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SOME MODIFIED REDUCTION FORMULAS FOR THE GAUSS
AND CLAUSEN HYPERGEOMETRIC FUNCTIONS
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ABSTRACT. In this paper, by using the series rearrangement technique, we derive
closed forms of some reduction formulas for the following two Clausen hypergeo-

metric functions: 5
a, 3a—1,3a — 3;

3ks z
a—1,6a —2;
and
2a,3a — 1,3a — g;
3k z
2a — 1, 6a — 2;

We also obtain some reduction formulas of the following four Gauss hypergeomet-
ric functions:

1. Ry
- a,a = 3; 423
21
2a; (1- 3z)2_
and L
- a,a + 33 42’3
2F e A
%: (1-2)%(1—42)

Several appropriately modified forms of a known reduction formula for the Clausen
hypergeometric function are also appropriately derived here.
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1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

In our investigation here, we use the following standard notations:
N:={1,2,3,---}, No:=NU{0} and Z;:=7Z  U{0}=1{0,-1,-2,---}.

Also, as usual, the symbols C, R, N, Z, R™ and R~ denote the sets of complex num-
bers, real numbers, natural numbers, integers, positive and negative real numbers,
respectively.
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The general Pochhammer symbol (or the shifted factorial) (A), (A, v € C) is
defined by (see, for example, [10] and [14])

| (v="0; AeC\{0})
TIO+j) (=nel; A€C)

()\),,:—WZ o ( —n;v=Fk;nkeNy; 0k <n)

A
(A
(1 =Mk v

it being understood conventionally that (0)g := 1 and assumed tacitly that the
Gamma quotient exists.

—n; v==Fk; n,k € Nyg; k> n)

—k; keN; e C\ Z),

The generalized hypergeometric function ,F; with p numerator parameters a; €
C (j =1,---,p) and ¢ denominator parameters ; € C\ Z; (j = 1,---,q) is
defined by (see [2], [10] and [11]) is defined by

a1, 2, -, Qp; (aP);
plG z| =pky z

ﬁ17527"' an; (5(])7
= 1 z
(1.1) =y ~

(pgeNp; pSqg+1;pSqand |z <oo; p=g+1 and |2 < 1;
p=q+1, |z| =1 and R(w) > 0;
p=q+1,|2|=1(2#1) and —1<R(w) £0),

where, by convention, a product over an empty set is interpreted as 1, and

(1.2) wi=> Bj-
j=1

R(w) being the real part of complex number w.

p
Oéj,
1

Remark 1. Throughout the remainder of this paper, the applicable parametric and
argument constraints, which would correspond appropriately to the above-mentioned
parametric and argument constraints, will be tacitly assumed to be satisfied appro-
priately. Moreover, exceptional values of the parameters and the arguments, which
are involved in any equation, are also tacitly excluded. For example, it is understood
for the denominator parameters 31, 82, - - - , B4 that, in general,

ﬁ]#07_17_27 (j:1a7Q)

Remark 2. If none of the numerator and denominator parameters is zero or a
negative integer, we note that the ,F; series defined by the equation (1.1) satisfied
the following constraints:
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(i) It converges for |z| < 0o if p < g;
(ii) It converges for |z| < 1 if p=q+1;
(iii) It diverges for all z (z #0) if p > ¢+ 1;
(iv) It converges absolutely for |z] =1 if p = ¢+ 1 and R(w) > 0;
(v) It converges conditionally for |z| =1 (z # 1) if
p=q+1 and —1<Rw) 20
(vi) It diverges for |z| =1if p=¢+ 1 and R(w) < -1,

where w is given, as before, by (1.2).

Each of the following results will be needed in our present study.

