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ABSTRACT. In this paper, the symmetric division deg index of a graph
is studied and several bounds for this index are obtained. Also relations
between SDD and Randi¢ indices are obtained by means of SDD and
Randi¢ matrices.
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1. INTRODUCTION

Let G = (V(G), E(G)) be a simple graph with n vertices in the set V(G)
and and m edges in the set F(G). For i = 1,2,--- ,n, the degree of a ver-
tex wu; is denoted by dy, and assume that A = dy, > dy, > -+ dy, = 9.
A vertex u; € V(G) is said to be pendant vertex if d,;, = 1. Molecular
descriptors play a remarkable role in mathematical chemistry, especially in
QSPR/QSAR investigations. Out of them, a special place is reserved for
topological descriptors. Nowadays, there exist hundreds of such topological
indices in the literature. One of them is the symmetric division deg index de-
noted by SDD. This index was determined as a significant predictor of total
surface area of polychlorobiphenyls (PCB). Moreover, its extremal graphs
obtained with the help of MathChem in [16] have particularly simple and
elegant structures. The symmetric division deg index of a connected graph
G is defined as

(1) SDD(G)= Y (d“+d”).

w€E(G) oy u

The hyper-Zagreb index [15] is defined by

HM(G)= > (duy+dy)*.
weE(G)

In [6], some lower and upper bounds for SDD index were given and the uni-
cyclic graphs and bicyclic graphs with the maximum and the second max-
imum SDD indices were determined for n > 5. In this paper, we pointed
out some errors and give our counterexamples, comments, and corrections
on some results in [6]. Also we establish new bounds for SDD matrix eigen-
values, obtained different bounds in terms of the trace of the SDD matrix
to Randi¢ matrix.
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2. MAIN RESULTS

2.1. Errors in lower bounds. The main results of the paper [6] deal with
lower and upper bounds for the symmetric division deg index of connected
graphs. Also, some Nordhaus-Gaddum-type relations for the symmetric di-
vision deg index of a connected graph were established for unicyclic and
bicyclic graphs.

We identified errors in Theorem 3.4, Corollary 3.5 and Corollary 3.6 of
[6]. The following is the Theorem 3.4 in [6]:

Theorem 2.1. [6] Let G be a simple connected graph with order n, size m,
p pendant vertices, maximum degree A and minimum degree §1. Then

SDD(G) > p (5%; D) T 20m )

1

C(n—p(A+ 1) (HM(G) - p(1 + A?)) A5
where T' = A mp —4(m—p)? ((51+A)'

The equality holds for regular and star graphs.

Note the graphs in Figure 1.
e If GG is a star graph, then m —p = 0 and the number T is not defined.

FiGURE 1. Examples that contradict with Theorem 2.1

e For the graph Gi, substituting HM(G1) = 498, n = 8, A =7,
m =8, p=>5, 51 = 2 in the RHS of the above inequality, we get

2
51; 1) VT — 2(m — p) = 219.1, whereas SDD(G) = 45.2875.
1

e For the graph Gs, substituting HM (G2)=166,n =8, A =3, m = 8,
2
(n—p(A+ X)) (HM(G) — p(1+ A?))

p=2,0=2inT,wegetT =

m—p
A 6

4(m —p)? (E + Z) = —48.2963. This implies that the RHS of the

inequality is an imaginary number.
e For the graph G, substituting HM (G3)=534, n=8, A = 6, m = 11,

2
p=0,00=2inT,weget T = (n—p(A+ %)) (HM(G) — p(1+ A?))

m-=p

A §
4(m — p)? (a + i) = —312.86. This implies that the RHS of the

inequality is an imaginary number.
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With these examples, we can conclude that Theorem 3.4, Corollaries 3.5 and
3.6 in [6] have faults. This is due to misutilization of the Cauchy-Schwartz
inequality in Ozeki’s inequality.

