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METRIC DIMENSION AND ITS VARIATIONS OF CHAIN
GRAPHS

K ARATHI BHAT, SHAHISTHA HANIF*, AND SUDHAKARA G

ABSTRACT. Chain graphs and threshold graphs are characterized as
graphs with the largest spectral radius among all connected bipartite
graphs (former one) and all connected graphs (latter one) with pre-
scribed order and size. In this article, we derive results on the met-
ric dimension of chain and threshold graphs. We present an algorithm
which returns a chain graph (if one exists) having specified order and
metric dimension. We define the restricted threshold dimension of chain
graphs which minimizes the metric dimension of graphs obtained by
adding edges while keeping the nesting property and bipartiteness. We
also derive related results.
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1. PRELIMINARIES

Metric dimension is one of the concepts of primary significance in naviga-
tion studies in graphs. The study of navigation provides better visualization
and conclusions in a graph based framework, where we assume every ver-
tex to be a navigating agent or a robot which moves from one vertex to
the other. Any of the robots can locate themselves by distinctively labeled
“landmarks”. For a navigating robot, the distances to the set of landmarks
allow the robot to sense its position by triangulation. Accordingly, the prob-
lem of finding the fewest number and the location of landmarks, so that the
distances to the landmarks uniquely determine the position of the robots in
the graph is posed. A minimum set of landmarks that uniquely determine
the positions of the robots is the metric basis and the minimum number is
the metric dimension [15].

The problem of metric dimension was introduced in 1975 by Slater, and
later in the year 1976 independently by Harary and Melter. The distance
d(u,v) between a pair of vertices u and v in G is the length of the shortest
path between u and v, if one exists, else d(u,v) = co. A vertex z € V(G)
resolves a pair of vertices v,w € V(Q) if d(v, x) # d(w, ). A set of vertices
S C V(G) resolves G, and S is a resolving set of G, if every pair of distinct
vertices of G is resolved by some vertex in S. A resolving set S of G with the
minimum cardinality is a metric basis of G, and | S| is the metric dimension
of G, denoted by B(G). Determining the metric dimension of an arbitrary
graph is an NP-complete problem [6]. To date, some standard classes of
graphs and graphs of order n with metric dimension 1, 2, n — 3, n — 2, and
n — 1 have been characterized in [7, 8, 11, 12, 13, 17, 19, 20].

*Corresponding author.
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A graph is called a chain graph if it is bipartite and the neighborhoods
of the vertices in each partite set form a chain with respect to set inclusion.
The color classes U,V of a chain graph G can be partitioned into h non-
empty cells U, ..., Uy and Vi, ..., V} such that Ng(u) = ViU -UVj_i11,
for any u € U;, 1 < ¢ < h. Due to this nesting property of edges, chain
graphs are also called Double Nested Graphs (DNG for short). If m; = |Uj]
and n; = |V;|, then we write G = DNG(my, ma,...,mp;n1,n2,...,0p). If
m; =n; = 1 for all 1 < i < h, then the graph is called half graph [9]. For
other interesting properties and characterizations, the readers are referred
to [2, 3,4, 5,9, 14].

A split graph is one whose vertex set can be divided into two subsets,
out of which one forms a co-clique, the other forms a clique, and all other
remaining edges (cross edges) join two vertices which belong to different
subsets. A threshold graph is a special type of split graph in which there is
a nesting property imposed on the cross edges. Threshold graphs are also
called Nested Split Graphs (NSG for short). For a threshold graph G having
bipartition U U V such that the vertices of U induce a co-clique, while the
vertices of V induce a clique, both U and V are partitioned into A non-
empty cells such that U = U UUsU---UUp and V = VU VL U... UV,
such that Ng(u) = ViU - -UVy_;qq, foranyu € U;, 1 <i < h. If |U;| =m;
and |V;| = n;, then we write G = NSG(my,ma, ..., mp;n1,n2,...,np). The
schematic representation of a DNG as well as an NSG are given in Figure 1.
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FIGURE 1. Schematic diagram

For further results on threshold graphs, the readers are referred to [1], [4],
0], [16].

2. BOUNDS FOR METRIC DIMENSION OF CHAIN GRAPHS

For a given chain graph G, computation of metric dimension is tedious
even though the distance d(u,v) € {1,2,3} for any pair of vertices (u,v)
in G [18]. But it is bounded by certain factors. We give bounds for the
metric dimension of a chain graph. Before moving directly to the bounds,
the nesting in the structure of chain graphs enables us to state some results
concerned with their resolving set S.

