Proceedings of the Jangjeon Mathematical Society www.jangjeon.or.kr
24 (2021), No. 3, pp. 3563 - 373 http://dx.doi.org/10.17777/pjms2021.24.3.353

FRECHET DIFFERENTIABILITY FOR A VISCOUS
CAHN-HILLIARD EQUATION AND ITS
APPLICATION TO A BILINEAR
OPTIMAL CONTROL PROBLEM

JINSOO HWANG

ABSTRACT. We consider a viscous Cahn-Hilliard equation. The objec-
tive is to study the Fréchet differentiability of a nonlinear solution map
from a bilinear control input to the solution of the equation. We use this
to formulate a bilinear optimal control problem. We show the existence
of an optimal control and find its necessary optimality condition.
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1. INTRODUCTION

Let 2 be a connected bounded open subset of R"(n < 3) with a suffi-
ciently smooth boundary I'. We set @ = (0,7") x Q for T' > 0. We consider
the following viscous Cahn-Hilliard equation

(1) (1*V)y’+A(Ay+f(y)*Vy’) =0 in Q

together with the initial value y(0,z) = yo and appropriate boundary con-
ditions, where’ = %, v € [0, 1] is a constant and f(y) is given by a potential
function F(y) for which F’'(y) = —f(y). The solution y of Eq.(1) means
the concentration of one of the two phases in a phase transition. In the
case v = 0, Eq.(1) reduces to the Cahn-Hilliard model for spinodal decom-
position, which is a description of the process by which phase separation
occurs in a binary alloy after the temperature is reduced suddenly below a
critical value [5]; In case v = 1, Eq.(1) reduces to the Allen-Cahn model
for grain-boundary migration, which is the process by which the interface
between two differently aligned crystal lattice in a solid evolve with time.
Novic and Cohen [17] proposed Eq.(1) in the case of v € (0,1) to interpret
a chemical model that interpolates between the cases v = 0 and v = 1 in
Eq.(1), as well as to include certain viscous effects neglected in [5]. Many
researchers have contributed to the study of well-posedness of Eq.(1), as well
as the existence and properties of global attractors in some Sobolev spaces.
To mention just a few, we can refer to Elliott and Stuart [9], Carvalho and
Dlotko [6], Grinfeld and Novic-Cohen [10] and references therein.

Zhao and Liu [21] studied quadratic cost optimal control problems using
the frame work of Lions [16] on a one dimensional version of Eq.(1) with
fly) = —y® +5y. They studied the well-posedness of the equation and
proved the existence of an optimal control for the equation with quadratic
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cost. In our previous study [13], we studied quadratic cost optimal control
problems with the equation considered in [21] in general dimensions of n < 3.
We verified the well-posedness of the equation in the Hadamard sense and
expanded the optimal control theory due to Lions [16] with emphasis on
deriving necessary optimality conditions of optimal controls by showing the
Gateaux differentiability of the solution map from an external forcing control
variable to the weak solution of the equation. As the study of the same
direction, we can refer to [8].

The extension of optimal control theory to quasilinear equations is not
easy because of the difficulties in showing differentiability of a solution map.
Some researches have been devoted to the study of optimal control in specific
quasilinear equations. For instance, we can refer to Hwang and Nakagiri
[11, 14] and Hwang [12]. In this paper, we consider the following controlled
viscous Cahn-Hilliard equation with the Dirichlet boundary conditions:

(1—V)y/+A(Ay—y3+y—vy’)=vy+f in Q,
(2) y=Ay=0 on X,
y(0,7) = yo(z) in Q,

where ¥ = (0,7) x I, v € (0,1), v is a bilinear control input variable, f
is a forcing term and —y® + y is given as a negative of the derivative of the
classical double well potential function F(y) = %(1 —y?)2

In most cases, the Gateaux differentiability may be enough to solve a
quadratic cost optimal control problem. However, the Fréchet differentia-
bility of a solution map is more desirable for studying the problem with
more general cost function like non-quadratic or non-convex functions,. In
this paper, we show the Fréchet differentiability of the nonlinear solution
map of Eq.(2): v — y, that is, from the bilinear control input variables
to the solutions of Eq.(2). Based on the result, we construct and solve a
bilinear optimal control problem on Eq.(2). For the study, we refer to the
linear results of a bilinear optimal control problems where the state equation
is a linear partial differential equations, such as the Kirchhoff plate or the
damped wave equations (see [3], [4], [15] and references therein).

To apply the variational approach due to the previous studies of [3], [4],
[15] and [16] to our problem, we propose the quadratic cost functional J(-),
which is to be minimized within U,q, U,q is an admissible set of control
variables in Eq.(2). We show the existence of u € U,q which minimizes the
quadratic cost functional J(-). Then, we establish the necessary condition
of optimality of the optimal control u for a distributive observation case
by employing an associate adjoint system. To this end, we use the strong
Gateaux differentiability of the map v — J(v), which is ensured by the
Fréchet differentiability of the solution map v — y(v). We can also use this
to define the adjoint system.

