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SOME IDENTITIES OF THE DEGENERATE BERNOULLI
POLYNOMIALS OF THE SECOND KIND ARISING FROM
A-SHEFFER SEQUENCES

JIN-WOO PARK!, BYUNG MOON KIM?, AND JONGKYUM KWON?

ABSTRACT. Korobov introduced the first degenerate version of the Bernoulli
polynomials of the second kind called Bernoulli polynomials of the second kind.
Recently, degenerate versions of such polynomials as Bernoulli polynomials,
Euler polynomials and Genocchi polynomials and so on were introduced by
the many researchers. The aim of this paper is to represent the degenerate
Bernoulli polynomials of the second kind by other polynomials using the A-
umbral calculus.

1. INTRODUCTION

The ordinary Bernoulli polynomials are defined by the generating function to be

o0

t" t ot
nzzjan(x)m = ¢ (see [6,19]). (1.1)
In the special case, x = 0, b,(0) = b,, are called the Bernoulli numbers.

For any nonzero real number A € R, the degenerate exponential function is

defined by
eT(t) = (L+ )X, ex(t) = (1+A)>, (see [4, 7, 12, 10]). (1.2)

Let log, () be the compositional inverse function of ey (t) satisfying log, (ex(t)) =
t. Then we have
- n— tn
logy(1+1t)=> A 1(1),”,%5, (see [4, 7, 12]), (1.3)
n=1
where ()2 = 2(x — A)(x —2X) -+ (. — (n — 1)A).
By using (1.2), the higher-order degenerate Bernoulli polynomials are defined as

follows:
S Wt (. T‘eI see
HEO:BR,A@)”,(@A(”_J (1), (see [18]). (14)

When x = 0, B}:Z\(O) = Bffz\ are called the higher-order degenerate Bernoulli

numbers. In addition, when r = 1, we denote BS; (x) = Bp ().
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The higher order Bernoulli polynomials of the second kind are defined by the
generating function to be

me n' — (@) (14)", (see [3, 4]). (1.5)

When z = 0, by (0) = b are called the higher order Bernoulli numbers of the
second kind. In addition, when r = 1, bgll)(m) = by(x) are called the Bernoulli
polynomials of the second kind.

For n > 0, the Stirling numbers of the first kind Sy(n, k) and Stirling numbers
of the second kind Sa(n, k), respectively, are given by

=Y Si(n, k)a* and 2" ZSQ n, k)(x)g, (see [1-19]), (1.6)
k=0
where (z)o = 1, (), = x(z —1)---(z —n+1), (n > 1) is the falling factorial
sequence.
For each positive integer k, it is well known (see [8]) that

k(logl—i—t ZSlnk andl ZSgnk—'. (1.7)
As degenerate version of the Stirling numbers of the first and second kind in
(1.6), the degenerate Stirling numbers of the first kind S1 x(n, k) and the degenerate
Stirling numbers of the second kind S (n, k) are respectively introduced by Kim-
Kim (see [6, 8]) as follows:
= L (log, (14 1) ZSM n, k and Leyt) —1)F = Zsu(n,k)%. (1.8)

It was Gian-Carlo Rota who started to make a completely rigorous foundation
for umbral calculus in the 1970s (see[18]). The umbral calculus is based on lin-
ear functionals, linear operators, and differential operators. Recently, Kim-Kim
introduced degenerate Sheffer sequences and A-Sheffer sequences. They defined the
A-linear functionals, A-linear operators and A-differential operators instead of the
linear functionals, linear operator and differential operators used by Rota.

Carlitz introduced degenerate Stirling, Bernoulli and Eulerian numbers in 1979
(see [1]). Korobov introduced the first degenerate version of the Bernoulli poly-
nomials of the second kind called Korobov polynomials of the first kind (see [15]).
Recently, degenerate versions of such polynomials as Bernoulli polynomials, Euler
polynomials and Genocchi polynomials and so on were introduced by the many re-
searchers (see [2-21]). The aim of this paper is to represent the degenerate Bernoulli
polynomials of the second kind by other polynomials using the A-umbral calculus.