Lemma 2.1. Let G = DNG(my,ma,...,mp;ny,na,...,ny) be a chain
graph, where m; = |U;| and n; = |Vi|. Let S be the resolving set of the
graph G. Suppose m; =k > 2 (orn; = k > 2), then S contains at least
k — 1 vertices of U; (or Vj) for 1 <1i,5 < h.

Proof. Let m; = |U;| = k > 2. Suppose S does not contain any vertex from
the cell U;. Then all the vertices of U; have the same label with respect to S,
a contradiction to the fact that S is a resolving set. Suppose S hasr < k—1
vertices from Uj;, then the remaining k — r > 1 vertices have the same label
with respect to S, a contradiction. Thus the resolving set contains at least
k — 1 vertices of U; (or Vj). O
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Lemma 2.2. Let G = DNG(mi,ma,...,mp;ni,na,...,ny) be a chain
graph, where m; = |U;| and n; = |Vi| fori = 1,2,...,h. Then any two
vertices, one each from the cells U; and U;1q are resolved only by a vertex
from the cell Vy_;1q fori=1,2,...,h — 1. Equivalently, any two vertices,
one each from the cells V; and Vi1 are resolved only by a vertex from the
cell Up—j41 for j=1,2,...,h — 1.

Proof. The proof follows from the fact that only those vertices from the cell
Vih—ir1 are adjacent to all the vertices of U;, but not to any of the vertices
of U;11 (thus having distance three between them), which results in the
distinct labels. That is, for all the vertices of U;, the label corresponding to
a vertex from Vj,_;41 is 1 and for all the vertices of U;41, it is 3. O

For a chain graph G = DNG(mi,ma,...,mp;n1,n2,...,np), SUPPOse
my = |Ui| > 1 and n; = |Vi| > 1. Then by Lemma 2.1, the resolving set
contains at least my +n; — 2 vertices. Further, the remaining vertices of U
and of V; do not resolve any of the vertices in the graph. In other words,
with respect to these vertices, all the vertices of the same partite set have
the label 2 and all the vertices of the other partite set have the label 1. With
all the properties of the resolving set given in the above lemmas, we derive
the lower and the upper bounds for the metric dimension of chain graphs.

Theorem 2.3. Let G = DNG(my,ma,...,mp;n1,N2,...,ny) be a chain
graph on n vertices, where m; = |U;| and n; = |V;| fori =1,2,... h. Let
B(G) be the metric dimension of G. Then

n—2h<pB(G)<n—h-1.

Proof. Let S be the metric basis. Since m;,n; > 1 for 1 < i < h, each of
the 2h cells have at least one vertex. Then by Lemma 2.1, the metric basis
S contains the remaining n — 2h vertices, irrespective of the cells to which
they belong. Thus 5(G) > n — 2h.

Since |S| > n — 2h, each of the cells U; and V; for 1 < 4,5 < h have
exactly one vertex which is not contained in S. In addition to the n — 2h
vertices, by Lemma 2.2, the set S contains a vertex from V}_;,1 for each
1<i<h=1if|Vhijp1]| = 1. If [Vh—iz1] = 2, then S already contains at least
one vertex of V},_; 1, which resolves any pair of vertices, each from one of Uj;
and U;yq for i = 1,2,...,h — 1. The set S has maximum cardinality when
each |V—i+1] = 1. In other words, none of the n — 2h vertices are included
in the cells Vj,_; 41 for each i = 1,2,...,h — 1. Thus, the n — 2h vertices are
present in Vj. Hence, along with n — 2h vertices, S has vertices of the cells
Vo, Vs, ..., Vp, thus resolving the entire graph. Thus |S| <n—2h+h—1=
n—h-—1. O

Consider a chain graph of order n. From the above theorem, we note that
the lower bound n—2h is minimum when A is maximum, i.e., when h = [§].
Similarly, the upper bound n — h — 1 is maximum when h = 1. In other
words, the lower bound is attained by the half graph when n is even and
by the graph having all m; = n; = 1, except for exactly one of m; and n;,
which is equal to 2, when n is odd. The upper bound is attained by all the
complete bipartite graphs on n vertices. Thus, we have the following result
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giving bounds for 3(G) in terms of the order n irrespective of the size of the
cells.

