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Abstract

The status og(u) of a vertex u in a connected graph G is defined as the
sum of the distances between u and all other vertices of G. In this paper some
relations over VL status index and V'L status co-index of connected graphs are
established. Furthermore distinguished examples for k-transmission regular
graphs and nanostructures of VL status indices are computed.
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1 Introduction and Preliminaries

A topological (graph) index is a graph invariant which is mathematically de-
rived from the graph structure. The graph theoretic models can be used to study
the properties of molecules in theoretical chemistry. The oldest well known index
is the Wiener index which was used to study the chemical properties of paraffin
(cf. [20]). Also one of the most popular index is the Zagreb index that were used,
for instance, to study the structural property models (see, for instance, [1,8,17-19]).

Let G be a connected graph with n vertices and m edges. Suppose that V(G) =
{v1,v2,...,v,} and E(G) are the vertex and edge sets of G. In general the notation
uv denotes the edge joining of the vertices 1 and v, and also dg (1) denotes the de-
gree of a vertex u in a graph G which is the number of edges joining to 1. Moreover
the distance between the vertices u and v is the length of the shortest path joining u
and v and is denoted by d¢(u,v). For graph theoretical terminology, we may refer
the books [4,5].
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In the following we will recall some topological indices that will be needed in
this study.

The status ( [9]) of a vertex u is defined as the sum of its distances from every
other vertex of G and is denoted by

o(u)= Y d(uo).

uveE(G)

In fact by considering the status of u, one may define the Wiener index ( [20]) of
a connected graph G as
1
WG = )Y duo)= 5 Yo o(u).

{u,v}CV(G) ueV(G)
On the other hand, the first and second Zagreb indices ( [8]) of a graph G are defined
by

M(G) = Y [d(u)+d(v)] and MyG)= Y [d(u)-d(v).
uveE(G) uveE(G)

while the first and second Zagreb co-indices (see [1,19]) are defined by

Mi(G) = ¥ ) +d@)] and Ma(G)= Y. [d(u)-d(o)l.
uv¢E(G) uv¢E(G)

Recently, the first and second status connectivity index ( [16]) of a graph G have
been introduced to study the property of benzenoid hydrocarbons which are de-
fined by

$1(G)= ), [o(u)+o(w)] and S(G)= Y. [o(u)-o(v)].

uveE(G) uveE(G)

With a similar idea as in above equalities, the first and second status connectivity
co-index are defined by

S1(G)= ) [c(w+o(v)] and $(G)= }. [o(u)- o(v)].

uv¢E(G) uv¢E(G)
In [7], it has been also recently introduced the VL index

VL(G)= Y, [de+ds+4],
uveE(G)

where d, = d(u) +d(v) —2and df = (d(u).d(v)) — 2 of a graph G. As it mentioned
in [7], the VL index figures out a good correlation with the physical properties of
octane isomers and polychlorinated biphenyl. Presently, in [13], two more indices
introduced and studied their graph theoretical properties under the name of the VL
status index VLS(G) and VL status co-index VLS(G) of a graph G that are defined by

VLS(G) =+ ¥ [o(w) + (o) + o) - o(v)] 1)

uveE(G)
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Figure 1: VLS(G) = 42.5 and VLS(G) = 29.

and

VLS(G) =5 )}, lo(u)+o(@)+o(u)- o(v)], @)

uv¢E(G)

N =

respectively. We may refer Figure 1 for a simple example of VLS(G) and VLS(G).

This paper is organized as follows: Section 1 covers some reminders about the
indices that will be needed at the remaining part. In Section 2, there will be given
some results related to VL status (co-)index in terms of different parameters and
indices. The final section will be constructed on the results about VL status index
and co-index of some transmission regular graphs and nanostructures.

2 VL status index and coindex results

In this section, by considering the indices given in Egs. (1) and (2), we state and
prove some results on connected graphs.