Let C be the field of complex numbers,

L ap € (C} s
n!

= { f&)=> " ax
ay, € C with ap = 0 for all but finite number of k} .

n=0
and let

P=Clz] = {iaﬂk

k=0
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Let P* be the vector space of all linear functionals on P.
Then each A € R gives rise to the linear functional { f(¢)|-), on P, called A-linear
functional given by f(t), which is defined by

(10| @na), = ans(n >0, (1.9)

and by linear extension (see [7]). From (1.9), we have

(1] @) = nldaes (n,k > 0), (1.10)
where 6,, 1, is Kronecker’s symbol.
For each A € R and each k € N, Kim-Kim defined the differential operator on P
in [7] by

k )@ n—rn, if K<,
(t )A(x)"’*_{o, if k>,

and for any f(t) = Zzozo ak% €F,

n
(FO)x( (k) Jockn (L11)
In addition, they showed that for f(¢ )7 (t) € F, and p(z) €

(19| p@)) = (9] FEe@)) = (1) (g t>>Ap<x>>A. (1.12)

The order o(f(t)) of f(t) € F — {0} is the smallest integer k for which the
coefficient of t* does not vanish. If o( f(¢)) = 0, then f(t) is called invertible and such
series has a multiplicative inverse ﬁ of f(t). If o(f(t)) = 1, then f(¢) is called delta
series and it has a compositional inverse f(t) of f(t) with f(f(t)) = f(f(t)) = t.

Let f(t) be a delta series and let g(¢) be an invertible series. Then there exists
a unique sequence Sy x(x) (deg Sy a(x) = n) of polynomials satisfying the orthog-
onality conditions

<g(t) (f(t))k ’ Sny,\(a:)>)\ =nlonk, (n,k>0), (see 7]). (1.13)

Here Sy, a(z) is called the A-Sheffer sequence for (g(t), f(¢)), which is denoted
by Sna(x) ~ (g(t), f(t)),- The sequence Sy x(x) is the A-Sheffer sequence for
(g9(t), f(¢)) if and only if

1 _ i n
S @) e (f(1) = Z%Sn,x(y)%, (see [7]), (1.14)
for all y € C, where f(t) is the compositional inverse of f(t) such that f(f(t)) =

() =t
For Sy () ~ (g(t), f(t))x, Tax(x) ~ (h(t),1(t))x, we have

= Coprealx), (n>0),
k=0

where

CLRG®)
- k!<g<?<t>> (7))

(m)ny,\>>\, (see [7]). (1.15)
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Let Sya(z) ~ (g(t), f(t)), and let h(z) = >, arSia(x) € P. Then by (1.13),
we have

n

(90 (F®)*|r@)) =D o (90) (S| Sia@))

=0
:k!ak,

and thus we know that
ax = 25 {90) (F0)" n(a) ) (1.16)
Let (2)n = > p_g Cnk(2)k,x. Since
() ~ (1,ex(t) — 1)x and (z)px ~ (1,%)2,
by (1.15), we get

eni = { Qoma (14 )| (D) r ), Zsuzkll (] @)y

:Sl,)\(n7 k)v

and thus, we know that
n
2 =Y S1a(n, k)(@)kx- (1.17)
k=0

In the similar way, we also know that
(@)nr =Y Saa(n k) (2)k
k=0

2. THE DEGENERATE BERNOULLI POLYNOMIALS OF THE SECOND KIND ARISING
FROM A-SHEFFER SEQUENCES

In this section, we find some relationships between Bernoulli polynomials of the
second kind and some special polynomials arising from A-Sheffer sequences.

The higher-order degenerate Bernoulli polynomials of the second kind are defined
as follows:

t " .
<m) X (logy (1 +1)) Zb, f., (see [3, 4, 13]). (2.1)

When z = 0, bfp)\( 0) = b(TA are called higher-order degenerate Bernoulli numbers of
the second kind. In the special case r =1, bgg\( ) = bp () are called the Bernoulls

polynomials of the second kind. Note tat if A — 0, then limy_,o byl\(x) = bg)(m).