Corollary 2.4. Let G be a chain graph on n vertices. Let B(G) be the
metric dimension of G. Then

[51-1<8(G) <n-2.
From Lemmas 2.1, 2.2 and Theorem 2.3, the remark below easily follows:

Remark 2.5. Suppose m;,n; > 1 for 2 <i < h. Then
B(DNG(m1,ma,...,mp;n1,N2,...,n)) = n — 2h, where n is the order of
the graph G.

With the above remark, we note that the metric dimension of a chain
graph depends on the position of the cells in each partite set having car-
dinality 1. We note that the upper bound in Theorem 2.3 is attained
by all the graphs where exactly one of the cells has cardinality n — 2h +
1 and the remaining have cardinality 1, which are given by DNG(n —
2h+1,1,...,1;1,1,...,1), DNG(1,n —2h +1,...,1;1,1,...,1), ..., and
DNG(1,1,...,n —2h + 1;1,1,...,1). The lower bound is attained only
by the graphs satisfying the relation n > 4h — 2. When n > 4h — 2, the
lower bound is attained by all the graphs in which every cell is of cardinality
greater than 1. But, when n < 4h — 2, the lower bound given in the above
theorem is too small. If we consider an instance where n = 11 and h = 5,
Theorem 2.3 gives S(G) > 1, which is trivial. Thus we improve the lower
bound for 8(G) when n < 4h — 2.

Theorem 2.6. Let G = DNG(mq,ma,...,mp;n1,N2,...,0y) be a chain

graph on n wvertices, where m; = |U;| and n; = |Vi| for i =1,2,...,h. Let
B(G) be the metric dimension of G. Suppose n < 4h — 2, then
n—2 .
, if n is even
BG) =< 2
5 otherwise.

Proof. Let n = 2h+k, where 1 < k < 2h —3. From Theorem 2.3, 5(G) > k.
We know that each of the 2h cells contains at least one vertex. The remaining
k vertices are distributed to 2h cells such that §(G) is minimum. For the
resolving set to have minimum cardinality, we distribute the k vertices to
those cells, the vertices of which are required to resolve some pair of vertices.
Since the vertices of Uy, V7 do not resolve any pair of vertices, we distribute
the k vertices to the remaining 2h — 2 cells. We follow the given procedure
to distribute the k vertices to 2h — 2 cells such that it resolves the maximum
number of pairs of vertices of G. Suppose that the first vertex is included in
the cell Us, then in order to resolve a pair of vertices, each from one of U
and Us, we need a vertex from V}, and thus the second vertex is included in
V. Now, if the third vertex is included in Us, then the next one is added
to Vj_1, vertex of which is needed to resolve the vertices of Uy and Us.
Continuing like this, we end up with the following cases.

Casei: When k is even: The % vertices are added to the cells Us, Us, ..., Ugs2

2
and Vi, Vi_1,...,V,_x—2 . We note that each of the partite sets of G has
2
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h— % cells with cardinality one, out of which vertices of Uy, Vi do not resolve
any vertices of G. Thus

k
B(G)2k+h—1—§
n —2h
= h—1
5 +
n—2
=
Case ii: When k is odd: The % vertices are added to the cells Us, Us, . ..,
Ukis and Vi, Vyoq,..., V), _k_s. Further, by Lemma 2.2, we need a vertex
2 2

from the cell V) _x—1 to resolve a pair of vertices, each from one of the cells
2

Ur+1 and Ugss. The partite set U has h — % cells with cardinality 1, out

2 2
of which U; does not resolve any vertices of the graph. Thus

B(G)>k+(h—1—k;1)+1

k+2h—1
2
n—1
5

O

For the instance taken above, when n = 11 and h = 5, the Theorem 2.6
gives better bound 5(G) > 5 than that of Theorem 2.3. We also note that
the lower bound in the above theorem depends only on n. The following
remark is a consequence of the above theorem.

Remark 2.7. For a given chain graph of fized order n, whenever the number
of cells h > %, the lower bound for B(G) is achieved at a constant value,
which is independent of h.