We also discuss the time local uniqueness of optimal control for the cost
J(-). Tt is unclear and difficult to verify that the uniqueness of optimal
control in nonlinear control problems. For this purpose, we employ the idea
in [4] which showed the strict convexity of the cost J(v) in local time interval
by making use of the second order Gateaux differentiability of the nonlinear
solution mapping v — y(v).
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To discuss the uniqueness of our case, we have proved the second order
Fréchet differentiability of the solution map with spatial dimensions of n < 3.
However, to prove the strict convexity of the cost J(-), we limited the study
to a one-dimensional case. As a result, we proved the local uniqueness of
the optimal control in part. This is another novelty of the paper.

2. PRELIMINARIES

Throughout this paper, we use C as a generic constant. Let X be a Ba-
nach space. We denote its topological dual by X', and the duality pairing
between X’ and X by (-,-)x.x. HE(S) is the completions of C§°(€2) in
HF(Q) for k > 1. Let the scalar product and norm on L?(Q) by (-,-)2 and
I - ||2, respectively. Since we assume that Q@ C R™(n < 3) has a sufficiently
smooth boundary I', we can use the regularity theory for elliptic boundary
value problems (cf. Temam [19 p.150]) and the well-known Poincare’s in-
equality to endow the norms and the scalar products on V := H2(Q)NHZ(Q)
and H}(Q) as follows:

@ Wl = IV9ll2: (@, 0) ) = (V, Vo)a, Vi, 6 € Hy(R).

Considering the boundary conditions of Eq.(2), we know its domain A (=
A?) is given by

DA ={ueV | Aue L*(Q), Au=0 onT}.
By using the well known notation of H=1(Q) = (H}(Q))', it is clear that
(5) D(A) = V < Hy(Q) — L*(Q) — H ' (Q) = V.

FEach space is dense in the following one, and the injections are continuous
and compact. Since L2(Q) is the pivot Hilbert space between V and V', in
view of (3), we can endow the norm on V' as in [19 pp. 54-55]:

(6) Iollv: = 1A~ ¢ll2, Vo€V,
According to Adams [1], the following embeddings are continuous when
n < 3:

Hy(Q) = LP(Q), (ie, W]y < ClIVY |2, Vi € Hy(Q)),

(7) (1<p=<6);
H}(Q) — C°(Q), whenn =1,
(8) (ie [Wleo@y < ClVEl2, V9 € Ho(Q));
9 V=0, (e, [dleo@ < Cladl, YoeV).
Let
(10) W(0,T):={g| g€ L*0,T;V), ¢ € L*(Q)}

be a Hilbert space with the norm

[NIES

lgllwiomy = (9320, + 19132))



356

J. Hwang

where ¢’ denotes the first order distributional derivative of g with respect
to t. Since [V, L%(2)]1 = H(f2), we can obtain the following [7, p.555]:
2

(11) W(0,T) < C([0,T]; Hy(2))-
The following variational formulation is used to define the weak solution
of Eq.(2).

Definition. A function y is said to be a weak solution of Eq.(2) if y €
W(0,T) and y satisfies

1 =)(¥'(), )y + (Ay() = () +y() — vy (1), Ag),
(12) = (U()y()7¢)2+ <f(.)’¢>V’,V
for all ¢ €V in the sense of D'(0,T),
y(0) = vo-

There are several methods to establish the well-posedness of Eq.(2) in the
sense of Hadamard; for example, the semigroup approach, as described in [6],
or the Faedo-Galerkin method, as described in [7]. Since these approaches
are quite standard, we can omit the details here. In the sequel, we rely on
the following theorem for the well-posedness of Eq.(2).

Theorem 2.1. Assume that v € (0,1), v € L=(Q), f € L*(0,T;V") and
Yo € HY(Q). Then the Eq.(2) has a unique weak solution y in W(0,T).
And the solution mapping p = (yo,v, f) — y(p) of P = H(Q) x L=(Q) x
LQ(O, T; V") into W(0,T) is locally Lipschitz continuous. That is, for each
p1 = (yg,v1, f1) € P and py = (y2,v2, f2) € P we have the inequality

ly(p1) = y(P2)llwo,1)

CUIVyo — vo)ll2 + llvr = vall (@) + 11 = f2llz2(0.7v7))

(13) = Cllpr —p2lp,

where C' > 0 is a constant depending on the data.

IN

We prove Theorem 2.1 by showing the following inequality

19 (u(os; 1) — (o2 D)3 + /0 1A (s 5) — y(pa: ) 3ds

(14) < OV —yD)I3 + llvr = vallZoo () + 11 = FollT2orvm)-

For simplicity, we will omit writing the integral variables in the definite
integral throughout the paper without any confusion.