Theorem 2.1. For each nonnegative integer n, we have

o) =3 (Z (1)siatn—m. k)bm,x> (2)hr

k=0 \m=0

" nSian—1,k—1
:bn,/\ + Z 1,)\( p )(‘T)k,A-
k=1
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As the inversion formula of (2.2), we have
Yna = < n—l,)\S2,)\(l,k)> b a ().
1=k

Proof. Let b, x(z) = > 7 Ocnk(ac)ky,\. Since
t

bn,)\(ﬂf) ~ <W76)\(t) — 1)/\ and (x)m,\ ~ (1,t>)\,

by (1.15), we get
t

o= < log, (1 +¢)

(x)n,)\> = bn,/\a

k (x)n’k>>\

and each k£ > 1,

i)
3
e
x|
S

t
(m) (logy(1+1))

TR

1 1 k—1

~1 (1 G140 @)

—lis (11%1)1 (8] (2)n)

_k 1,A n)\ A
I=k—1

:%S,A(n—l,k—l).

In the other way,

i =3 ( (i) Oomal+ 00| @)
= (71 Goms1+ 00" (i), ).

)
7me< )<Zsulkl' Yo m>

= Z ( )SM n —m, k)b z.

m=0

Therefore, we proved the equation (2.2).
Conversely, we assume that (2), x = Y p_o dnkbr,x. Then

o= =1 @O =1 @)
(b)),
lnk< >SQ>\lk <7nz:OBm/\ n l>\>)\

n
<l>32,x(l, k)Bp_i -

Thus, our proof is completed.

S

P‘lﬂﬁ

=k
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Theorem 2.2. For each n > 0, we have
n n n
boa(@) =Y (Z ( l>sm(z7 k)b;2317A> Bia(). (2.3)
k=0 \I=k
As the inversion formula of (2.3), we have

Bua@) =Y (Z (7) SQ,A(z,k)BSjLQ b ().

k=0 \l=k

Proof. Let by (%) =Y j_ ¢nuBnx(z). Note that

s~ (201

By (1.15), we get

t
log, (1+t) k
< Tog, (1) 108A(1+1))
t

(-T)n,,)\>

A
t 2

- < log, (1 + t))

1
(7 Gomat1-+") <x>n,A>A
7)sl,k<z,k><zbsz3j"j

m (Z)n—l,k>
m=0 A

Hence our proofs are completed. O
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Note that by (2.1), we get

oo

n ¢
T;J bn,A(x)a *mex (log\(1+1))

(Et) G wnmen)

n=0 k=0

S <Zi( R m) =

n=0 \m=0 k=0

and so we know that

n m

=2 Z( )Sl A1, K)o A ()2 (2.4)

m=0 k=0

The higher order degenerate Daehee polynomials are defined by the generating
function to be

(M) (1+1)° ZD(” f, (see [16]).

t

In the special case = 0, D(T))\ = D(T) A (0) are called the higher order degenerate

Daehee numbers. When r = 1, Dfll))\( ) = Dy a(z) are called degenerate Daehee
polynomials.
Note that

logy(1+t)  1x= (Dnan A" N (WA,
D D e D e e (2.5)

!
t — —  (n+1)

Theorem 2.3. For each nonnegative integer n, we have

- n
bny)\(I) = Z (k‘) bE?zk’)\Dk,)\(‘r)

k=0
t & S DSox(I+1,k~4 Dbp_m
S5 (o Yo 3 (1) Sl b )
— m=0 =0
(2.6)

As the inversion formula of (2.6), we have

" n
Do) =3 () Db (o)

k=0

Proof. Let by z(z) = Y 7_ cnuDia(x). Since
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t
L/ Tog, (D) &
ok =1 < o (10 | | (P
t A
: <k <( j )2> >
(| (=) ) @
| ,
! log\(1+1)) | A
k m
k' Z mA t ’ t )"’A>)\
k+m
| Z bmA t * ! n)\>)\