3. FURTHER RESULTS

In the above section, we have noted the graphs on n vertices attaining the
least metric dimension. That is, if G = DNG(1,1,...,1;1,1,...,1), a half
graph on n vertices, then 3(G) = "T_Q Similarly, for all the chain graphs
DNG(mi,ma,...,mp;n1,n2,...,np,) on n vertices where exactly one of m;
and n; is 2 and others are 1, the metric dimension is 5(G) = ”T’l Further,
if each of m; and n; is greater than 1, then 5(G) = n—2h. Apart from these
graphs, we look into another case.

Theorem 3.1. Let G = DNG(my,ma,...,mp;1,1,...,1) be a chain graph
on n vertices, where m; = |Us| and |V;| =1 for 1 < i < h. Let 8(G) be the
metric dimension of G. Then S(G) =n —h — 1.

Proof. Let S be the metric basis of the graph G. Then by Theorem 2.3,
h

|S] > > (m;—1). We note that if |U;| = k, then S has at least k— 1 vertices
i=1

from UZ for each 1 <4 < h. In order to resolve the remaining h vertices of
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the partite set which are in distinct cells U;, from Lemma 2.2, S contains
h — 1 vertices of the cells V;,2 < j < h. Thus

h
BG) = (mi—1)+ (h—1)
i=1
=n—h-—1. O

We exhibit an alternative metric basis for the graph mentioned in the
above theorem, except when h = 1. When G = DNG(my, ma,...,mp;1,1,
..., 1), since B(G) = n — h — 1, one can easily note that even |U| — 1
vertices of the partite set U are sufficient to resolve the entire graph G,

h
where U = Y U,.

i=1
Lemma 3.2. Let G = DNG(my,ma,...,mp;n1,N2,...,np) be a chain
graph, where m; = |U;| and n; = |V;| for 1 < i < h. Let S be the met-
ric basis of G. Then S contains vertices of exactly one partite set, say U if
and only if n; =1 for all 1 <1i < h.

Proof. Let S contain the vertices of the partite set U. That is, let § =
{u1,ug,...,u}, where u; € U for all 1 < i < k. We note that |U \ S| = 1.
Suppose |[U \ S| = k > 1. Then all the k vertices in U \ S have label
(2,2,...,2), which is a contradiction to the fact that S is a metric basis.
By Theorem 2.3, it follows that |V;| = 1 for all 1 < i < h. Thus G =
DNG(mi,ma,...,mp;1,1,...,1). The converse follows from Theorem 3.1.

U

We know that every threshold graph H = NSG(my,ma,..., mp;ny,na,
...,np) can be obtained from the chain graph G = DNG(my, ma, ..., mp;n1,
na,...,np) by making any one of the partite sets complete. In the next theo-
rem, we give the relation between the metric dimension of a threshold graph
and the corresponding chain graph from which it is obtained.

Theorem 3.3. Let G = DNG(my,ma,...,mp;n1,N2,...,ny) be a chain

h h
graph, where |U| = >"m; and |V| = > n;. Let H= NSG(mi,mg,...,mp;
i=1 i=1
ni,Na,...,np) be the threshold graph obtained from G by making U com-
plete. Suppose B(G),(H) are the metric dimensions of the graphs G and

H, respectively. Then S(G) = B(H) except when |U| = 1.

Proof. Let S be the metric basis of G = DNG(my, ma,...,mp;n1,na, ..., np).
Suppose S = {u1,ug,...,u, v1,v2,...,v}, where |+ k = B(G), u; € U, and
v € Viorl <i<k1<j<I Inthegraph H, since the distance be-
tween every pair of vertices in U is 1, for every vertex u; € U, the label 2
corresponding to the vertex u; € S (j # ) is replaced by the label 1. All
other labels remain unchanged. Thus S forms the metric basis for the graph
H unless S contains the vertices of U alone. If S contains the vertices of
U alone, then by Lemma 3.2, it is DNG(m1,ma,...,mp;1,1,...,1), which
has an alternative metric basis containing the vertices of both the partite
sets for all h > 2. When h =1, G = DNG(n — 1;1) and the corresponding
threshold graph is H = NSG(n—1;1) where 8(G) = n—2and B(H) = n—1.
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Thus, S(NSG(n —1;1)) = B(DNG(n — 1;1)) + 1 and in rest of the cases
the metric dimension remains unchanged. O

4. INVERSE METRIC DIMENSION PROBLEM

Computation of metric dimension of a given graph gets computationally
difficult with an increasing number of cells with cardinality 1. By contrast,
the term inverse metric dimension problem refers to the problem of con-
structing a graph G of order n, given the metric dimension 3(G) = c¢. The
inverse metric dimension problem was posed in the literature a couple of
years ago. But in this article, we restrict our attention to one particular
class. For all the integers ¢ € ([§],n — 2), there exists at least one chain
graph of order n with metric dimension c.