Proof of Theorem 2.1. With the standard Faedo-Galerkin method as in [19,
p-151, Theorem 4.2] which is applied to a general pattern formation equa-
tion, we can see that the weak solution y of Eq.(2) exists in L°°(0, T; H(Q))N
L%(0,T;V) under the data condition p = (yo,v, f) € H(Q) x L>(Q) x
L?(0,T;V"). As is well known, especially as described in [6], the operator
—((1—v)I—vA)~'A is bounded, self-adjoint and positive linear operator on
L?(Q2) and moreover on the Hilbert spaces D(A%) (6 € R), (A = —A with
Dirichlet boundary condition). Therefore, the operator ((1 —v)I —vA)~! is
a bounded linear operator from V' to L?(Q2) and from L?(Q2) to V (cf. [2]).
Thus, as we shall see later, we can infer that y' of Eq.(2) exists in L2(Q). As
a result, we can know that the weak solution y of Eq.(2) exists in W (0,T).
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Based on the above, we prove the inequality (14). For the purpose, we
denote y1 — y2 = y(p1) — y(p2) by . Then, we can know from Eq.(2) that
9 satisfies the following equation in weak sense:

(1—v)y + A(A¢ — (Y +y1ye +y3) + U — VW) =1

(15) +Hvr—v)yp+fi—fo in Q,
Pp=AY=0 on X,

$(0)=yy —yg in Q

By multiplying both sides of (15) by 24, we have

d
(A=)l +vIVeI3) + 21 A¢[3

= 2|VY[3+ 20yl + yiye + v3), Ah)g + 2(v1%, )s
(16) +2((v1 — v2)y2, ¥)2 + 2(f1 — fo, Y)vr v

To obtain the estimate of the second term of the right hand side of (16), we
consider

[0yt + vz + 15) 12

vyille + Yyiyellz + vyl

(IllZs0y + lurllollvzll o) + lvallZs@) 19l Lse)
(with (7))

CIVylls + IVl Vu2ll2 + Vel V|2
Clllnlleqorime) + 1v2llegom i) V]2
(with (11))

Clllyrllw o,y + lv2llwom) IV

(VAN VAN VAN VAN VAR VAR VAN

(17)
by which we can obtain

2[4 (7 + 1y + v3)ll2[| AY |2
(with (17))

ClIVY 2] Al

(with the Young inequality)

1
SIAV[5 + IVl

2/(V(yd + y1y2 + y3), Ao

(VAN VAN VAN VAN

IN

(18)
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The other terms of the right hand side of (16) can be estimated as follows:

2[(v1t), 9)2] 2[lo1 ]l (@) 1912

(with (5))
ClIVY13;

2[lv1 — vall oo (@) l2ll2ll% |2

|01 = V2| Foo gy 19213 + 1913

(with (5) and W(0,T) < C([0,T]; L*(Q)))
C(llor = w2l + IVHI3);

2[lf1 = fallv/ ([ Al

1
8l1fr = folli + §I|A¢II§-

(19)
2[((v1 — v2)y2, )

INIA A CIA A

(20)
2[(f1 — fo, V)vv
(21)

VAN VANVAN

IN

By combining (16) and (18) - (21), we can get

d
(A=) wIE+vIVeI3) + a3

(22) < CUIVBIZ+ o1 — vl + 11 — fol20).

By integrating (22) on [0, ¢] and applying the Gronwall’s lemma to it, we
can obtain

t
V(03 + /0 |AG|3ds

(23) < CUIVYO)3+ llor = v2llFee(gy + L1 = FallT2o,rv7)-
This proves (14). From (15) we have

(24) V' =0L+IL+I

where

L= —((1=)I = vA) T AAY = 9(yF + yiya + v3) + ),
L, = ((1 — I/)I — I/A)_l(vldl + (’01 — Ug)yg),
Iy = (=) =vA)'(f1 = fa).

Since ((1—wv)I —vA)~'A is bounded, self-adjoint linear operator on L2?(£2)
and ((1 — v)I — vA)~! is bounded linear operator from L?(f) into V and
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from V' into L%(Q
111l

~

, we can infer the following:
(by (1 —v)I —vA)'A € L(LA(Q)))
CllAY = ¢y + v1y2 + v3) + Y2
CUI1AY |2 + 957 + yrye + v3)ll2 + [[¥]]2)
(with (5) and (17))
Cl A2 + [IVel2);
Cll v
(by (1 —=v)I —vA)™' € L(L*(Q),V))
Cllory + (v1 = v2)y2|2
Clllvillzeo@llellz + llor = val[ Lo (@) lly2ll2)
(with (5) and W(0,T) < C([0, T]; L*(2)))
CUIVll2 + llor = va2ll L= (@));
(by (1 =v)I —vA)™t e £(V',L3(Q)))
(27) Cllfr = fellv
From (23) and (25)-(27) we can obtain
19172 11 + I + I3][72 g

310172 + 12l 72y + I131132(0))
(with (25) — (27))
CIAY I 2(q) + IVYIl2(q)

Hlor = v2ll 7 gy + 11 = follF20mv)
(with (23))
(28) CUIVL O3+ llor = val Ty + 11 = F2ll 220 20m)-
Finally, by (23) and (28) we can conclude the following

(25)
[112]]2

7 AN VAN VAN VAN VAN VANS VAN VANR VANRR VARSI VAN

(26)
[[£3]]2

INIA

IANIN TN

IAIA

19113y (0.7
(29) < CUIVRO3+ llvr = vall o) + 11 = Foll7zom)-
This completes the proof.