2

On the other hand, by (1.13) and (2.4), we get

' bn”k(x)>x

we have

i =g ( 20 e - 1)

w0 -0 @)
1 n m 1 1
=1 22 3 () S350 =0 | Oy o)
=(k + 1)";0; <Z) Sia(m, l)bn,m,AH% <(/<;+;1)' (ex(t) — 1)FF (z)l+u>X
L Sy a(m, )San(l4+ 1,k 4+ 1)bp_mox
=k+1) " : : —.
== (m) I+1

Conversely, we assume that D, x(z) = 31—, dn kbrx(z). Then, by (2.5), we get

1 log, (1+1)\?
dos = < (Rl v <x>w>
’ A
n > tm
:<k) < > Dt (x)”’“>
m=0 A

and thus, our proofs are completed. O

The unsigned Lah number L(n, k) counts the number of ways a set of n elements
can be partitioned into k nonempty linearly ordered subsets and has the explicit
formula

Lin k) = (Z - i) %: see ([9]). (2.7)
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By (2.7), we can derive the generating function of L(n, k) to be

s ZLnk (k> 0), (see [9).

Recently, Kim-Kim introduced the degenerate Lah-Bell polynomials as follows:

o (1%) =3 B, (see [9]). (2.8)

t n=0

In the special case, x = 1, B{;_)\ = Bﬁ,/\(l) are called the degenerate Lah-Bell
numbers. From (2.8), we get

Bl,(x) =Y L(n : (2.9)
m=0
For each nonnegative integer k,

<t>k — i (_l)l <k > tl+k7 (210)

!
1+¢ — )

where <z >9=1, <z >=z(z+1)(z+2)---(x—(—-1)), (I >1). By (2.11), we

note that
( log,(1+1t) >k
1+1og,(1+1¢)

> (—1)l <k>

-3 ; (logy (1 +t))'**
1=0 ’
(D <k > 1
-y %(l+k)!m(log/\(l+t))l+k (2.11)
1=0 ’ .
2 (-1 < k> t
:Z%(H—k Z Sl)\ml—&-k)—'
1=0 ) m=Il+k
&G (D) < k> e
_Z RIS+ ks L+ R) 0

01=0

Theorem 2.4. For each nonnegative integer n, we have

b, Xn: <Z Z ( ) (Z * ’“) (—1)! <k >; Sya(m, @+ k)bnm,A) BE ().

=0 m=Il+k
(2.12)

As the inversion formula of (2.12), we have

Brl{A Z(ZZ( ) nmSQ)\(l k) m— l,>\> bk»\(af).

m=0 [=k

Proof. Let by x(x) = Y_1_g cnx B 5 (z). Since

t
BE ~ (1, —
n,/\(x) ( 1+t>)\

331



332 J-W Park, B. M. Kim and J. Kwon

by (1.15) and (2.11), we get

1 ( logA(1+t))>k

w 1+logy(1+¢

(x)n,)\>
A

log, (1 +¢) b
<<1+13gA<1+t>> )A(”"’*>A

1\l
(Z = i 21 logy (1 + t))“’“) <m)m>
— R R
B (—Df < k> 1+ k) 1 ek
= llk-ll <Z ( L (logy (1+1))"" )A(ﬂ'f)n,x>A

0
n m,)\>
A

Cn,k :E

~ (n\[(l+k
=3 <m>( z )( 1! <k > Sia(m,l+k) <mel
I+k
n l k’
_ (”) ( * )(4)1 < k> Sya(m, L+ K)oy
L, \m l
Conversely, we assume that B,ﬁA(m) = > _odnkbia(z). Then, by (1.16), we get

1 t
= (= (0 - 1| B )

- Z L(n,m) < mt; — 1‘ (% (ex(t) — 1)'“)A (ﬂﬂ)m,x>A

'm l,>\>
A

n m m
Z(l)L(nmSQ)\lk <ZBM |
0 1=k
and so our proofs are completed. O

A

3
o

m a=0

> (Tf) So(lK)L(m,m) By 0,
=k

0l=

3

Il
1 [M]=

The degenerate Euler polynomials are defined by the generating function to be

#ei(t) = Z&L,,\(m)%, (see [14]).