We present an algorithm concerned with the classical inverse metric di-
mension problem relating to the construction of a chain graph of order n
having given metric dimension c. Suppose ¢ = [§], then the graph is G =

DNG(1,...,1;1,...,1) when n is even and is DNG(1,1,...,1; 1,...,1,2)
N—— —— —— ——
T times § times —";1 times "53 times

when n is odd. Similarly, if ¢ = n — 2, then the output is the star graph
DNG(1;n — 1). We use the following facts and proceed to obtain the real-
izing chain graph for all the intermediate values in the interval ([5],n —2).

Remark 4.1. For a given n, even though h takes the values from 1 to L%J,
all the intermediate values for the metric dimension ¢ from [§]+1 ton—3
are covered when h reaches |%]. Thus, we reduce the length of the search
interval by half in the algorithm by varying h from 2 to |G| instead of 2 to

[2]-

Remark 4.2. For any two successive values h — 1 and h, the bounds for c
are (n—2h+2,n—h) and (n—2h,n—h—1), respectively. Thus, for each h,
all the values except n—2h and n—2h+1 are already covered in the interval
corresponding to h — 1. Hence in the algorithm, for every h, only the first
two values are taken into consideration as the next values have been covered
previously. Thus the iteration is continued till the first time we encounter
the value c. Once we encounter the first occurrence of the integer c for some
h, we give the corresponding graph.

Algorithm:
Input: || The integer ¢ and the number of vertices n
Output Returns a chain graph G on n vertices
with 8(G) = ¢

5. RESTRICTED THRESHOLD DIMENSION

For a graph with a given number of vertices, the metric basis determines
the location of landmarks. But naturally the question arises if the number of
landmarks can be reduced by the effect of addition/deletion of edges. The
variation of metric dimension of a graph with that of its subgraphs have
been studied in the literature. In the same context, the notion of threshold
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Algorithm 1 function Metric(c, n)

Input: c,n

Output: A chain graph G if exists
1 if ¢ ¢ ([§],n — 2) then
2:  print ‘There is no chain graph G on n vertices with §(G) = c.
3: else if n =0 (mod 2) and ¢ = § then

9

& G=DNG@,1,...,1;1,1,...,1)
——— ——
5 times 5 times

5. return G

6: else if n =1 (mod 2) and ¢ = ;! then
7 G=DNG@,1,...,1;1,1,...,1,2)
——— ——
2-L times ”;3 times

8: return G

9: else if c ==n — 2 then

1. G=DNG(l;n-1)

11: else

122 for h=2:[%] do

13: if c¢ (n—2h,n—h—1) then

14: continue
15: else
16: k=c—n+2h
17: end if
18: if Kk == 0 then
19: G=DNG(1,2,2,...,2;1,2,2,...,2,n—4h + 4)
—_— Y
h—1 times h—2 times
20: return G
21: else
22: G=DNG(1,1,2,...,2;1,2,2,...,2,n — 4h + 5)
—— ——
h—2 times h—2 times
23: return G
24: end if
25:  end for
26: end if

dimension of a graph G, denoted by 7(G) is introduced. The threshold
dimension of a graph G is defined as

7(G) = min{ S(H) : H contains G as a spanning subgraph }

A graph G is called irreducible if 5(G) = 7(G), otherwise it is reducible.
Since we are restricting our attention to a particular class of graphs, we
would like to note the variation of the metric dimension of a chain graph on
the addition of edges without compromising the bipartiteness and nesting
property of the neighborhoods. In other words, we define the threshold
dimension of a graph with the restriction of maintaining the bipartiteness
and nesting property and call it restricted threshold dimension. Formally,
we define restricted threshold dimension of a chain graph G, denoted by
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7(G), as follows:

7-(G) = min{ S(H) : H is a chain graph having G as a spanning subgraph }.