Pfaff-Kummer Linear Transformations (see [8, p. 247, Egs. (9.5.1) and
(9.5.2)]; see also [1, p. 68, Eq. (2.2.6)]):

O‘?B; 0477_53 z
(1.3) oF z| = (1 —2) %o 1
ok ok §
(v € C\Zy; |arg(l — z)| <)
and
a, B; V- .
(1.4) o F Zl=1-2)""R -1
e v

(ve C\Zy; |arg(l—2)| < ).
Euler’s Linear Transformation (see [8, p. 248, Eq. (9.5.3)]; see also [1, p. 68,
Eq. (2.2.7)]):

Q, 5; Yoy — 6a
(15) 2F1 zZ| = (1 - Z)W_a_ﬁ QFl z
s s
(ve C\Zy; |arg(l—2)| < ).
A Set of Closed Forms (see [10, p. 70, Exercise 10]; see also [6, p. 101, Egs. 2.8
(6)], [11, p. 19, Egs. (1.5.19) and (1.5.20)]):

9 22-1 AMA— 4
1.6 _ =9F
1o (=) = o
(2)\6((:\26; |arg(1fz)|<7r)
and
1 9 22—1 )\,)\+%;
(1.7) ( ) =2F1 z
V1I—z \14++1—2 2\

(2X € C\ Zy; |arg(l —2)| < ).
Various families of summation, transformation and reduction formulas for hyper-
geometric functions in one, two and more variables are available in the remarkably
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vast literature due, in part, to their potential for usefulness in several diverse areas
of the mathematical, physical, statistical and engineering sciences (see, for example,
[2], [3], [6], [7], [10], [11], [13], [15], [16], [17] and [18]; see also the citations to related
earlier works which are cited in each of these references). In particular, in the year
2005, the following reduction formula for the Clausen hypergeometric series 3F (see
[5]) was given by Joshi and Vyas [7, p. 1921, Eq. (6.19)]:

a,3a—1,3a — %;
3F2 z

2a — 1,6a — 2;
1 2 2a—1
(1-2)V1—4z (1—3z+(1—z)\/1—4z> ’
where the symbol = exhibits the fact that the above reduction formula (1.8) does
not hold true as stated. In fact, it cannot be verified numerically. The left-hand
side of the equation (1.8) is given by
a,3a —1,3a — %;
3F z
2a — 1,6a — 2;
3
_ i (@)m (Ba— 1), (3a — §)m 2"
(2a — 1), (6a —2)p, m!

(1.8) =

m=0
& Ba—1), (3a—3), T(a+m)T(2a—1) 2™
(1.9) _mzz:o Ga =2 T T@a— 1 Tm) mi

The plan of this paper is as follows. In Section 2, we propose to develop the
appropriately modified forms (2.3) of the reduction formula (1.8) by considering the
right-hand side of the equation (1.8) in conjunction with the closed form (1.6), the
Pfaff-Kummer linear transformations (1.3) and (1.4) and Euler’s linear transforma-
tion (1.5). In Section 3, we give the proofs of these reduction formulas by using the
series rearrangement technique (see, for details, [14, Chapter 2]). Finally, in Section
4, several concluding remarks and observations are presented.

2. MoDIFIED FORMS OF THE REDUCTION FORMULA (1.8)

In what follows, all values of the parameters and the arguments, which would
render the results invalid or non-existent, are tacitly excluded.
Our modified forms of the reduction formula (1.8) are now stated below.

a,3a—1,3a—%;
3lh z
a—1,6a—2;

B 2 Ga=3 3(2a — 1)z
21) _<1+\/1z) <1+2(a1)(1z+\/1z)>
(a—1,6a—2€cC\Zy; |z| <1)

and
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2a,3a —1,3a — 3;

29
3Fy z
2a — 1,6a — 2;
92 6a—3
(2.2) - () 1+ 5z
1+V1-2 2(1—z+V1I-2)

(2a—1,6a—2€C\Zg; || <1).
Now, if we denote the right-hand side of the equation (1.8) by ©(z) and apply the
reduction formula (1.6), we observe that

1 ) 2a—1
Qz) ==
G =GV <1 T3t (L VI 4z>
1.
1—-3 —2a+1 a7a_§7 4 3
(2.3) = (=37 2 F1 % .
(1—2)v1—4z %a: (1-32)
which readily yields
F a,a — %; 423
247
%: (1-32)2
_— 2 2a—1
2.4 =(1-32)"" .
(24) (1-32) (13z+(lz)\/14z>
Similarly, by using the result (1.3) in (2.3), we have
1 ( 2 >2a—1
(I1-2)V1—4z \1-324+(1—-2)y1—-4z
1,
(1-32) @ a+ 3; 423
(2.5) = T 21 — 5|
(1 — 2)201(1 — 42)%F2 %: (1—-2)%(1—4z)
so that
[t "
21 vy Q- 2712
(2:6) _ (1—42)"(1 - 2)™ ( 2 )2“‘1
' (1—3z) 1-32+(1—2)V1-4z '