When z =0, &, » = &,,1(0) are called the degenerate Euler numbers.

Theorem 2.5. For each n >0, we have

ba(a) = (; > <7> (2bp—1.x + (0 = Dbp—1-1,1) St (L, /f)) Eralz). (213)

k=0 =k
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As the inversion formula of (2.13), we have

(R ssn o

k=0 \Il a=0
:Z ( Z <:1) <77) So A (1, k)gnm,)\Bml,/\) bia().
k=0 \m=0 =

Proof. Let by x(z) = 37— cn.Ekr(x). Since

Eor ~ (MQ 7
2 A

by (1.11) and (1.15), we get

t+2

2 k
logx(lth) (log)\(]‘ + t))

Cn,k =

(-T)n,/\>

A

~

e+ )| (G oma+0)") (x)m>h

()50 (g €+ 2r0heus),

(7)$10000) (g 2@+ (= D)

(2bn ia+ (0= Db_i—1.0) (7;) Sl k).

I
N~ N ??"._.
s S~
~

Il
B

Il
N —
[

1
B

I
N | —
[

Il
>

Conversely, we assume that &, x(z) = > p_, dnkbr(x). Then

t
ex(t)—1 k
due =75 < 2T (1) <w>n,x>
’ T2 A

~(GaEnr| (oo 1’]% (‘”)”**>A
- = <7) S2(l-F) < ex(ti - 1‘ <€A(5+ 1))\ (x)nl,)\>>\

Sox(l,k)Eax <Z Bb,AE (-T)nla,)\>
b=0 ’ A

Soa(l,k)EarBn—i—a,x-
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On the other hand,

[ [

= 1M
S
3 s

S )
;)(7)5” mrSa (L, k) <ZB“ | @) M>
A

n\ [m
( ) ( ; )gn—m,)\s2,)\(l7 k)Bm—i.x,
m=0 =k m

and so our proofs are completed. O

I
NE

The Changhee polynomials are defined by the generating function to be

2 e 2
m(l—i—t) = olon i) 119 ex(logy (1+1)) HZOCh,L 7.7 (see [5]).

When z = 0, Ch,, = Ch,(0) are called the Changhee numbers.

Theorem 2.6. For each n >0, we have

n

b () = ;;) (% (k " 1) (k- Dbyt + (Z) - A) Chi(z).  (2.14)

As the inversion formula of (2.14), we have

Chy(x) :2": (”z—f“ (Z) (n h )Chz n— kl,A) bex (@)

k=0 \[1=0

3 ("Zk <7211)lu (l R k) (l y k) Dn_l_m> )

k=0 \l=

l a
( <7> (Z) Slﬂ)\(l, a)SQA(lL k)ChnlBab’,\) bk,)\(l').
k=0 \1=0 a=0b=Fk

Proof. Let by x(z) = > 1_ ¢nxChi(z). Note that

BN
3 |
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By (1.11) and (1.15), we get

o,
ek =i\ Tmazn t | @k
t A

1 ¢ "
=—( — | (¢FH 42tk n >
2k <1ogk(1+t)‘( F @ A

=5 () () 4 Do) (g () o),
| () (S T es (LAY

Conversely, we assume that Chy,(z) = Y.}_ dy kbga(x). Then

1 log, (1+t)
dn,k - Ttk (x)n,k
A

t+ 2 (), (w)"’A>A

(e
) (st (25) ),
n—k

log, ( 1+t

log, (1 +¢
E o
¢ A
=0
n—k
n\ [n—k
= ChiDp_g_px
k l
1=0
On the other hand, since
2R (t+2)7t =2tk f: gt i (=) SIS (2.15)
1=0 ¢ 1=0 2!