The restricted threshold dimension of a chain graph enables us to identify if
the number of landmarks can be minimized on interconnecting the vertices
by edges without compromising the nesting property. In this context, we
call a chain graph G irreducible if 7.(G) = B(G).

Since half graphs on n vertices attain the least value of metric dimen-
sion when n is even, half graphs are irreducible. Similarly, all the graphs
DNG(1,1,...,1;n1,n9,...,np) where exactly one of n; (1 < i < h) is 2
and the rest are 1 are also irreducible. In the next series of theorems, we
characterize graphs having restricted threshold dimension [§] — 1. Before
deriving the above-mentioned results, we prove the following theorem. For
a given chain graph of order n, the possible edges which can be added to G
in order that the resultant graph is also a chain graph.

Theorem 5.1. Let G = DNG(my,ma,...,mp;n1,N2,...,ny) be a chain
graph where m; = |U;| and n; = |V;| for 1 < i < h. The graph H obtained
by adding an edge e = (u,v) to G is a chain graph if and only if u € U; and
v € V_jto for some 2 < i < h.

Proof. Let H be the chain graph obtained by adding an edge e to the graph
G. Without loss of generality, let u € U; for some 1 < i < h. Since
Ng(u) = Vi UVaU---UVh_it1, it is clear that v € Vj,_; 4 for some k > 2.
Suppose k > 3, then Ng(u) = ViUVaU---UVp_j11 U{v} where v € Vj,_;yp
for some k > 3. Consider a vertex z € U;_1, then Ny(z) =V UV, U---U
Vh—it1UVj_it2. Then neither Ny (z) € Ny (u) nor Ng(u) € Ny (z), which
is a contradiction. Thus k = 2.

Conversely, let H be a chain graph obtained by adding an edge e = (u,v)
where u € U; and v € Vj,_;19 for some 2 <4 < h. Then Ny(u) =V, UV U
U Vi U {’U} where v € Vj_;19. Clearly, NH(Uh) - NH(Uhfl) Cc...C
Ne(Uit1) € Nu(u) € Ng(U;) € -+ € Ny(Us) € Ny (Uy). O

We use the procedure given in the above theorem and add the edges
to get irreducible chain graphs. In other words, we characterize the chain
graphs which can be transformed into irreducible chain graphs, which in
turn characterizes the graphs with restricted threshold dimension [§] — 1.

Theorem 5.2. Let DNG(mq,ma,...,mp;n1,n2,...,np) be a chain graph
of order n, where n is even. Let 7,.(G) be the restricted threshold dimension
of G. Then 7,(G) = 5 — 1 if the following conditions are satisfied

h h

(i). Y omi=3 ni=7%
i=1 i=1

(ZZ) mp =ny = 1

h
(i11). deg(v;) — > |Vi| <1 for1<i<h wherev; € V;.

Jj=i+1

Proof. Let G be the graph satisfying the conditions given in the above the-

h
orem. Since (i) is true, it follows that |U| = |V| where |U| = Y m; and
i=1
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h
|[V| = 3. ni. In particular, since (i) is true, |U;| = |V41] = 1. On adding
i=1

the edges in the manner given in Theorem 5.1, we make m; = n; = 1.
Since (i74) is satisfied, deg(v) < mp + 1, for all v € Vj,_1, which enable
us to add edges sequentially to the vertices of V},, making the vertices to
have distinct degrees given by 1,2, ..., my. This results in m, = 1 and
adding the other vertices of V}, to either new cells containing the single-
tons or the existing cell. Similarly, since deg(v) < my, + my_1 + 1 for all
v € Vj_o, adding edges to the vertices of Vj_1, resulting in distinct vertex

degrees my, + 1, mp + 2,...,mp + mp_1. On successfully iterating this, we
get a graph where each partite set has vertices of distinct degrees given by
1,2,...,%, which results in the graph DNG(1,1,...,1;1,1,...,1). Since
— ——
h times h times
B(DNG(1,1,...,1;1,1,...,1)) = § — 1 and is the least value of the metric
N
h times h times

dimension among all chain graphs on n vertices, 7,.(G) = 2 — 1. ]

o3

In the above theorem, we have characterized one class of graphs on even
number of vertices, which are spanning subgraphs of half graphs. Further,