3. FRECHET DIFFERENTIABILITY OF THE NONLINEAR SOLUTION MAP

In this section, we study the Fréchet differentiability of the nonlinear
solution map. The Fréchet differentiability of the solution map plays an
important role in many applications. Let F = L*(Q). We consider the
nonlinear solution map from u € F to y(u) € W(0,T), where y(u) is the
solution of

(1 =)y () + A(Dy(u) =y (u) + y(w) - vy (u))
(30) =uy(u)+f in Q,
y(u) = Ay(u) =0 on X,
y(u;0,2) = yo(z) in Q.
From Theorem 2.1, for fixed (yo, f) € H(Q) x L%(0,T; V"), we know that
the solution map F — W (0,T'), which maps from the term u € F of Eq.(30)

359
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to y(u) € W(0,T), is well defined and continuous. We define the Fréchet
differentiability of the nonlinear solution map as follows.

Definition. The solution map u — y(u) of F into W(0,T) is said to
be Fréchet differentiable on F if for any u € F, there exists a T(u) €
L(F,W(0,T)) such that, for any w € F,

ly(u+w) —y(u) = T(wwlwor)

(81 fwllr

—0 as ||w||z—0.

The operator T'(u) is called the Fréchet derivative of y at u, which we
denote by Dy(u), and T(u)w = Dy(uw)w € W(0,T) is called the Fréchet
derivative of y at u in the direction of w € F.

Theorem 3.1. The solution map v — y(u) of F into W(0,T) is Fréchet
differentiable on F and the Fréchet derivative of y(u) at u in the direction
w e F (that is z = Dy(u)w ) is the solution of

(1—-v)2 + A(Az — 3y (u)z + 2 — Vz') =uz +wy(u) in Q,
(32) z=Az=0 on X
z2(0,z) =0, in Q.

)

We prove this theorem by two steps:

(i) For any w € F, Eq.(32) has a unique solution z € W (0,T'). That is,
there exists an operator T' € L(F, W (0, T)) satisfying Tw = z(= z(w)).

(i) We show that [ly(u+w) — y(u) — 2lw(or) = o(lwll) as ]z — 0.
Proof. (i) To estimate the solution z of Eq.(32), we take the scalar product
of Eq.(32) with z in L(Q) :

(1- V)i 2 Zi 2 2
S lEl + 2SIV 23 + 1Az
(33) = (39%(w)z, A2)2 + || V23 + (uz + wy(u), 2)o.

The right hand side of (

33)
By (u)z, Az)o| < 3lly* ()2l Azl
< (with the Young inequality)

can be estimated as follows:

1
< SlAz)E+ 18]y (w213
1
< SlA2]5 + 18]y ey l12 75
< (with (7))
1
< SlAzlE+ ClIvy(w) sl VI3
1 4
< §||AZ||§ + CHZ/(U)Hc([o,T];Hé(Q))”VZ”%
< (with (11))
1
< SlA21E + Clly( o, n I V=13
1
(34) < SlAzE+Cl vzl
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|(uz, 2)2| + [(wy(u), 2)2]

[l #2115 + llwy ()22l
(with the Young inequality)
1+ [[ull)ll2]13 + lwy (w3
Cll2l3 + [lwy (w13

[(uz + wy(u), 2)a|

(VAN VAN VAN VARSI VAN

(35)
Considering from (33) to (35), we can obtain the following:

d
S (L= 0)2113 + vl V2]3) + [ A2]3
(36) < C=l3+ IV2l3) + Cllwy (w3

By integrating (36) over [0, t], we obtain

t
l(£)113 + IIVz(t)H%Jr/0 1A2][3ds

¢
(37) < C/O (1213 + IV 2[13)ds + Cllwy(w)l|72q).
Then, by applying Gronwall’s lemma to (37), we can have
t

(38) l2(®)lI3 + |\V2(t)||§+/0 1Az3ds < Cllwy(u)|Z2(q)-
Since

2= (A=) —vA)TTA(AZ — 3y3(u)z + 2)
(39) +H((1 = )] = vA) " (uz + wy(u)),
we can use similar calculations in (25) and (26) to obtain the following from
(39):

12’2 < CllAz]l2 + V22 + [Iz]l2 + lwy(u)ll2)

< (with (5))

(40) < C(|Az]l2 + [wy(u)ll2)-

Hence, we can have the following from (40):

C1Az] 22 (@) + llwy(u)llz2(@))
(with (38))
C||wy(u)||L2(Q)~

”Z/”L?(Q)

ININ A

(41)

Therefore, from (38) and (41), we know that z € W(0,T), and the solution

z2(= z(w)) of Eq.(32) satisfies

Cllwy(w)llr2q)
Cllwll#lly(w)ll L2
C||y(u)||W(0,T)Hw||f
Cli(yo, f,w)l[pllw]F.

[z(w)llwo,r)

(VAN VAN VAR VAN

(42)

Hence, from Eq.(32) and (42), the mapping w € F +— z(w) € W(0,T)
is linear and bounded. From this, we can infer that there exists T' €

L(F,W(0,T)) such that Tw = z(w) for each w € F.

361
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(i1) We set the difference 6 = y(u+ w) — y(u) — z. Based on the following
Y (u+w) —y*(u) - 3y*(u)2
= 0y (u+w) +y(u+wy() + y*(w)
+2(y?(u 4 w) + y(u+ w)y(u) — 2y°(u))
= O(y*(u+w) +y(u+w)y(u) + y*(u))
(43) +2(y(u+ w) — y(u)(y(u+ w) + 2y(u)),
we know from (43) that ¢ satisfies

(1—-v)d + A(A6 —0G(y(u +w),y(u)) +6 — V(S’)
(44) = (utw)d+we+ A(H(y(u+w)y(w)) i Q.
§=A§=0 on X,
5(0,z) =0 in Q
in the weak sense, where
Gly(u+w),y(w) = y*(u+w)+ylu+w)y(u) +y*(u),
Hy(u+w),y(w) = (ylu+w)—y)(ylu+w)+2y(u)).