Theorem 2.1. Let G be a connected graph on n vertices. Then

VLS(G) = (n —1)W(G) + (W(G))* —

=

Y (o(u)? — VLS(G).
ueV(G)

Proof. By Eq. (2), we have

VIS(G) = 5 Lo+ o(0) +00)-0(0)
uv¢E(G

= (n=1W(G) + 5 [2W(G))* =5 ) (¢(w)*| = VLS(G)
ueV(G)

Y (o(u))* = VLS(G).

ueV(G)

= (n=1)W(G) + (W(G))* -

I

Hence we obtain the required equality in the statement of theorem. O
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Theorem 2.2. Let G be a connected graph with n vertices and m edges. Then

(1—2n)
2

M;(G) ‘

VLS(G) = mn(2n —2) + 5

Mi(G) +
Proof. For any vertex u of G, there exist d(u) vertices which are at distance 1 from
u and the remaining (n — 1 — d(u)) vertices are at distance at least 2. Therefore
o(u) =2n —2 —d(u). After that by Eq. (1), we get

VLS(G) = Y fo(u) +o(v)+o(u)-o(v)]

uveE(G)

== Y [n—2—d(u)+2n—2—d(v)+ (2n—2—d(u))
uveE(G)

-(2n—2—d(v))]

Nl—= N

which actually gives

VLS(G) < % Z‘Z >[4:712 —4n+ (1-2n)(d(u) +d(v)) +d(u)d(v)]
uv€E(G
=mn(2n —2) 4+ (a —2211)M1(G) + Mzz(G) ,

as required.

Corollary 2.3. Let G be a connected graph with n vertices, m edges and diam(G) < 2.
Then

M;(G)
-

VLS(G) = n?(n* —2n+1) +m(m — 1) + 5mn — 4mn?* — (i - n> M;(G) —

Proof. For any graph G with diam(G) < 2, the status o(u) = 2n — 2 — d(u) and so

the Wiener index is

n(n—1)
2

W(G)=m+2{ —m}:n(n—l)—m.

Also the first and second status connectivity indices are S51(G) = 4m(n — 1) —
M;(G) and $2(G) = 4m(n —1)? —2(n — 1)M;(G) + Ma(G). Therefore, by The-
orem 2.1, we get

VLS(G) = (n —1)[n(n —1) —m] + [n(n — 1) — m)?
—1 ¥ @n-2-dw)[51(6) + 5(G)]
41¢6V(G) 2

= (= Dln(n—1) — m] + [n(n — 1) — m]?

_ i[n(Zn —2)2 —4m(2n —2) + My (G)]

- %[4171(11 “1) = My(G) + dm(n —1)2 —2(n — )My (G) + Ma(G)]
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which imply

M;(G)
2

=n* —2n® + m? + n® — m+ 5mn — dmn® — <i—n>M1(G)—

M;(G)
-

=n*(n® —2n+1) +m(m —1) +5mn — 4mn* — (Z —n)Ml(G) -

Hence the result. O

The above corollary can also be obtained in terms of Zagreb co-indices as in the
following .

Corollary 2.4. Let G be a connected graph with n vertices, m edges and diam(G) < 2.
Then

M;(G)
o

VIS(G) = n(n—1)[n(n —1) — 2m] — <n _ ;)Ml(G) +
Proof. As we done in the proof of Corollary 2.3, the status is given by o (1) = 2n —
2 —d(u) for any graph G with diam(G) < 2. Thus, by considering Eq. (2), we get

VLS(G) = Y fo(u)+o(v)+o(u)-o(v)]

uv¢E(G)

Nl—= NI

Y, 2n—2—d(u)+2n—2—d(v)+ (2n—2—d(u))
uv¢E(G)

-(2n—2—d(v))]
_ % Kn(nz— 1) _m> (4n—4)— Y (d(u)+d(0)) + <n(n2— 1) _m>

uv¢E(G)

@n—27—@n-2) ¥ () +d@)+ ¥ (d(u)-d(v))}

uvgE(G) uvZE(G)

= %[Z(n —1)(n(n—1) —2m) — My (G) +2(n — 1)2(n(n —1)—2m)

—2(n = 1)Mi(G) + M2(G)]

=n(n—1)[n(n—-1) —2m] - (n - 1)1\/11(6) +

as required. O

Corollary 2.5. For a graph G with n vertices and m edges, let G be the connected comple-
ment of G. Then

VLS@G) > % [(”(”2_ D_ m) (2 —1) + 1ML (G) + Ma(G) |

Equality holds if and only if diam(G) < 2
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Proof. For any vertex u in G there are n — 1 — dg(u) vertices which are at distance
1 and the remaining d (1) vertices are at least 2. Therefore

og(u) > [n—1—dg(u)] +2dg(u) =n—1+dg(u).
Therefore
VIS@) =5 ¥ log(u) +0g(0) + o) - 05(0)]

uveE(G)