2.2. Upper bounds-equality cases. In [6], some upper bounds for SDD
index were obtained in Theorem 3.7, Theorem 3.8 and Theorem 3.9 and
it was proven that the equalities hold for regular or star graphs. In this
section, we prove that the same equalities hold for other classes of graphs,
too. The following is Theorem 3.7 in [6]:

Theorem 2.2. [6] Let G be a simple connected graph of order n, size m,
mazimum degree A and minimum degree §. Then

A2+52>

Ad
The equality holds for the regular and star graphs.

SDD(G) <m (

A graph G is called bidegreed if it has two different vertex degrees A
and 0, with A > 4§ >1and let K,,_,, 1 <r <n — 1 denote the bidegreed
bipartite graph with r vertices of degree A and n—r vertices of degree §. We
can easily observe that the star graph is a special class of bidegreed graphs.
If G is a bidegreed bipartite graph, then G has a partition with maximum
degree A with ¢ vertices and the other partition with minimum degree § with

A vertices. Then, it is easy to compute SDD(G) as m (AZA??) . Hence we

can rewrite the above theorem as below:

Theorem 2.3. Let G be a simple connected graph with order n, size m,
mazximum degree A and minimum degree 6, then

A2 4 §2
Ad ’

and the equality holds if and only if G is reqular or G is a bidegreed bipartite
graph.

SDD(G) < m (

The following two theorems and the corollary are Theorem 3.8, Theorem
3.9 and Corollary 3.11 in [6]:

Theorem 2.4. Let G be a simple connected graph with order n, size m, p
pendant vertices, mazimimum degree A and minimum degree §1. Then

sop@) <p(25) + - (A1),

Equality holds iff the graph is regular or a star graph.

Theorem 2.5. Let G be a simple connected graph with order n, size m, p
pendant vertices, mazimum degree A and minimum degree 1. Then

A2+1> 1

A +5?(HM(G)*P(1+51)2>*Q(W*P)

where HM (G) is the hyper-Zagreb index. Equality holds iff the graph is
reqular or a star graph.

SDD«ngp<

391
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Corollary 2.6. Let T be a tree of order n, p pendant vertices, mazimum

degree A and minimum degree 01. Then

A?+1
A

SDD(G) §p< ) + 5—12 (HM(G) — p(1 +61)%) —2(n — 1 —p),
1

and the equality holds iff the graph is a star graph.

If G is a bidegreed bipartite graph, then p = 0 and we get SDD(G) =
%?2). From the above result, we conclude that equality holds for
bidegreed bipartite graphs. If G is a bidegreed graph with § = 1 then, G

has p vertices of degree one. For p edges, SDD yields (AZH) and for the
remaining m — p edges, SDD yields 2. Therefore, SDD(G) = p (%) +
2(m — p). Conversely, if G has A = 01, then we get SDD(G) =p (%) +

2(m — p). Hence we can rewrite the above theorems and corollary as below:

Theorem 2.7. Let G be a simple connected graph of order n, size m, p
pendant vertices, mazimum degree A and minimum degree 1. Then

A?+1 A? 4 63
< _
spD(G) < p (S5 ) om0 (550 ).

and the equality holds if and only if G is a regular or bidegreed bipartite
graph or a bidegreed graph with one pendant vertex.

Theorem 2.8. Let G be a simple connected graph of order n, size m, p

pendant vertices, mazimum degree A and minimum degree 1. Then

A?+1
A

sD(G) <p (5 ) + 5 (HM(G) = (1 + ") ~2(m—p)

where the equality holds if and only if G is a regular or bidegreed bipartite
graph or a bidegreed graph with one pendant vertex.

Corollary 2.9. Let T be a tree of order n, p pendant vertices, mazimum

degree A and minimum degree 61. Then

A?+1
A

SDD(Q) §p< >+6—12(HM(G) —p(1+61)%) —2(n—1-p),
1

where the equality holds if and only if T is a bidegreed tree.