If we follow similar arguments as in the proof of Theorem 2.1 or (i), then
we can arrive at

45)  [dlwer < Cllwz+AGHY(u+ w), y(w))ll 2o

From Theorem 2.1 and (42), we can deduce the following:

lwll 12/l 2 (@)
Cllwll =l zllwo,r)
(with (42))
Cllwl%;

lwz]L2(0)

INIA N IA

(46)

2H(y(u + w), y(w) |72

IN

T
/O 12015 19 (e + 1) = y(w) [ 2oy 1y (u + w) + 2y(u) 760t

IN

”ZHQC([O,T];LG(Q)) y(u+w) — y(“)”ZC([o,T];Lﬁ(Q))

x|y (u +w) + 2y(w)||F20 71502

(with (7))

Cl2l1E 0,77 3o 19 (e + ) = 900,173
X|ly(u +w) + 2y(u) H%?(O,T;Hg(sz))

(with (11) and Theorem 2.1)

Cliz o, llu + w = ullF

* (Il (yo, w+w, B + 11 (vo, w. f)I7)

(with (42))

Cllwl%.

ININ

ININ

™~
=’
[VANVAN
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Hence, from (45) to (47), we can obtain

I6llwor < Cllwz+ A(H(y(u+w), y(w))ll 20.1:v)
< CO(lwzll20,mv7) + [AGEH(y(u +w), y(u)| 220,707
< (with (6))
< Cllwzlr2(q) + I7H(y(u + w), y(w) [ L2(@))
< (with (46) and (47))
(48) < Clwll,

which implies that [|§]lyw 0,7y = o(|[w]| ) as [Jw|F — 0.
This completes the proof.

4. QUADRATIC COST BILINEAR OPTIMAL CONTROL PROBLEMS

In this section, we study the quadratic cost bilinear optimal control prob-
lems for a viscous Cahn-Hilliard equation. Let the following be the set of
the admissible controls:

(49) Ugg={uveFla < u <bae in Q}.

To perform our variational analysis, L?(Q) norms of U,y is preferable, even
though U,q is subset of F. Using Theorem 2.1, we can uniquely define the
solution mapping U,q — W(0,T), which maps the term v € U4 to the
solution y(v) € W(0,T), which satisfies the following equation:

(1= 1)y (v) + A(Ay() = 9 () + y(v) = v/ (v))
(50) =vy(v)+f in Q,
y(v) =Ay(v) =0 on X,
y(v;0,2) =yo(xz) in Q,
where yo € H3(Q), f € L?(0,T;V’) and v is a control variable.
The quadratic cost function associated with the control system (50) is:

1 o
(51) J(v) = 5“9(”) - YdH%?(Q) + 5“””%2(@)»

where Yy € L2(Q) is a desired value, and the positive constant « is the
weight of the second term on the right hand side of (51). As mentioned, the
bilinear optimal control problem can be summarized as follows:

e Verify the existence of an admissible control u € U,q such that
(52) inf{J(v)|v € Upa} = J(u).
e Give a characterization of such a u ( optimality condition).

Such a w in (52) is called an optimal control for the problem with the cost
function (51).

4.1. Existence of optimal controls.
To prove the existence of optimal controls, we need the following com-
pactness lemma.

Lemma 4.1. (Aubin-Lions) Let X — Y < Z be Banach spaces with X
and Z being reflexive. If the imbedding X — Y is compact, then for any
1 < p,q < oo, every bounded set of LP(0,T; X)NW14(0,T; Z) is relatively
compact in LP(0,T;Y).
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Proof. See Teman [20; p. 271].
The existence of optimal controls for the cost (51) can be stated by the
following theorem.

Theorem 4.2. Assume that the hypotheses of Theorem 2.1 are satisfied.
Then there exists at least one optimal control w for the control problem (50)
with the cost (51).

Proof. Set J = irZ}{f J(v). Since U,q is non-empty, there is a sequence {u,}
veEUyq

in Uyq such that
inf J(v) = lim J(u,) = J.

vEUG n—00

Since {u,} is bounded in F and Uy,q is bounded, closed, and convex, we can
choose a subsequence (denote again by {u,}) of {u,} and find a u € Uy
such that

(53) u, — u weakly - star in  Uyq

as n — oo. From now on, each state y, = y(u,) € W(0,T) corresponding
to vy, is the solution of

(1= v)y, + A(Ayn — Y+ Un — Vy;) =Upyn + f In Q,
(54) Yn=Ay, =0 on X,
Yn(0) =yo in Q.

It follows from Theorem 2.1 that

lynllwo,ry < CUIVyollz + 1 fllz2mv7) + llunllF)
<

(55) CUIVyollz + 1 fl 20,7397y + lal v [0]).

