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GROUPS OF ONE-DIMENSIONAL
PURE PSEUDOREPRESENTATIONS OF GROUPS

A. 1. SHTERN

ABSTRACT. The group of bounded one-dimensional pure pseudorepresen-
tations of a group is introduced together with its subgroup generated by
bounded one-dimensional pure pseudorepresentations with sufficiently small
defects. This subgroup of “good” one-dimensional pseudorepresentations is

described for connected Lie groups.

§ 1. INTRODUCTION

Let G be a group and let @ be a one-dimensional pseudorepresentation
of G, ie., m: G — C* = C\ {0}, w(e) = 1, where 7 is the identity element
of G, and

(1) [w(gh)—m(g)n(h)| <e,  g,heG, and =(g")=n(9)*, ke

The minimum number ¢ satisfying (1) is called the defect of the pseudorep-
resentation m. A pseudorepresentation is said to be pure if its restriction
to every amenable subgroup of GG is an ordinary complex character of the
subgroup. For the generalities concerning pseudorepresentations, see [1-5];
for the specific features concerning one-dimensional pseudorepresentations,
see [6].
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§ 2. PRELIMINARIES

Lemma 1. Let G be a group, and let m and p be bounded one-dimensional
pure pseudorepresentations of G with the defects e and ¢,, respectively.
Then the mapping wp: G — T, where T = {z : z € C,|z| = 1}, defined
by the rule

mo(g9) =7(9)p(g),  g€G,

is a bounded one-dimensional pure pseudorepresentation of G whose defect
exp does not exceed ex + €,. In particular, the family of bounded one-
dimensional pure pseudorepresentations of G is a group with respect to the
ordinary pointwise multiplication of mappings.

Proof. Since w(e) = p(e) = 1, it follows that mp(e) = 1. Since 7 and p are
bounded, it follows that 7p is also bounded. Since |7(g)| = |p(g)] = 1 for
every g € G, it follows that, for every g1, g2 € G, we have

[mp(g9192) — mp(g1)mp(g2)| = |7 (g192)p(9192) — 7(g1)7(g2)p(91)p(g2)]
<[m(g192)p(9192) — m(g1)7(92)p(9192)]
+ [m(g91)m(g2)p(9192) — m(g1)7(92)p(91)p(g2)]
= [m(g192) — m(g91)7(92)| + [p(9192) — p(91)p(92)| < e + &)

which proves that mp is a one-dimensional pseudorepresentation and e, <
€r +€p. Since the restrictions of 7 and p to any amenable subgroup H of G
are ordinary unitary characters of H, it follows that the restriction of mp to
H is a product of two unitary characters of H, and hence a unitary character
of*H. Therefore, wp is a bounded pure pseudorepresentation of G whose
defect satisfies the inequality e, < ex + €.

Definition 1. Denote the group of bounded one-dimensional pure pseu-
dorepresentations of a group G by BODPP(G).

Remark 1. Obviously, an arbitrary mapping f: G — T satisfies the condition

|f(gh) — f(g)f(h)| <2,  g,heQG,

and thus, if the defect of a pure pseudorepresentation f is not less than 2,
then the only meaningful condition on f is the condition of purity claiming
that the restriction of f to every amenable subgroup H of GG is an ordinary
unitary character of H.



Groups of one—-dimensional pure pseudo representations of groups

Remark 2. Let G be an amenable group and let f be a one-dimensional
bounded e-quasirepresentation of G satisfying the conditions f(e) = 1 and
e < 1/5. Then there is an ordinary unitary character 1) of G such that
|f(g) —¢(g)| < 1/2 for all g € G, and the character v is uniquely defined by
these conditions.

Proof. According to Lemma 3.1 of [6], if G is an amenable group and f is a
one-dimensional bounded e-quasirepresentation of G satisfying the conditions
f(e) =1 and € < 1/3, then there is an ordinary unitary character ¢ of G for
which

1f(9) —¥(g)| <e/(1—3e) forany ge€G.

If e < 1/5, then
|f(9) —v(9)l <q<1/2

for some ¢ and every g € GG, and therefore, if there is another unitary char-
acter x of GG such that

1f(9) —x(9)| <g<1/2

for any g € G, then
[¥(9) = x(9)] < 2¢ <1

for any g € G; hence 1 = x, and thus the character v is defined uniquely.

Remark 3. Recall that, by Corollary 3.2 of [6], if G is a group and f is a one-
dimensional bounded pseudorepresentation of G with defect € < 0.24, then
the restriction of f to every amenable subgroup of G is a homomorphism of
this subgroup into T, and thus f is a pure pseudorepresentation.

Definition 2. Let GBODP(G) (the first “G” in this notation stays for
“good”) be the family of bounded one-dimensional pseudorepresentations of
a group G whose defect is less than 0.24 and which are thus pure pseudorep-
resentations by Remark 3. Let BODP(G) be the subgroup of BODPP(G)
generated by GBODP(G).

§ 3. MAIN THEOREM

For the terminology used in the statement of the following theorem, see [4].
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Theorem 1. Let G be a connected Lie group, let R be the radical of G, let S
be a Levi subgroup of G, and let BODP(G) be the group introduced in Defini-
tion 2. If S has no Hermitian symmetric subgroups, then BODP(G) coincides
with the group of characters of G defined by the central characters of R (i.e.,
the characters of R invariant with respect to the inner automorphisms of G).
If S has Hermitian symmetric subgroups, then the group BODP(G) is gen-
erated by the family of one-dimensional pure pseudorepresentations F whose
defect is less than 0.24 and whose restriction to R is some central character
X of R and the restriction to S is a function of the form

i<I>(s)’

fis—e se s,

where ®© stands for a Guichardet—Wigner pseudocharacter on G and f agrees
with x on SN R, by the rule

(2) F(sr)= f(s)x(r), seS, reR.

Proof. The assertion follows immediately from the definition of the group
BODP(G) and from Lemma 3.3.10 and Theorem 3.3.17 of [4]. Formula (2)
follows from the fact that the mapping n — F((sr)"), n € Z, where s € S
and r € R, is a homomorphism:

F((sr)") = F(s"(s_("_l)7“8”_18_(”_2)7"5”_2 s rsr)) = f(s™)x(r™) = F(sr)™,

and from Remark 2.

§ 4. CONCLUDING REMARKS

Using the results of [5], we can extend the result of Theorem 1 to connected
locally compact groups.
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