2.3. Bicyclic graphs-second maximum SDD index. Let B, , be the
set of bicyclic graphs with n vertices and p pendant vertices for 0 < p < n.
Let C} be the bicyclic graph obtained by adding an edge to the cycle Cy.
Label the vertices C} by v1,v2,v3,v4 with dy, = dy, = 3, dypy = dp, = 2.
Let C}(p1,p2, p3, pa) be the graph formed from C} by attaching p; pendant
vertices to v;, where p; > 0 for p; > ps > p3 > pg and Z?Zl pi =n—4. In [6],
it was proven that among the graphs By, ,—4 with n > 5, the C}:(0,0,n—4,0)
is the uniqe graph with the second maximum SDD index. But we determined
that C(0,0,n — 4,0) does not have the second maximum SDD index. The
following are Theorem 6.3 and Corollary 6.4 in [6]:
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Theorem 2.10. [6] Let G € By, p—4 withn > 5. Then
n2—2n+2) n?—2n+10 n®?—2n+5 13

3(n—1) L R 5

with equality if and only if G = C)(n —4,0,0,0).

Corollary 2.11. [6] Among the graphs By n—4 withn > 5, C%(0,0,n—4,0)

is the unige graph with the second maximum SDD index which is equal to

n2—4n+5> 2<n2—4n+13>+19

-2 3(n—2) 3

The graph class C(n—5,1,0,0) contradicts with Corollary 2.11 as shown

in Fig. 2:

SDD(G) < (n — 4) (

n—1

SDD(C}(0,0,n—4,0)) = (n—4) <

(n —5) pendent vertices

C(n—5,1,0,0)

FIGURE 2. Graphs that contradict with Corollary 2.11

We tabulated the values of SDD(C}(n — 5,1,0,0)) and SDD(C;:(n —
5,1,0,0)) for n =5,6,---,9 in Table 1:

n [ SDD(CE(0,0,n — 4,0)) | SDD(C:(n — 5,1,0,0))
5 13.6667 15.6667

6 19 205

7 26.4667 975

8 36 36.5833

9 47.5714 47.7143

TABLE 1. Values of SDD(C(0,0,n —4,0)) & SDD(C}(n —5,1,0,0))

Hence, we can conclude that SDD(C}(0,0,n — 4,0)) has not the second
maximum index.

3. BounDs FOR SDD INDEX

3.1. Symmetric division deg matrix-SDD index. The symmetric di-
vision deg matrix [12] of a graph G is denoted by S(G) and defined by

dy,

Sii(G) = dy.

J

+ d& if v; and v are adjacent
v;

0 otherwise
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Since the symmetric division deg matrix is real and symmetric, its eigenval-
ues are real numbers and we label them in non-increasing order A\; < Ay <
coo < Ay Also D7 A = tr(S(GQ)) = 0. The symmetric division deg energy
[12] of G is defined as

n
SDDE(G) = > |Ail.
i=1
We recall

Lemma 3.1. [12] If A1, Mg, - -+ , Ay are the symmetric division deg eigenval-

ues of S(G), then
& &+ d2\°
2 _ 2 _ uw Ty
E Aj =tr(S%(G)) =2 E ( d, > .
i=1 weE(G)

Theorem 3.2. Let G be a simple graph. For any symmetric division deg
eigenvalue \;, we have

n— r 2
wgJ( ir(5*(G)).

n

Proof. We have \; = — Z?:Li oy A; and using Cauchy-Schwartz inequality,
we get
2

M= Y A - Y A?=(n—1)<ZA?—M?>-
=1

i=1,i#j] i=1,i#j
We then have
(2) nA3 < (n—1)) A

Therefore

n— T 2
A < \/< Dir(SG),

O

Some graph classes are more frequently used than others. Here we obtain
bounds on symmetric division deg eigenvalues for some of such graph classes:

Corollary 3.3. If G is a path graph P,, n > 4, then

| < (n— 1)(8n+1).