we know that S(DNG(1,1,...,1;n1,n9,...,np)) = an where exactly one
———

h times
of n; is two and rest are one. In the next theorem, we characterize the

graphs G on odd number of vertices, which are spanning subgraphs of
DNG(1,1,...,1;n1,n9,...,n;) where exactly one of n; is 2 and rest are
——
h times

one. In other words, we characterize a class of chain graphs whose restricted

threshold dimension is "T’l

Theorem 5.3. Let DNG(my,ma,...,mp;n1,Na,...,np) be a chain graph
h h

of order n, where n is odd. Let Y m; = |U| and > n; = |V| and 7.(G) be
i=1 i=1

the restricted threshold dimension of G. Then 7,.(G) = "Tfl if the following

conditions are satisfied:

h h
i=1 i=1

(ii) m1 =1 and nq < 2.

h
(iii) If |V < |U|, then deg(vi) — > |Vj| <1 for1 < i< h, wherev; € V;.
j=it1

Proof. Similar to the previous theorem, the graph satisfying the above con-
ditions can be transformed into the graph DNG(1,1,...,1;n1,n9,...,np),
————
h times
where exactly one of n;(1 <i < h) is 2 and the rest are 1, in which exactly
one pair of vertices in V' have identical degree. [
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We note another class of irreducible chain graphs given by

DNG(1, 2,...,2;1, 2,...,2), which has metric dimension § — 1 (by Re-
—— ———
"772 times % times

mark 2.5). The following theorem characterizes the chain graphs which are
transformed into the above mentioned irreducible graph.

Theorem 5.4. Let DNG(mq,mo, .. mh,nl,ng, ...,np) be a chain graph
of order n = 2k, where k is an odd integer. Let Z m; = |U\ and Z n; = |V|
and 1,(G) be the restricted threshold dzmenswn of G. Then TT(G) =2-1
if the following conditions are satisfied.

(1) [U] = [V].

(ii) m1 =1 and nq < 2.
(m) mp, Np 2 2.

h
1, if > |Vjl|is odd

h =i
(iv) deg(v)) — 3 Vi < s
g=ird 0, if > |Vj| is even.
J=i+1

Proof. Since my =ny = 1,deg(v) = 1 for all v € V},, Up,. Also as my, np, > 2,
there are at least four vertices of degree one. The degree of remaining
myp, — 2 vertices of V} can be increased by addition of edges. Suppose
[Vh| = my, is odd, since deg(v) — |[V] < 1 for all v € V}_4, it is possible
to add edges sequentially to the vertices of V}, which results in vertex de-
grees 1,1,3,3,5,5,...,mp — 1,mp, — 1,my. This make |V}| = 2 and adding
the other vertices of V}, to either new cells of cardinality at most two or to the
existing cell. Let the new cells created in every step be named W/s without
affecting the original labels V},_1,Vj,_o,..., V5. Now consider the vertices of
V-1, suppose |V,—1| = mp_1 is odd. Since deg(v) — |V4| — |[Vh—1] < 0 for

h
allve Vg as Y |Vj]is even, it is possible to add edges sequentially to

j=h—1
the vertices of V1 making the vertex degrees myp, mp + 2, my + 2, my, +
dmp+4,...omp+mp_1 — L,mp + mp_1 — 1. But, if [Vh_1| = mp_q is

even, since deg(v) — |[Vi| — |[Va—1| < 1 for all v € Vj,_o, it is possible to
add edges sequentially to the vertices of Vj,_; making the vertex degrees
mp, mp+2,mp+2,mp+4,mp+4,....mp+mp_1—1,mp+mp_1—1,mp +
mp—1 + 1. Similarly, suppose |V,| = my, is even, depending upon the parity
of mp — 1 if it is even or odd, we add the edges in the similar procedure.
Continuing this, as mentioned above, it is possible to reduce the given graph

into DNG(1, 2,...,2;1, 2,...,2), which has the least metric dimension
——— ———
anz times "772 times

(5 —1). Thus 7.(G) = § — 1. O

Conclusion. Metric dimension, in a way, induces some more structure on
graphs representing the network. In this article, we have dealt with the
metric dimension of structured networks, represented by chain graphs. This
contains the construction of structured networks with the given metric di-
mension, whenever possible and also decides when it is possible. Thus, it
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opens a possible new field of constructing networks with a given structure.
We conclude this article with the scope of future work of characterizing all
chain graphs of order n with restricted threshold dimension k, for any integer
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