palogps + pslogps — N| <e, 2)

where N is a sufficiently large positive number and € > 0 is a small constant. Having the
methods of the aforementioned number theorists we expect that (2) can be solved in primes
p1, P2, p3. Thus we make the first step and prove the following theorem.

Theorem 1. Let N is a sufficiently large positive number. Let X is a solution of the equality
N =2Xlog(2X/3).
Then the logarithmic inequality

1
|p1log p1 + p2logpa + pslogps — N| < X~ 2 log® X
is solvable in prime numbers p1, pa, ps.

As usual the corresponding binary problem is out of reach of the current state of the
mathematics. In other words we have the following challenge.

Conjecture 1. Let N is a sufficiently large positive number and € > 0 is a small constant.
Then the logarithmic inequality

[p1logp1 +p2logps — N| < e
is solvable in prime numbers p1, ps.

We believe that the future development of analytic number theory will lead to the solu-
tion of this binary logarithmic conjecture.



Alogarithmic inequality involving prime numbers

2 Notations

For positive A and B we write A < B instead of A < B < A. As usual u(n)
is Mobius’ function, 7(n) denotes the number of positive divisors of n and A(n) is von
Mangoldt’s function. Moreover e(y) = e2™¥. We denote by [y] the integer part of y. The
letter p with or without subscript will always denote prime number. Let N be an sufficiently

large positive number. Let X is a solution of the equality
N =2Xlog(2X/3).
Denote
1 8
e=X 2log°X;
T = X_ﬁ ’
K=X%log5X:

S(@)= > elaplogp)logp;
X/2<p<X
X

I{a) = /e(aylogy) dy .
X/2

3 Lemmas

3
“
®)
(6)

(M

Lemma 1. Let k € N. There exists a function 1)(y) which is k times continuously differen-

tiable and such that

Y(y) =1 for ly| < 3e/4;
0<u(y) <1 for 3e/d<l]yl<e
Y(y) =0 for |yl >e.

and its Fourier transform
o0
V() = / P(y)e(—zy)dy

satisfies the inequality

1 1 k
|¥(z)| < min E,—,— P —
4’ w|z|” wlz| \ 27|z|e/8

Proof. See ([11]).

b

))
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Lemma 2. Let \f(m)(u)| =YX ""forl< X <u<2Xandm=1,2,3,...

Then
X e

X<n<2X

<Y*X +Y 7L,

where (5, \) is any exponent pair.
Proof. See ([7], Ch. 3). O
Lemma 3. For any complex numbers a(n) we have

S a)| < (1+bg2“> 3 (1%) S a(n+ g)at).

a<n<b lal<Q a<n,n+q<b

where @) is any positive integer.
Proof. See ([8], Lemma 8.17). ]

Lemma 4. Assume that F(x), G(x) are real functions defined in [a,b],
a <z <band G(x)/F'(x) is a monotonous function. Set

G(z)| < H for

b

I= /G(x)e(F(x))dm.

IfF'(z) > h > 0forall x € [a,b] orif F'(z) < —h < 0 for all x € [a,b] then
|| < H/h.
IfF"(x) > h > 0 forall x € [a,b] or if F"'(z) < —h < 0 for all z € [a, b] then
|I| < H/Vh.
Proof. See ([12], p. 71). ]
Lemma 5. We have

(i) > (n) < Xlog® X,
n<X

(ii) Z A%*(n) < Xlog X.
n<X

Lemma 6. If |a| < 7 then
S(a) =I(a) + O(Xef(logx)l/s) .

Proof. This lemma is very similar to result of Tolev [13]. Inspecting the arguments pre-
sented in ([13], Lemma 14), (with T' = X %) the reader will easily see that the proof of
Lemma 6 can be obtained by the same manner. O



Alogarithmic inequality involving prime numbers 407

Lemma 7. We have
o0

/ Pla)e(—=Na)¥(a)da > 610);)(.