1
n,k: A

t t+2

), =3 (22 (2) )

k
1 ]. IOg)\1+t) I+k
mZ - (2 ), @)
=0
—k

(x)n_l_m>x

=
n—k
B (D' n I+ kY,
= o I+ k ! l-anlka,)\-

<log/\ (1+1t) 2t*

e
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In addition, since Ch,(z) =Y /., Zfl:() (1) Chyn—1S17(1,a)(2)a,x, by (1.16), we get

1 t k
o= S (0~ 1| Chalo))

3 (3)ete st (| (B 08 o)
233 (5) () errsiatarsinsn o),

(’Z) (‘b‘) Chin1S17(1, @)Sa(b, k) Ba_y n,
0 b=k

and hence our proofs are completed. O

n

l

SHFHﬁ

PH1
- 101~ HM~

l

3 |
2 |

1=0a

The Mittag-Leffler polynomials are defined by the generating function to be
1+t\" " 14+t = t"
(ﬁ) = <1 08 ( t>) = ZMIc(l’)Ea (see [7, 19]).
k=0
Theorem 2.7. For each nonnegative integer n, we have
n n—k
_ (—1)l < k> n l+k
boa(z) =Y (Z ot ) U ok | Mi(@). (216)
k=0 \1=0
As the inversion formula of (2.16), we have
n n—k m+k
My ()= (Z ( A >2m+kDm,AL(n,m + k)) bi(2)-
k=0 \m=0
Proof. Let by x(z) = > p_¢ ¢nkMyg(z). Then, noting that
koo l I+k
e,\(t)—l t (—1) <k>;t
My(x) ~ |1, ——— d (—) = —_—
() ( ext)+1), M \t+2 ; ok Il

we get
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Conversely, we assume that M, (z) = > 1_, dn bk, (z). Then
1
1l (3) 140\
dnk = [EZ 1—1 1 (@)nx
A

(I)n,k>
A

1S 1/ 2t \™*
_<k:! 2 Doy (*14)
n—k m+k
= Dmn (m - k) gmek (1 (—t )
Pt k (m+ k)N \1—t

m=0
n—k

k
=2 <m1;:F )D m 2" L(n,m+ k),
m=0

(m)n)\>
A

and so our proofs are completed. O
Note that
1 - 1 !
T (logy (1 +1logy (1 +1))) :Z S1a(l k)ﬁ (logy(1+1))
! — !
oo o0 tm
=33 Siall,k)Sia(m, ) — (2.17)
I=k m=l m:
oo n—k tn
=D Sial+kE)SiA(nl+k) =,
n=k 1=0 w
and, similarly to (2.17), we have
1 oo n—k tn
k
o (ex(ea(t) = 1) = 1) = Zk ZZ Soa(l+ K, k)S2.x(n, 1 + k)m. (2.18)
n=k =0

The degenerate Bell polynomials are defined by the generating function to be

e leat) —1) =3 Bezn,A(x)g, (see [12, 15)). (2.19)
From (2.19)
Bely () = > (2)mAS2.a(n,m), (see [12, 15]). (2.20)
m=0

Theorem 2.8. For each nonnegative integer n, we have

n n a—k
bn () = Z (Z Z (Z) Sia(l+k,k)S1a(a,l + k)bna,A> Bely, \(z)
:Z ( Z <TT77:L) Sl,/\(m7 Z)SI,A(Lk)bnm,A) Belkn,)\(l’)«

(2.21)

337
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As the inversion formula of (2.21), we have

n n a—kn—a
Belpa(z Z(Z Z()SQAH—kk)SgA(al—&-k)Sg)\(n—am) m)\)b,m()
k=0 \a=k =0 m=0
:Z< Z(T?)SQ/\ n,m)Sa \(l, k) B — l>\> bia ().
k=0 =0 l=k

Proof. Let by x(z) = > p_y cnrBelkx(z). Since

b () ~ <6A@%1,6A(t) - 1)A and Bely(z) ~ (1, logy (1 + 1)), ,

by (1.15) and (2.17), we get

1 1
Cnk =77 < ey (108 (1 +1ogy(1+1)))
t

¥ (m)n,)\>
A

(| (g om0 om0 +0))) @)