Therefore, by the extraction theorem of Rellich’s, we can find a subsequence
of {y,} denoted again by {y,} and find a y € W(0,T) such that

(56) Yn — y weakly in W(0,T) asn — oo.

Since V < HE() is compact, we can use Lemma 4.1, in which p = ¢ = 2,
X =V, Y = HYQ) and Z = L%*(Q) to see from (55) that {y,} is pre-
compact in L?(0,T; H}(2)). Hence, there exist a subsequence {yn, } C {yn}
such that

(57) Y, — y strongly in L%*(0,T; H}(Q)) as k — oc.

From (53) and (57), we can also extract a subsequence, if necessary, denoted
again by v, such that

(58) Unyn — uy weakly in L*(Q) asn — oco.

Let y be the weak limit in (56). We shall show that there exist a subsequence
{Un,} C {yn} such that

(59) Ays  — Ay®  stronglyin L*(0,T;V') as k — oo
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For any given ¢ € L?(0,T;V), we can deduce
T
8t = ).
0

T
= /O (yi—y37A¢)2dt‘

T
/ ((yn — ) (Y2 + Yy + ¥, M)) dt‘

O 2
(= ¥) (Wp + Yy + yz)HLQ(Q)||¢||L2(O,T;V)
(with (17))

Cllynlwo.r + 1Wlwor)’IV @ — )l 2@l el 207y
(with (55) and (56))

Cllyn = yllz20, .20 19l 200,731

ININCIN IN A

(60)
by which we can get
(61) 1AW = *) 22075y < Cllyn — Yll 20,7513 (2))-

Thus, we can verify (59) from (57) and (61).

With (56), (58) and (59), we replace y,, in Eq.(54) by y, , if necessary,
and take the limit as k¥ — oo. Then, by the standard argument in Dautray
and Lions [7, pp.515-517], we can know that the limit y € W (0,T) is a weak
solution of

(1*V)y'+A(Ay*y3+y*Vy’) =uy+f in Q,
(62) y=Ay=0 on X,

y(0)=yo in Q.
Also since the equation (62) has a unique weak solution y € W (0,T) by
Theorem 2.1, we conclude that y = y(u) in W(0,T) by the uniqueness of
solutions, which implies

(63) y(up) — y(u) weakly in W(0,7) as n — oc.

By using a similar argument in (57), we can apply Lemma 4.1 to (63) to
obtain the following

(64) y(u,) — y(u) strongly in L2(0,T; H}(Q)) as n — oo.

Since || - [[12(¢) is weakly lower semi continuous, it follows from (53) that
(65) lim inf {lunl|22(q) 2 [lullL2(@)-

Hence, from (64) and (65), we can arrive at

J = liminf J(u,) > J(u).

n—oo

But since J(u) > J by definition, we conclude that J(u) = infyey,, J(v).
This completes the proof.
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4.2. Necessary condition of bilinear optimal controls.

We now derive necessary conditions that any optimal control must satisfy.
To derive these necessary conditions, we must differentiate the cost function
(51). The solution map v — y(v) of Uyq into W (0, T) is said to be Gateaux
differentiable at v = w if for any w € F that satisfies u + AMw € U,q, there
exists a Dy(u) € LU, W (0,T)) such that

1
H )\(y(u + Aw) —y(u)) Dy(u)wHW(O’T) —0 as A —0.
The operator Dy(u) denotes the Gateaux derivative of y(u) at v = u and the
function Dy(u)w € W(0,T) is called the Gateaux derivative in the direction
weF.
Now we formulate the following adjoint equation to describe the necessary
optimality conditions for the observation given in the cost (51):

—u—umh+AQm+p+uy>—@%mAp

(66) =up+y(u)—Ys in Q,
p=Ap=0 on X
p(T,z)=0 in Q.

)

Proposition 4.3. Eq.(66) has a unique weak solution p € W(0,T).

Proof. The time reversed equation of Eq.(66) (¢ — T — ¢ in Eq.(66)) is
given by
(L=v)F + A (B +5 - vi) =37 (@)Ap
(67) =ap+y(a)—Yy in Q,
P=Aj=0 on %,
p(0,2)=0 in £,

where ’JJ() = (T —-). By multiplying both sides of Eq.(67) by 2p, we have

d =112 =12 =112
= (@ =w)l1B13 +vIV5I3) + 201253
(68) = 2||Vll3+ (65°(@)Ap, P)2 + 2(p, p)2 + 2(3i(4) — Ya, p)2-

We can deduce:

[(65%(@)Ap, D)2l < 2] AP|l2lI35° (@Bl

< | AplI3 + [135%(@)pll3
< ABI3 + 91F(@) | 1o (e 1Bl 750
< (with (7))
< 2513+ CIvi@ sl val3
< 88113 + ClF@) I 0,27, 1130y I VI3
< (by (11) and §(@i) € W(0, 7))

(69) < [Apl3 + ClIVa3.
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After routine estimations of the other terms of the right hand side of (68),
we can obtain the following from (69):

d _ - -
(=133 +vIVBI3) + 1213

(70) < CUIBI3+ IIVBII3 + |15(@) — Yall3)-

By integrating (70) over [0, t] and applying the Bellmann Gronwall’s inequal-
ity to the integrated inequality, we have

(71) peL>0,T; Hy(Q)NL*0,T;V).