2

—0o0
Proof. Denoting the above integral with O, using (7), the definition of ¥(y) and the inverse
Fourier transformation formula we obtain
X X X o
0= / / / / e((y1logyr + y2log ya + yslogys — N)a) ¥ () dov dyy dyo dys
X/2 X/2 X/2 —00
X X X

= / / / Y(y1logyr + y2logya + yzlogys — N) dyi dys dy3
X/2X/2X)2
X X X nX pX
> / / / dyr dyo dyz > / / / dys | dyidy2, (8)
X/2X/2 X/2 AX AX \A

[y1 log y1+y2 log y2+ys log ys— N|<3e /4
where A and p are real numbers such that
1

2 5
S<Zcn 2<1
5<3<A<w<z<

and
A = [X/2, X] 0 [y u5] = [v595],
where the interval [y}, 44] is a solution of the inequality
N —3e/4 —yilogys — y2logys < yzlogys < N +3e/4 —y1logys — yalogys.

Let y be an implicit function of ¢ defined by

ylogy =t, €]
where
t < Xlog X (10)
and therefore
y= X. (11)
The first derivative of y is
1
= 12
Y= +logy (12)
By (11) and (12) we conclude
1
f = . 13
Yy log X (13)
Thus by the mean-value theorem we get
pnX pX
0= [ [ ¥(6n) dvadue. (14)

AX AX
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where
&y < Xlog X.

From (13) and (14) it follows that
2

o> ElogX'

The lemma is proved. O
Lemma 8. We have

) /|S(a)\2 do < X log? X,

- T
(i) / [I(a)]?da < X,
n+1
(iii) / 1S(a)?da < X log? X.

Proof. We only prove (i). The cases (ii) and (iii) are analogous.
Having in mind (6) we write

[1s@Pda= Y togpiiogse [ el lozm — plogp)a) da
e X/2<p1,p2<X 2

1
b Z ogpriospamnin <T7 Ip1logp1 — p21lo |>
X/2<p1,p2<X p1 log p1 — p2 log p2

LT Z log p1 log p2

X/2<p1,p2<X
|p1 log py —pg log pa|<1/7

log p1 lo
’ 2 p1lo gpl— g]ﬁ |
X/2<p1,pa<X p1logp1 — p2 log p2

|p1 logpy —pg log pa|>1/7

< Urlog? X + Vlog? X, (15)

where

U= > 1,

X/2<ny,ny<X
|nq logny —nglogng|<1/7

1
V= > 1 ozl
Njacirmgex  Imlogma —mnalogna|
|nq logny—nglogng|>1/7

On the one hand by the mean-value theorem we get
1
U 1 = !
< Y Yooy e

X/2<n1<X X/2<n2<X X/2<n< X
nilogni—1/7<nzlogna<nilogni+1/7
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where y is implicit function defined by the equation (9) and ¢ satisfies (10). Bearing in mind
(12), (13) and the last inequality we find

1 X
U<k - 16
< 7 log X (16)
On the other hand
V<>, (17)
l
where 1
W =
X/2<§ngx |n1logny — ng logne|
1<|nq log ny—ng log ng|<21
and [ takes the values 2% /7, k = 0,1,2,..., with I < X log X.
Using (9) — (13) and the mean-value theorem we conclude
1
vel Y Y
X/2<n1§X X/2<TL2§X
n1 logni+i<nz logna<ni logni+2I
1
+7 > X L
X/2<n1<X X/2<n2<X
n1 logny—2l<nz logna<ni logni—I
< > Y©
X/2<n<X
X
. 18
< log X (18)
The proof follows from (15) — (18). O
Lemma 9. Assume that 7 < |a| < K. Then
1S(a)| < X% 0g® X. (19)
Proof. Without loss of generality we may assume that 7 < o < K.
From (6) we have
S(a) = Z A(n)e(anlogn) + O(X/?). (20)
X/2<n<X
On the other hand
Z A(n)e(anlogn)
X/2<n<X
= Z A(n)e(an( log(n+1) + O(l/n)))
X/2<n<X
=e(O(lal)) Z A(n)e(anlog(n + 1))
X/2<n<X

< [Si(a)], 2

409
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where

S1(a) = Z A(n)e(anlog(n +1)).