Proof. If G is a path graph P,, then tr(S?(P,)) = 8n + 1. Hence we obtain
the result. d

Corollary 3.4. If G is a cycle graph C,, with n > 3, then
Al < VB —1).
Proof. As tr(S%(C,,)) = 4n for Cy,, the result follows. O

Corollary 3.5. If G is a complete graph K, then
Al < 200 —1).
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Proof. If G is a complete graph K,,, then tr(S?(K,)) = 4n(n — 1). Hence
the result follows. d

Corollary 3.6. If G is a complete bipartite graph K, ,, with m > n, then

2(m+n—1)

Ajl < (m? +n?) | m———=.

Al < (m” %) mn(m 4+ n)

Proof. If G is a complete bipartite graph K, , with m > n, then tr(S?(Ky, ) =

) (mz + n2)2
mn

Corollary 3.7. If G is a star graph Sy, then

2
< (-1 1)y 2.

Corollary 3.8. If G is a crown graph on 2n vertices, then
Al <2¢/(n—1)(2n —1).

Proof. If G is a crown graph on 2n vertices, then tr(S?(G)) = 8n(n — 1).
This gives the required result. O

. Hence we obtain the result. O

Theorem 3.9. Let G be a simple connected graph. Then
nAISA
2(n —1)(A2% +42)
Proof. By equation (2), we have
n
Al < tr(S%(G))

n—1
2 2
<2(A +6?%)
- Ad

< SDD(G) < %

SDD(G).

Hence,
nAZ6A
2(n —1)(A2% +62)
Let j = (1,1,---1) € R™. Since G is connected, S(G) is non-negative and
irreducible. Perron-Frobenius Theorem gives p > | | for every j and then
p; > 0. Hence, using the Rayleigh quotient, we obtain

. <S(Q)z,xr> _ <S8(G)j,j> 2SDD(G)
MR T e S TR ‘

< SDD(G)

n

Hence, the required result. O

Now we obtain different bounds for SDD(G) in terms of the trace of
S%(G). We need the following result to establish bounds on SSD(G):

? +y?
Lemma 3.10. [14] Let f(z) = with0 < a <z,y <b. Then
2 g2
a+b
2 < < .
< flay) < —

The equality in the upper bound attained if and only if either x = a and
y=>b, orx =0 and y = a, and the equality in the lower bound attained if
and only if © = y.

395
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From Lemma 3.1, we have

2 2\ 2
r(s2G) =2 Y (diljdju) .

weE(GQ)

Theorem 3.11. Let G be a simple graph. Then

Ad

tr(S*(G))
2 (A% +62) ’

tr(S*(G)) < SDD(G) < 1

The equality in the upper bound is attained if and only if G is regular; the
equality in the lower bound is attained if and only if G is either regular or
(A, d)-biregular.

Proof. By Lemma 3.10, taking a = ¢ and b = A, we get

@) di4d2 A% 5?
dudy — A5

A2+ d?\ [ &2+ d?
2 _ 1 J 0 J
tr(S (G))_zz( 0, )( 0,

i<j

2 (A? +6%) 7 + d7
STA ; did, J

2 (A? +6?)
=55 SDD(G).

Now

Again
2 2 2 2
di + dj di + dj

tr(SQ(G)):22< T )( T )>4SDD(G).

i<j

Hence the required inequality. By Lemma 3.10, the equality in the lower
bound is attained if and only if either d,, = A and d,, = 4, or vice versa, for
each uv € E(G). Since G is connected, this happens if and only if G is a
regular graph; that is, A = § or it is a (A, 0)-biregular graph otherwise. The
equality in the upper bound holds, by Lemma 3.10, if and only if d,, = d,
for every edge uwv € E(G). Since G is a connected graph, this happens if
and only if G is regular. ]

2 2
u v

dudy

Let o2 be the variance of the sequence { } appearing in the defi-

nition of SDD(G). Then

Theorem 3.12. Let G be simple graph. Then

SDD(G) = \/ 77”'”(‘;2(@) — m2a2,
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Proof. By the definition of o2, we have

2
1 @2+ d2\? 1 a2 + d2
2 _ - u v I u v
o= D < dod, > m > dod,

m
weE(G) weE(Q)

= o 1r(5(G)) ~ —ySDD(G)

Hence, the required result. a

Theorem 3.13. Let G be a simple graph. Then

\/M—i—élm(m— 1) < SDD(@) < \/”(SQ(G))—Fm(m— 1) (A2+52>2.