}n:a}fsu I+ k, k)Sya(a, l+k)( ) <m'( )"’“>A

a=k l=k

n a—k

ZZ ( >5M (I 4k, k)S1a(a, L+ k)bp—q -

a=k l=k

On the other hand, by (1.16) and (2.4), we have

‘ —_

cnyk—'<(logA(1+t ‘bn)\ >)\

m

o

(1) 100 {5 Qom0 +0)

' (x)l’/\>x

=0

Z( )Sl alm, Z)Sl )\(l k‘)bnf'rn,)\'

=k

M i
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Conversely, we assume that Bel, »(z) = Y p_ dnibra(x). Then, by (2.18), we get

_1 —ek()il ex(e —1) -1 (z
dn = <e>\( (ea(ea(t) —1)—1) ()n,A>>\

H\aeo-1-1
- ex(t) -1 1 ‘
— < m‘ (y (ex(ex(t) — 1) — 1)k)A (x)n7A>A
B n a—k " e)\(t) .
= ; ; So (L + K, k)S2 x(a,l + k) (a) < ol -1 -1 (x)n_a’)‘>)\
n a—k "
=SS Sl + kyK)San(a,d+ k) (a>
a=k =0
< Z Bm >‘ ) 1) ( )na,)\>

n a—k

=3 Soa(l+k k)Sax(a,l+k) ( )ZZBMS” (b,m) b'<tb| n—aA)y

a=k =0 b=0 m=0

n a—kn—a

_ZZZ < )SQA (I 4k, k)S2.x(a, L+ k)S2 (1 — a,m) By, x.

a=k 1=0 m=0
On the other hand, by (1.16), (2.8) and (2.20), we have

do i :% < % (ex(t) — 1)’“’ Belnyk(x)>A

S )
S5 sinmson(3) (i),

m=0 l=k
m l /\>
A

and thus our proofs are completed. O

n

ZZSmnm)Smlk ( ><ZBa>\ ,

m=0 [=k

zzz< )sﬂnm)s“(z k) Bri.2,

m=0 =k

In [10], Kim-Kim defined the degenerate Frobenius-Euler polynomils of order r
by the generating function to be

In the special case x = 0, hn’A(u) = hgl\(0|u) are called the degenerate Frobenius-
Euler numbers of order r.

Theorem 2.9. For each nonnegative integer n, we have

i =5 (B8 (V) pstmns) i 0
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As the inversion formula of (2.22), we have

NG 2": (i 3 ( )(?)Sm( — LR \(u )Bm> b (7).

k=0 \m=k [=0

Proof. Let by a(z) =Y 1_, cnkh,(:;(x\u) Since

b () ~ (Q(;;i_l,e,\(t) - 1)A and b (x]u) ~ ((6*1(’27;“) ,t)/\,
by (1.12) and (1.15), we get

((1+t)7u)r
1 1—u

k
ek =17 | Tmarn (log (1 +1)) (x)n)\>
t A

-5 ju)r <10g/\(tl (0w (k' (logy (1 + 1)) >A (gc)w>A
§351A1k7(7)<1%h ] (€ A= )
) il (S ) ),

e SR ),

»3 (z) (m) e AT

Conversely, we assume that hgz\(ﬂu) = Yo dniber(z). Then, by (1.15) and
(1.16), we have

1=

o= gy 0 - k),
_ 1 t n ")
k'<€)\(t)_1 (ex(®) - 1)" mzo< )hn m)\(u)(‘r)m,)\>)‘

(5=1), ),

)
_iiQX®%(4W%MWW

3. CONCLUSION

In this paper, we represented the degenerate Bernoulli polynomials of the sec-
ond kind in terms of various special polynomials and derived the inversion for-
mulas of those identities by using the A- Sheffer sequences. We addressed the
well-known special polynomials and numbers: the degenerate falling factorial, the
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degenerate Bernoulli polynomials, degenerate Daehee polynomials, the degenerate
Lah-Bell polynomials, degenerate Euler polynomials, the Changhee polynomials,
the Mittag-Leffer polynomials, the degenerate Bell polynomials, the degenerate
Frobenius-Euler polynomials of order r. It is one of our future projects to con-
tinue to investigate the degenerate special numbers and polynomials by using the
A-umbral calculus.
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