In an analogous manner, we can derive the following results:

1 ) 2a—1
(1—2)y/(1—4z2) (1—32+(1—z)\/1—4z)
a— %ua; 4 3
(2.7) =(1—2)2(1—42)% oy S —

pa; (1= 2P(1—42)
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which yields

a—3,a; 3
JF) _ +
vy A= 22(1—12)
9 2a—1
2.8 —(1-2)%1(1-4 “%< )
(28) L= =) T TV ks
and
1 ( 92 >2a1
(1—2)v1—42\1-324+(1—2)v1—4z
a,a+ %; 423
(2.9) =(1-32)72,F — |,
%: (1—32)2
so that
1.
P a,a + 2 423
2 2a: (1 _32)2
1 — 3z)2 2 2a-1
(2.10) __(1-3) < ) .
(1—2)v1—4z \1-3z4+(1—-2)v1—4z

Remark 3. Each of the results (2.1) to (2.10) has been verified numerically. More-
over, for simplification purposes, the algebraic identity has been used:

(1 —32)% =423 = (1 - 2)*(1 — 42).

3. DEMONSTRATION OF THE REDUCTION FORMULAS

Proof of the reduction formula (2.1). First of all, in view of (1.9) and the
following identity:

@y ey,

we have
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a,3a —1,3a —
(I)(Z) = 3F2
a—1,6a—2;
o — m!
= 6a 2) m!
00 3
1 3a—1 3a — 5 m
+ Z a—1 ( (6)am—<2) = (mz— 1!
m=1
3a —1,3a — 35;
—2F1 z
6a — 2;
1 & Ba—1)m Ba—2), 27
3.1 .
(3:-1) a1 6a—2)m  (m—_1)

m=1
Upon replacing m by m + 1 in the equation (3.1), we find after some simplification
that

3a—1,3a — 3; 3a — 1, 3a;
’ 2 3(2a — 1 2 )

(3.2)  ®(2) =2k z -‘r%QFl z
6a — 2; (a—1) 6a — 1;

Now, using the results (1.6) and (1.7) in the equation (3.2), we complete our proof
of the reduction formula in the closed form (2.1).

Proof of the reduction formula (2.2). Our proof of the reduction formula (2.2)
follows the same lines as in the above proof of the reduction formula (2.1). We,
therefore, choose to skip the details involved.

Proofs of the results (2.3), (2.5), (2.7) and (2.9). Let us consider the function
E(z) given by

_ 1 9 2a—1

=(z) = (1—2)v1—4z (1—32—#(1—2’)\/1-42’)

2a—1
_ 1 2
(1—2)V/1—-4z (1-32) [1+ (1—12)_\/312—41
2a—1
(3.3) B 1 2
' (1= 2)(1—32)2-1 T4z {1+ (1—z)\/1—4z}

1-3z

We now apply the closed-form result (1.6) in the equation (3.3). We then obtain
the equation (2.3). Also, by using the Pfaff-Kummer linear transformation (1.3) in
the equation (2.3), we get the result (2.5). Similarly, by applying the Pfaff-Kummer
linear transformation (1.4) in the equation (2.3), we have the result (2.7). Finally,
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by using Euler’s linear transformation (1.5) in the equation (2.3), we are led to the
result (2.9).

4. CONCLUDING REMARKS AND OBSERVATIONS

By making use of the series rearrangement technique, we have successfully derived
closed forms of several reduction formulas for two families of the Clausen hyperge-
ometric function 3F5. We have also indicated the connections of these reduction
formulas with a number of known or new results on transformation and reduction
formulas for the Gauss and Clausen hypergeometric functions.

We conclude our present investigation by observing that the several other inter-
esting reduction formulas in closed forms can be derived in an analogous manner.
Moreover, the results in closed forms, which we have derived in this paper and which
are available in the existing literature (see, for example, [2], [3], [4], [6], [7], [9], [10],
[11], [13], [15], [16], [17] and [18]; see also the citations to the related earlier works
which are referred to in each of these references), are potentially useful in a wide
range of problems in the mathematical, physical, statistical and engineering sciences.

Conflicts of Interests: The authors declare that there have no conflicts of interest.
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