2
FEquality holds iff G is reqular.

Proof. We have

2
d2 +d?
SDD(G)2=( > dyd )
? 242\ [+ d
2 o dod,

uvFTY

_ tr(s*(@)) 2+ d2\ [(dE+d2
W T2 L ( dud, )( dzdyy)'

wF#ry
By Lemma (3.10), taking a = ¢ and b = A, we get
A2+ d2 A%+ 62

2 A6

I
RS
S
REW
|+
SR
<N

2 < v <
— dyd, T A6
2 o 1r(s*(G))
SDD(G)* > —— == + >4
wvFry
2
IEET TR

Again from (4), we have

tr(s*(G 2+ d2\ (di+d;
wotzy uly zQy

tr(s%(G)) A2 4 §2\?
2 Z( Ao >

:TW(’”‘”( A5

Hence, the required result. a

IN

Theorem 3.14. If G is a simple graph, then
(n — Dtr(S*(G))

> .
SDD(G) = 2(n? — 2n + 2)

397
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Equality is attained iff G is a star graph.
Proof. By Lemma (3.10), taking a =1 and b =n — 1, we get
a2 +d? - n2—2n—|—2.

2 <

dydy, — n—1
We have
& +d?\ [d?+ d?
2 —9 i J i J
(@) =23 dd, did,;
1<)
2 2
< 2(n? —2n + 2) Z d; +dj
n—1 i< dldj
2(n? — 2n + 2
= MSDD(G).
n—1
Hence, the required result. 0

3.2. Randié matrix-SDD index. In 1975, the chemist Milan Randi¢ pro-
posed a topological index R_1 /5 under the name ”branching index” suitable
for measuring the extent of branching of the carbon-atom skeleton of satu-
rated hydrocarbons in [13]. Later in 1998, Bollobas and Erdds [3] generalised
this index by replacing —% with any real number a, which is called the general
Randi¢ index. It is denoted by R, (G) and defined by

Ra(G) = Z (dudy)”
weE(G)

where « is an arbitrary real number.

1
The Randié¢ matrix of a graph G for « =3 is denoted by R(G) and is
defined by

1 i d di .
if v; and v; are adjacen
Ri;(G) = { Jdd, : J
0 otherwise.

Since the Randié matrix is real and symmetric, its eigenvalues are real num-
bers and we label them in non-increasing order p; < ps < --- < p,. Also

n n 1
Zi:l Pi = t’f‘(R(G)) = O; Zi:l sz = tT’(Rz(G)) = QZ’UXUEE(G) dd.’

The Randié¢ energy of G is defined as
RE(G) =Y |pil-
i=1

Theorem 3.15. Let G be a simple graph. For any Randi¢ eigenvalue pj,

1 < "Dy,

Now we can easily obtain bounds on Randié eigenvalues for some graph
classes:
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n2—1.

on
n—l'
2 )

If G is a path graph P, (n > 4), then |p;| <

e If G is a cycle graph C, with n > 3, then |p;| <

If G is a complete graph K, then |p;| < 1;
2(m+n—1)

)

If G is a complete bipartite graph Ky, ,, m > n, then |p;| <

2n—1
-1

m+n

e If G is a crown graph on 2n vertices, then |p;| <

Theorem 3.16. Let G be a simple graph: Then

82 tr(R*(G)) < SDD(G) < A’ tr(R*(@)).
Equality holds if and only if G is reqular.
Proof. We have

d +d; 9 2
o= ¥ ()" 3 (aa

> = 5tr(R%(G))

weE(Q) weE(G) e
SDD(G)= Y Gt di) A 2 ) a2 tr(R*(G))
- dudy, ) = dudy)
weE(G) weE(G)