X/2<n<X
‘We denote
f(d,1l) = adllog(dl + 1).

Using (22), (23) and Vaughan’s identity (see [14]) we get
Si(a) =Ur — Uz — Uz — Uy,

where
Ur= Y wd) > (oghe(f(d1),
d<Xx1/3 X/2d<1<X/d
Up= > eld) > elf(dD),
d<Xx1/3 X/2d<1<X/d
Us= > cod) Y elf(dD),
X1/3<d<X?2/3 X/2d<I<X/d
U= Y. a(d)Al)e(f(d1]),
X/2<dI<X
d>X1/31>x1/3
and where

le(d)| <logd, |a(d)| < 7(d).
Estimation of U; and U
Consider first U defined by (26). Bearing in mind (23) we find
o"f(d,l) (—1)" ad*(n —2)!  ad®(n—1)!
ar (dl + 1)n—1 (dl+ 1) |’

By (30) and the restriction and the restriction
X/2<dl<X

we deduce (4]
ggn’)‘ = ad(Xd H)'™"  forn > 2.

From (32) and Lemma 2 with (3¢, \) = (3, 3) it follows

Y e(f(d0) < (ad)?(xd )Y 4 (ad) !
X/2d<I<X/d

—QM2x12 4 g1t
Now (4), (5), (26), (29) and (33) give us
Uy <« (a1/2X5/6 + 071/2) log? X
< (K1/2X5/6 + 7_1/2) log2 X
< X23/25 10g2 X

forn > 2.

(22)

(23)

(24)

(25)

(26)

27

(28)

(29)

(30)

(€1

(32)

(33)

(34)
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In order to estimate U; defined by (25) we apply Abel’s transformation. Then arguing as in

the estimation of Us we obtain
Up < X2/ 10g? X.

Estimation of Us and U,
Consider first Uy defined by (28). We have

Uy < |Us|log X,

where
Us= > a(d) > ADe(f(d1)
D<d<2D L<I<2L
- X/2<dl<X
and where

XV« L« XY? <« D< X?? DLx=X.
Using (29), (37), (38), Lemma 5 (i) and Cauchy’s inequality we obtain

P < Y. d) > > ADe(f(d, 1)

2

D<d<2D D<d<2D ' L1<I<L2
<D(ogX)* > | > ADe(f(d, 1))
D<d<2D ' L1<I<Ls

where

X . X
Ly = max{L,zd}, Ly = mln{ZL,d}.

Now from (38) — (40) and Lemma 3 with ) < L and Lemma 5 (ii) we find

Us? < D(og X)° > Z( |q|>

D<d<2D lgl<Q

x Y A+ ADe(f(d, 1+ q) - f(d,1))

<<(LD YooY Al+9AQ

> e(gl,q(d))’

0<|q|<Q Liﬁjﬁfh D1<d<Ds
LD)? )
+ ulOgX log® X,
Q
where x X X x
D = max D7—7 R Dy = min 2D77’7
207 2(1+q) l'l+4+q
and

9(d) = guq(d) = f(d,1 + q) = f(d,]).

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

43)

411
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It is not hard to see that the sum over negative ¢ in formula (41) is equal to the sum over
positive g. Thus

U52<<<LD SO AU+@A

@ 1<¢<Q L<i<2L—q

> clang(@)

D1 <d<Dy

2
+ (Lg) logX> log® X.  (44)

Consider the function g(d). Taking into account (23), (30) and (43) we get

M) (N _ (_1\n all+¢)"(n—-2)!  al*(n—1)!
9" (d) = (-1) [(d(l+q)+1)”1 @i | forn > 2. (45)
By (31) and (45) we conclude

9™ (@) < aL(XLH)'". (46)

From (42), (46) and Lemma 2 with (3¢, \) = (4, 55) we obtain

Y elg(d) < (@) (XL 4 (aL)!
D1 <d<Ds

— Q11/82]—46/82 y57/82 | (~1r-1 47
Bearing in mind (44), (47), Lemma 5 (ii) and choosing () = L we find
|U5\2 < <a11/82DLL36/82X57/82 +a DL+ DZL) logt X
< <K11/82L36/82X139/82 +rlX 4 D2L) log? X. (48)
Now (4), (5), (38) and (48) give us
Us| < (K11/164L36/164X139/164 4 orl/2x1/2 +XL_1/2) log? X < X24/25 log? X.