Using similar arguments as in the proof of Theorem 2.1, we can obtain the
following from Eq.(67) and (71):

(72) pew(,T).

This is sufficient for the existence result that is obtained by implementing a
Faedo-Galerkin method and passing the limit.

This completes the proof.

We now discuss the first-order optimality conditions for the optimal con-
trol problem (50) with the cost (51).

Theorem 4.4. Let u € Uyq be an optimal control for the cost (51) and let
y(u) € W(0,T) be the corresponding state solution of Eq.(50). There exists
a weak solution p € W(0,T) of Eq.(66) such that u satisfies:

u = max{a, min{ — y(Z)p, b}}

Proof. Let u € Uyg be an optimal control with the cost (51) and let y(u)
be the corresponding weak solution of Eq.(50). From Theorem 3.1, the map
v — y(v) is Fréchet differentiable, so the map v — y(v) is also Gateaux
differentiable at v = u in the (possible) direction w € F. Let u + ew be
another control in U,q and let y(u + ew) be the corresponding solution to
Eq.(50). Then since the cost (51) achieves its minimum at u, we have:

0 < DJ(uww
_ lim J(u+ ew) — J(u)
e—0t €
17 y(u+ ew) —y(u)
= Jlim g f, (oot e vyt - 23, SR )
. @ r 2
+ Jim 5 | (Q(u,w)2+e\|w|\2)dt

T T
(73) /0 (y(u) — Yo, 2)odt + a /0 (u, w)adt,

where 2z is the weak solution of Eq.(32). We multiply both sides of the weak
form of Eq.(66) by z, which is a solution of Eq.(32), and integrate it over

367



368

J. Hwang

[0,T]. Then, we have

—/OT((l—V)p',z)gdt+/OT (a(ap+p+wp).2) | dt

ViV
T T
(19 - /0 (32 (u) Ap, 2)dt = /O (up + y(u) — Ya, 2)adt.

By integration by parts and the terminal value of the weak solution p of
Eq.(66), (74) can be rewritten as

/T <p, (1-v)2 + A(Az — 3y (u)z + 2z — uz') - uz>VV/dt
0 g

T
(75) = /0 (y(u) — Ya, 2)adt.

Since z is the solution of Eq.(32), we can obtain the following from (75):

T T
(76) /0 (y(u)—Yd,z)zdtz/O (p, wy(u))adt.

Therefore, we can deduce that (73) and (76) imply

T T
(77) DJ(u)w:/O (p,wy(u))g(ﬁ—i—@/o (u, w)odt.

Hence, we can obtain the following from (73) and (77):

T
(78) / (cu+y(u)p,w)edt >0, weF.
0

By considering the sign of the variations w in (78), which depend on u, we
can deduce the following from (78) (possibly not unique):

(79) u:max{a,min{ — @,b}}.

This completes the proof.

4.3. Local uniqueness of an optimal control.

We note that the uniqueness of an optimal control in nonlinear equation
is not assured. However, it is worthwhile to note the partial results. For
instance, we can refer to the results in [4, 18] to obtain the local uniqueness
of an optimal control. To verify the local uniqueness of an optimal control,
we can refer to the strict convexity arguments of a quadratic cost function
(cf. [22]). To this end, we consider the following result.

Proposition 4.5. The map v — y(v) of F into W(0,T) is second-order
Fréchet differentiable at v = u, and such the second order Fréchet derivative
of y(v) at v =u in the direction w € F, say ¢ = D*y(u)(w,w), is a unique
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solution of the following problem

(1= )¢ + A (26— 39> (W) — by(w)=® + ¢ — v )

(80) =up+2wz in Q,
p=Ap=0 on X,
#(0,2)=0 in K,

where z is the solution of Eq.(32).

To prove Proposition 4.5, it is sufficient to show the following
(81)  [[Dy(u + w)w — Dy(w)w — ¢llwo,r) = o(|lwlF) as [Jw|r— 0.
First, we prove the following lemma.
Lemma 4.6. For the weak solution ¢ of Eq.(80), the following holds
(s2) I8l < Cllwl.

Proof. By similar arguments in the proof of (i) of Theorem 3.1, we can show
that

Ol A(By(w)2?) + 2wz 20,117

C(HA(6ZJ(U)22)||L2(0,T;v') + [12wz|| L2 (0,13v71))
(with (6))
Clly(uw) 222y + llwzllr2(g))-

llw0,1)

IN AN IA

(83)
We note the following:

T
)20y < [ I o ol
< (with (7))
T
< 0 [ 1@y 41yt
< OTlyo 1o 2oy
< (by (11) and y(u) € W(0,T))
< Cllelyom
< (with (42))
(84) < CllwlF.

Hence, from (46), (83) and (84), we can have (82).
This completes the proof.