If SDD(G) = 6%tr(R?(G), (respectively, SDD(G) = A?tr(R?*(G))), then
d? + d? = 242 for every edge uv € E(G) and we conclude that d, = 6,
(respectively d, = A) for every u € V(G). Conversely, if G is regular,
then lower bound and upper bounds are the same and they are equal to
SDD(G). O
Theorem 3.17. Let G be a simple graph. Then

2

SDD(G) < %\/Zm tr(R2(G)).

Equality holds iff G is a regular graph.

Proof. Using the Cauchy-Schwartz inequality,
2

d2 + d2
2 U v
SDDG) = | Y v
weEB(Q)
2 212 1 :
<
uweE(G) uweE(G)
2mA*
< S tr(RA(G)

O

In order to obtain few more relations between SDD(G) and tr(S%(G))
we need the following result, [7]:
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Lemma 3.18. If0 <n; <a; < Ny and 0 <np <bj < No for 1 < j <k,
then

. vz o 1/2 .

1 N1 N nin

2 2 14V2 1762
; b; S Y \/ ibj | -
(;a]) (; ]) -2 ( ning - N1N2> (;a] J)

Theorem 3.19. Let G be a simple graph. Then

26 A
>/ 2 .
SDD(G) > - 5 2mitr(R?*(Q))

Equality holds iff G is a regular graph.

1 1 1
: 2 2 | 32 2 .
Proof. Since 26° < d: +d; < 2A* and Az < ad. < 52 using Lemma 3.18,
we get
d2 + d;
SDD(G) = 4 L
@- % (%)

weEE(G)

1/2
o\ 1/2 1 2
(Cuwer@ (@ +&)°) (ZweE(G) (m) )
1 /A2 42
2\ Tz
(2yme) L JEEED
>
= . A4+54
2\ A252

26%A
- 202 2Q).
AT 5t 2mtr(R?(G))

>

Theorem 3.20. Let G be a simple graph. Then

452\ /mAS (AT + 5%)tr(R2(G))
AZ(A +0)

SDD(G) >

Equality holds iff G is regular.

Proof. Using Lemma 3.10, we can write

d2 + d2 <A2+52

2<
T odudy, T A6
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Using Lemma 3.18, we have

d? +d?
SDD(G)= Y (dd )

2+ 2\*\"” 12
ZquE(G) ( Ziudv U> (ZU’UEE(G) ].)
>
B 1( [A%+4° N [ 26A
2 20A AZ 4§52

202 [tr(R(@))
AV V™

1 (A +6)

2 \ V/2A0(A2 +62)
_46%\/mAS(A% + 82)tr(R2(G))
- AZ(A +6)

a

The Randié matrix of a graph G for a =-1 is denoted by R_1(G) and
defined by

1
.. if v; and v; are adjacent
R_1(ij) = { f / J

d;d;
0 otherwise

Since the matrix R_1(G) is real and symmetric, its eigenvalues are real
numbers we label them in a non-increasing order v < vo < .-+ < ,. Also

S = r(RA(G)) = 0 iy 52 = (A2, (6) = 2 Sy (77 )

and we can establish the following results.

Theorem 3.21. Let G be a simple graph. Then
SDD(G) < A%\/2mtr(R? (G)).
Equality holds iff G is a regular graph.

Theorem 3.22. Let G be a simple graph. Then

25°A2 1
> 4/ — 2 .
SDD(G) > — +64,/2mtr(R_1(G))

Equality holds iff G is a regular graph.
Theorem 3.23. Let G be a simple graph. Then

482 \/mAcS(A2 +82)tr(R2,(G))
(A +9) ’

SDD(G) >

Equality holds iff G is reqular.
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