(49)
From (36) and (49) it follows
Uy < X242 10g% X. (50)
Working as in the estimation of U, we obtain
Us < X2/ 10g® X. (51)

Summarizing (20), (21), (24), (34), (35), (50) and (51) we establish the estimation (19).
The lemma is proved. O

4 Proof of the Theorem

Consider the sum

I'= > log p1 log p2 log ps.

X/2<p1,p2,p3<X
|p1 log p1 +p2 log po+p3 log p3 —N|<e
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The theorem will be proved if we show that I' — co as X — oc.
According to the definition of ¢ (y) and the inverse Fourier transformation formula we
have

I'>To= > ¥(p1log p1 + p2log pz + p3log ps — N) log p1 log p2 log ps
X/2<p1,p2,p3<X

= > log p1 log p2 log p3
X/2<p1,p2,p3<X
oo

X / e((p1logp1 + p2logpe + p3logps — N)a)¥(a) do

—0o0
[o0)

- / S3(a)e(~Na)¥(a) da. (52)

—00

We decompose 'y in three parts

Po=T1+4+T2+4T43. (53)
where
I = /Sg(a)e(—Na)\Il(a) da, (54)
Iy = / S3(a)e(—Na)¥(a) da, (55)
T<|a|<K
s = / S3(a)e(—Na)¥(a) da. (56)
la|>K
Estimation of I';
Denote the integrals
0, = /13(a)e(—Na)\I/(a) dav (57)
0= / IB(a)e(—=Na)¥(a) dov. (58)

For I'; denoted by (54) we have

I =T -0, +(0,-0)+6. (59)
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From (54), (57), Lemma 1, Lemma 6 and Lemma 8 (i), 8 (ii) we get

T

T -0, <</\S3<a>—f3(a>|\wa>|da
<= [ 15(@) - 1@)|(S(@) + (@) da

<<Ex6—<log><>“5< / 1S(a)[? da + / |I(a)2da>

1/6

< EX2€_(10g X)
Using (4), (7), (57), (58), Lemma 1 and Lemma 4 we find

€ /dfoz
(1+1logX)3 ) a3

T

o, — 0| <</|I<a>|3|wa>\da<<

< £ < X2
€ .
72(1 + log X )3 log? X

Bearing in mind (4), (58), (59), (60), (61) and Lemma 7 we conclude
2

T .
1> ElogX

Estimation of 'y
Now let us consider I'y defined by (55). We have

K K
Ly < [ 8@ |0(a)]da < max |S(@)] [ 1S(@)P¥(a)] do.

Using Lemma 1 and Lemma 8 (iii) we deduce

1/e

K K
d
[1s@Pw@)da << [Is@Pda+ [ Is@P 2
T T 1/e
n+1 n+1

<e Z /|S(a)‘2do¢+ Z %/\S(a”?da

0<n<l/e 5 1/e—1<n<K 5
< Xlog® X.

From (63), (64) and Lemma 9 it follows

eX?
7

Iy < X492 1068 X « .
log“ X

(60)

(61)

(62)

(63)

(64)

(65)
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Estimation of I'3
Using (56), Lemma 1 and choosing k& = [log X ] we find

Ly < [ 18(@)P|¥(a)]da
K

T1/ k \f
X3 [ = d
< /a(?ﬂa€/8> “
K

k
= X3<7é];() < 1. (66)

The end of the proof
Bearing in mind (52), (53), (62), (65) and (66) we establish that

2

r .
>>ElogX

(67)

Now (3) and (67) imply that ' — co as X — oo.
The proof of the Theorem is complete.
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