Proof of Proposition 4.5. From Eq.(32), we can deduce that z,4, = Dy(u-+
w)w is the weak solution of the following equation:

(1= )+ A (D = 3920+ W)zt + 2k — V)
(85) = (u+w)zurw + wy(u+w) in Q,

Zutw = AZyjw =0 on X

Zutw(0,2) =0, in .
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From (42), we can verify the following

(86) lzutwllwor) < Cllwllz
From Eq.(32), Eq.(80) and Eq.(85), § = 2,44 — 2z — ¢ satisfies the following
equation

(1—v)d + A(A5 — 3y2(u)d + 6 — 1/5')

(87) =(u+w)do+hL+1 in Q,
6=A6=0 on X,
0(0,z)=0, in Q

in the weak sense, where
I = wo+w(y(u+w)—ylu) - z),
L= A(Byw+w) = 3y%(w) 2w — Gy(w)?).

By similar arguments to those in the proof of Theorem 2.1, we can deduce

Clly + Ll 20,7507

Cll20,m5v7y + 12l L2 0,75v7))
(with (6))

C(Jlwe + wly(u+w) — y(u) - )l 2(g)
(88) 1By + w) = B3 (w)) 2t — 6522 12(q) ).

We can then verify the following:

161w 01)

ININ A

IN

IN

loll A8l
lwll#lpllwo,7)

(with (82))

Cllwl%:

(s + ) — y(w) — 2) (o)
el + 0) = () — 2l 2
ol Ay +w) — y(w) — 2wy
(with (48))

Clwl;

13y + w) — 352 () 7wl ()
(by similar arguments in (47))

|wéllr2(q)

IANIN A

VAN VAN VAN VAN

(90)

Cllw||#[|zutw lwo,r)
(with (86))

Ollw|%;

(with (84))

(92) Ofwl |-

From (88) to (92), we can deduce

(93) 181w 0.1y < Cllwll% + [lw]|%)

(91)
16y(u)2>|12(q)

IAINIA A IN A
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which implies
(94) 16]lwo,7) = o(llwllF) as [lw]lx— 0.
This completes the proof.

Lemma 4.7. When n = 1, for the weak solution ¢ of Eq.(80), the following
holds

(95) 16llwor < Cllwlag).

Proof. Considering n = 1, let z(w) be the weak solution of Eq.(32). Then,
we can obtain the following from (42):

Cllwy(w)lr2q)

Clly(wllco@llwllizeq)

(since n =1, by (8) and (11))
Clly(w)llw o, llwlrzq)

(96) Cllwll z2(g)-

Let ¢ be the weak solution of Eq.(80). From (83), we can deduce with (96)
the following;:

IN

[2(w)llw(o,r)

VAN VAN VAN VAN

IN

Cllly(w)2?[ p2(q) + lwzllL2(g))

Clly (@)l 2@ 1210 () + Ilwll 2y ll2lloog))
(by (8), (11) and W(0,T) — L*(Q))
C(Hy(u)HW(O,T)HZ”I%V(O,T) + lwll L2y 12l wo,1))
(with (96))

Cllwll72(q)-

1@l o.1)

IN

IN AN IA A

(97)

This completes the proof.
We prove the following partial results on the local uniqueness of the op-
timal control.

Theorem 4.8. When n =1 and T is small enough, then there is a unique
optimal control for the cost (51).

Proof. We show the local uniqueness by proving the strict convexity of
the map v € Uyg — J(v). Therefore, as in [22], we need to show for all
u,v € Z/{ada (’U, # U)?

(98) D2J(u+&(v —u)) (v —u,v —u) >0, (0<&<).
For simplicity, we denote y(u+&(v—u)), z(u+&(v—u)) and ¢(u+&(v—u))
by y(&), z(£) and ¢(&), respectively. We calculate
DJ(u+ (v — u))(v — u)
C Ju+E+D)w—u)) = J(u+E(v—u))
= I

T

T
(99) = /0 (y(é) - Yy, z(f))2ds + a/o (u+&(v—u)),v—u)dt.

Since, from Proposition 4.5, the map v — y(v) is second-order Fréchet
differentiable. Thus, the map v — y(v) is also the second order Gateaux
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differentiable at v = u+&(v —w) in the direction v — u. Therefore, from (99),
we can obtain the second Gateaux derivative of J as follows:

D2J(u+&(v —u)) (v —u,v — u)
L DI (64 p) (0~ w) (v — ) ~ DI+ E(v —w) (v~ u)
=0 K

T
(100) = /0 (W) = Ya, $(9))yds + () 1220y + allv — ulZes

where ¢(€) is the weak solution of Eq.(80), in which u and w are replaced
by u+ &(v —u) and v — u, respectively. Then, by Lemma 4.7 and (100), we
can deduce that

D?J(u+ €& —u)(v—u,v—u)

T
>~ 16 ooz /0 () — Yallads
1126 22y + allv — ullZag
> — CVT)6(O)lwo,rlly(E) — Yallr2 (o)

+ HZ(QH%Z(Q) +allv - U||2L2(Q)

> (with (95))
(101) > (a=CVTIYE) — Yall 2@ ) 0 = wll3g) + 12(8) 1220,

where we can take 7' > 0 to be small enough so that the right hand side of
(101) is strictly greater than 0. Therefore we obtain the strict convexity of
the quadratic cost J(v), v € Uyg, which prove this theorem.

Remark 4.9. As noted in [4], if one assumes that o > 0 is sufficiently large
instead of assuming T is sufficiently small, then one can also obtain the
strict convexity of the cost function J(-) and the resulting uniqueness of the
optimal control.
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