% 2 n—l—l—dG W)+ 1 —1+dc(0) + (n — 1 +dg(u))

€E@G

. ( - 1 +dg(0))]

5 Y P —1+n(de(u) +dc(v)) +dc(u) - de(v)
uv¢E(G)

:;Kn(nz—l)

)

uv¢E(G)

_;Kn(nzl)

—m>(n2—1)+n

Y. (do(u) +dg(v))

uv¢E(G)

()]

~m) 02 1)+ 1VER(G) + M5(G)

We note that if the diameter of G is 1 or 2, then the equality holds.

Conversely, let VLS(G) =

2

K(Z_l) B ’”) (n* —1) +nMi(G) +Mz(G)} and

suppose that diam(G) > 3. Then there exists at least one pair of vertices, say u; and

up such that dg(uy, uz) > 3. Therefore og(u1) > dg(ur) +3 +2(n — 2 — dg(my

) =

n+dg(uy). Similarly o (u2) > n+dg(u2) and for all other vertices u of G, og(u) >
n — 1+ dg(u). Partition the edge set of G into three sets Ey, E; and Es, where

Ey = {u1v | og(ur) > n+dg(u1)

Ey = {uv | og(u2) > n+dg(u2)

Ez = {uv|og(u) >n—1+4dg(u)
It is easy to check that |E;| = dg(uy

dg(uy) — dg(u2). Thus

VLS(G) = =

and og(v) >n—1+dg(v)},
and og(v) >n—1+dg(v)} and
and og(v) >n—1+dg(v)}.

), |E2| = dg(u2) and |Es| = (3) —m —

Y. log(u) +og(v) + og(u) - og(v)]

uveE(G)

1

=5 Y log(u) + og(v) + og(u) - 05(v)]

uveEl

+3 o

05(0) +o5(u) - 05(v)]

quEz

+Z(7G

+0g(v) +og(u) - 05(v)]

quE3



VL status index and co-index of connected graphs

which gives

1

=5 Y [n+de(u)+n—1+dg(v) + (n+dg(u)) - (n—1+dg(v))]
uvek,
+ 1 Z [mn+dc(u)+n—1+dg(v)+ (n+dg(u)) - (n—14+dg(v))]
uvek,
+% S 1+ do(u) + 1 — 1+ do(0) + (n— 1+ do(u)
uveEs
(n=1+dg(v))]
= % [g(;ﬁ’ —n? —n+1)+m(1—n?) +n(dg(ur) + dg(u))
+dc(v) (dg(u1) +dg(uz)) +nMi(G) +Ma(G)] .
The above process gives a contradiction. Hence diam (G) < 2. O

3 VL status index and co-index of some transmission regu-
lar graphs

A bijection « on V(G) is called an automorphism of G if it preserves E(G). In other
words a defines an automorphism if for each u,v € V(G), we have e = uv € E(G)
if and only if a(e) = a(u).a(v) € E(G). Let Aut(G) = {a|a:V(G) —» V(G) isa
bijection which preserves the adjacency } . It is known Aut(G) forms an algebraic
group under the composition of mappings. On the other hand a graph G is called
vertex-transitive if for every two vertices u and v of G, there exists an automorphism
« of G such that a(u) = a(v). It is known that any vertex-transitive graph is vertex
degree regular, transmission regular and self-centered. Indeed the graph depicted
in Figure 2 is 14-transmission regular graph but not degree regular and therefore
not vertex-transitive (see [2]).

Figure 2: The transmission regular but not degree regular graph with the smallest order

Lemma 3.1 ( [15,16]). Let G be a connected k-transmission reqular graph with m edges.
Then
S1(G) =2mk and S(G) = mk>.
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Lemma 3.2. For a connected k-transmission regular graph G with m edges, VLS(G) =
2(k* + 2k).

Proposition 3.3 ( [3]). Let G be a connected graph on n vertices with the automorphism
group Aut(G) and the vertex set V(G). Let Vi, Va,..., Vi be all orbits of the action
Aut(G) on V(G). Suppose also that for each 1 < i < t, each k; is the transmission of
vertex in the orbit V;. Then

1 t

W(G) = §Z|Vi\ki~
i=1

Specially if G is vertex-transitive (i.e. t = 1), then W(G) = Lnk, where k denotes the
transmission of each vertex of G.

