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GROUP PSEUDOREPRESENTATIONS
THAT ARE TRIVIAL ON A NORMAL SUBGROUP

A. 1. SHTERN

ABSTRACT. Continuing the study of general group pseudorepresentations, we
prove that, if 7 is a pseudorepresentation of a group GG in a Banach space E
with sufficiently small defect and if N is a normal subgroup of G for which
w(n) = 1|g for all n € N, then there is a pseudorepresentation p of the
quotient group G/N such that the pseudorepresentation  is locally equivalent

to the pseudorepresentation of G defined by the rule g — p(gN), g € G.

§ 1. INTRODUCTION

For the definitions, notation, and generalities concerning pseudorepresen-
tations, see [1-4]. Recall that a mapping 7 of a given group G into the family
of invertible operators in the algebra L£(E) of bounded linear operators on a
Banach space E is said to be a quasirepresentation (an e-quasirepresentation)
of G on E if w(eg) = 1g, where eg stands for the identity element of G and
1g for the identity operator on FE, and if

7(g192) — 7(g1)7(92) |l () < &, 91,92 € G,

for some €, which is usually assumed to be sufficiently small and its greatest
lower bound for 7 is referred to as the defect of m; an e-quasirepresentation
7 of G on a Banach space F is said to be a pseudorepresentation of G (to be
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more precise, an e-0-pseudorepresentation of G on E, where 6 < 1) if there
is a continuous linear operator A(g,n) on E such that
(1)

A(g,n)m(g") = n(9)"Al(g,n), g€ G, neZ, wherel|A(g,n)—1g|E <0.

Below we omit the subscript £(E) for the operator norms as a rule.

If a pseudorepresentation 7 of G is one-dimensional and has a sufficiently
small defect (less than 0.24) and if 7 is trivial on a normal subgroup N of G
(i.e., m1(n) =1 € C for every n € N, where C stands for the field of complex
numbers), then, as was shown in [6], the one-dimensional pseudorepresenta-
tion 7 is completely determined by some one-dimensional pseudorepresenta-
tion of the quotient group G/N. Here we obtain a weaker result for general
pseudorepresentations. For conditions ensuring that 7 is trivial on a normal
subgroup N of G, see [7].

§ 2. PRELIMINARIES

The following result can be proved by repeating the proof of the similar
result in [8] almost verbatim, omitting references to topology and continuity
and using an invariant mean instead of integration.

Theorem 1. Let e < 1. Let G be an amenable group. Let m be a bounded
0-quasirepresentation of G on a reflexive Banach space E with defect 0, let
Im(g)]| < C and ||7(g)7 Y| < C for any g € G, and let § < ((6 + 4C +
2C?)7te, where ¢ < 1. Assume that w(e) = 1g. Then there is an ordinary
representation p of G on E such that ||p(g) — w(g)|| < € for all g € G.

Lemma 1. Let U and V be invertible operators on a dual Banach space E
such that U is dual and ||V™|| < C for alln € Z and ||{U"—V"|| < e/C for all
n € Z, wheree < 1. Then there is an operator A on E such that ||A—1g| < e
and UA = AV, i.e., U = AVA=L. In particular, |U — V|| < 2eC/(1 —¢).

Proof. Tt follows from the condition immediately that |[U"V ™" — 1g| < e.
Applying any invariant mean p on Z to f(U"V ~"x) for every x € E and
f € E,, where E, stands for a predual space of E, we obtain a bilinear form
on E x E,, which defines a continuous linear operator A € L(E) such that
|A—1g]| < e since p is a mean. Since p(f(UT1V""1x)) = pu(f(U"V "x))
by the invariance of u on Z, it follows that UAV~! = A, which implies
that U = AVA~L. Finally, |[U — V|| < |[AVA™L — AV|| + ||AV - V|| <
|AV]|(e/(1 =€) +eC < (1+¢)C(e/(1 —¢)) +eC =2eC/(1 —¢), as was to
be proved.
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The following remark is a version of Theorem 5.4 of [1].

Remark 1. Let € < 1. Let G be a group. Let m be a bounded d-quasirepre-
sentation of G in a reflexive Banach space E with defect 0, let ||7(g)|| < C
and ||m(g)~!|| < C for any g € G, and let § < ((12 + 8C + 4C?)~ e, where
Ce < 1. Assume that w(e) = 1g. Then there is a pseudorepresentation p of
G on E such that ||p(g) — 7(g)|| < e/2 for all g € G and, for all g € G and
n € Z, there is an A(g,n) € L(F) for which A(g,n)p(¢9™) = p(9)"A(g,n) and
|A(g,n)—1g| < Ceforall g € G and n € N. In particular, ||p(¢™)—p(g)"] <
2eC?/(1 — Ce) for all g € G and n € N.