Proposition 3.4 ( [15,16]). Let G be a connected graph on n vertices with the automor-
phism group Aut(G) and the vertex set V(G). Let V1, Va, ..., V; be all orbits of the action
Aut(G) on V(G). Suppose also that for each 1 < i < t, d; and k; are the vertex degree and
the transmission of vertices in the orbit V;, respectively. Then

51(G) = immiki, ot 5:6) =y (1w (1-,47)).

i= i=1

Specially if G is vertex-transitive (i.e. t = 1), then
S1(G) =ndk,  Sy(G) = indk?,
Si(6) = 2k —nk, 5:(6) = (- %),

where d and k are the degree and the transmission of each vertex of G, respectively.
The following result follows from Proposition 3.4.

Theorem 3.5. Let G be a connected graph on n vertices with the automorphism group
Aut(G) and the vertex set V(G). Let d and k are the degree and the transmission of each
vertex of G, respectively. Then

_ ndk _ ndk
-4 4

The following is a direct consequence of Theorem 2.1, Lemma 3.2 and Theorem
3.5.

VLS(G) (k+2) and VLS(G) (k+2).

Corollary 3.6. Let G be a connected k-transmission reqular graph with m edges. Then

VIS(G) = g[k(n —1)(2+K) — 2mk(2 +K)].

The vertex set of the hypercube H, consists of all n-tuples (by, by, ..., b,) with
b; € {0,1}, and any two vertices are adjacent if the corresponding tuples differ in
precisely one place. Moreover H,, has exactly 2" vertices and n2" ! edges. In [6] it
has been proved that H,, is vertex-transitive and oy, (1) = n2"! for every vertex
u.
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Theorem 3.7. For a hypercube H,, we obtain

2
VLS(H,) = %(n23"_3 +221) gnd

2
VLS(H,) = %[2"(211 —5) + 22222 — n — 1)].

The Kneser graph KG, x is the graph whose vertices correspond to the k-element
subsets of a set of p elements, and any two vertices are adjacent if and only if the
two corresponding sets are disjoint. Clearly we must impose the restriction p > 2k.
The Kneser graph KG,,; has (}) vertices and it is actually regular of degree ( p;k).

Therefore, by [14], the number of edges of KG,  is %(f) (7 ;k) Moreover the Kneser
graph KG,,; is complete on n vertices, and KGg; is known as 8-complete graph (see
Figure 3).

o

Figure 3: 8-complete graph

Lemma 3.8 ( [14]). The Kneser graph KG,x. is vertex-transitive and for each k-subset A,

there exists
2W(KGp,k)

kG, (A) =
@
The next result follows from Lemma 3.8.
Theorem 3.9. For a Kneser graph KG, x, we have
_1 p—k p—k\ (2(W(KGy))?
VLS(KGyx) = [zw<1<cp,k) < h ) + ( . ) (GZ)

and
VLS(KG) = % [2W(KGp,k)<<Z> - (;9 ; k> - 1) +2(W(KGyx))?

ik, () (AEGI7))

A nanostructure is called achiral polyhex nanotorus T[p, q] of perimeter p and

length g. In fact T[p, q] is regular of degree 3 and has pq vertices, BZﬂ edges. Inspired
by the work on Operation of nanostructures via SDD, ABC4 and GAs indices [10],
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SK indices, forgotten topological indices and hyper Zagreb index of Q operator of
carbon nanocone [11] and some computational aspects of carbon nanocone using
Q(G) operator, hexagonal network and probabilistic neural network [12], we get
the following result.

Lemma 3.10 ( [3,21]). The achiral polyhex nanotorus T = T[p,q] is vertex transitive
such that for an arbitrary vertex u € V(T), we have

5P +37° +3pg—4), q=p.
The following is a direct consequence of Lemmas 3.2 and 3.10.
Theorem 3.11. Let T = T[p, q] be a achiral polyhex nanotorus. Then VLS(T) is equal to
1o(6p% + 4> — 4)(4* — 4q% + 24q + 61", 9<p,
{ B(p* +3¢> +3pg —4) (p* —4p* +24p +3p°¢* +3p%9)], q>p.
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