Proof. Let m be a d-quasirepresentation of G on E by invertible operators
such that ||7(g)|] < C and ||7(g) || < C for all g € G. Choose an element
g € G. Let G4 be the subgroup of G generated by g; then it is Abelian, and
hence amenable; let 1 be an invariant mean on G4. Applying Theorem 1,
we see that there is a representation p; = p(g, Gy, ) of the subgroup G,
on E such that [[p1(g) — 7(g9)|| < €/2 for all ¢ € G. Define the operator
p(g) for every g € G by the rule p(g) = pi1(g9). Let k € Z. For g*, the
corresponding representation is pr = p(g*, Gy, ) (of the subgroup G yx),
and thus p(g¥) = pr(g¥). Since the restriction of the representation p to
G4+ and the representation py define representations of a cyclic group Gy«
and [|p(g"") — m(g*")|| < /2 for all k,n € Z and ||pr(g*") — w(g"")|| < /2
for all k,n € Z, it follows that ||px(g*™) — p(¢g*™)|| < € for all k,n € Z,
and thus the restrictions of the representations p; and p to Gy satisfy the
conditions of Lemma 1. Therefore, there is an operator A(g,n) € L(E) for
which A(g,n)p(g"™) = p(9)"A(g,n) and ||A(g,n) — 1g|| < Ce, as was to be
proved. The inequality for ||p(¢g™) — p(g)"|| follows from Lemma 1.

Thus, under the assumptions of Remark 1, there is an e-6-pseudorepre-
sentation of G approximating the given d-quasirepresentation with the accu-
racy /2, where § < ((12 + 8C + 4C?) "¢ and 6§ = Ce.

§ 3. MAIN RESULT
We need the following definition.

Definition 1. Let G be a group and let m and p be pseudorepresentations
of G in Banach spaces E, and E,, respectively. The pseudorepresentations
7w and p are said to be locally equivalent if there is a family of bounded linear
operators {A(g), g € G} with bounded inverse such that A(g): E, — E, and

A(g)m(g) = p(g)A(g) for all g € G.
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Obviously, if 7 and p are finite-dimensional and locally equivalent, then
their characters coincide [8].

Theorem. Let G be a group, let N be a normal subgroup of G, let m be a 6-0-
pseudorepresentation of G on a reflexive Banach space E such that ||7(g)|| <
C and ||7(g)7 Y| < C for all g € G, and let m(n) = 1g for every n € N.
Let k: G — G/N be the canonical epimorphism. If ¢ is sufficiently small
(C(g/246) < 1, where 26 < (124 8C + 4C?)~'e and Ce < 1), then there is
a pseudorepresentation p of G/N on E such that the pseudorepresentations m
and p o Kk are locally equivalent.

Proof. Let s: G/N — G be a section of the canonical epimorphism &, i.e.,
k(s(gN)) = gN for every g € G. Introduce a mapping o: G/N — L(FE) by
the rule o(gN) = 7(s(gN)) for every g € Gj it is clear that

[m(s(g1N))m(s5(92N)) — 7(s(g9192N)| < [7(s(g1N))7w(s(g2V))
— m(s(g1N)s(g2N))| + |w(s(91N)s(g92N)) — 7(s(g192N))l,

where s(g192N) = s(g1N)s(g2N)n(g1,g2) for some n = n(g1,g92) € N, and
therefore

|7(s(91N))m(5(g2N)) — w(s(g9192N)|
<+ ||m(s(g1V)s(g2N)) — m(s(g1N)s(g2N)n)| < 26,

which means that |o(g1N)o(g2N) — 0(g192N)| < 20 for all g1,92 € G, and
therefore o is a 2d-quasirepresentation of G/N on E. Let p be a pseu-
dorepresentation of G/N on E corresponding to the quasirepresentation o
and some invariant mean on Z. Then, according to Remark 1, p is an &-6-
pseudorepresentation of G approximating the 24-quasirepresentation o with
the accuracy £/2, where 26 < ((12 4+ 8C + 4C?)"'c and § = Ce. In par-
ticular, |p(gN) — o(gN)| < /2 for all ¢ € G. In turn, |o(gN) — 7(g)| =
Im(s(g)) — w(g)| = |m(gn(g)) — w(g9)] < d, and thus, for every g € G, we
have |p(k(g)) — 7(9)| < [p(gN) — o (gN)| + lo(gN) —7w(g)| < e/2+6 < 1/C.
By Lemma 1, this means that, for every g € G, the cyclic representations
n — p(k(g")) and n — 7w(g"), n € N, are similar; more precisely, there
is a bounded linear operator A(g) € L(E) with bounded inverse such that
A(g)m(g) = p(k(g))A(g) for every g € G and ||A(g) — 1g|| < Ce. This
completes the proof.
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8§ 4. COMMENTS

It seems that the assertion of the theorem, claiming only the local equiv-
alence of the pseudorepresentations in question, cannot be strengthened to
similarity.

Question. Let the conditions of the theorem hold. What conditions ensure
the existence of a pseudorepresentation p of G/N for which po x = 7?

As is known, for one-dimensional pseudorepresentations, the answer is
very simple: no additional conditions are needed for this coincidence [6].
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