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1. INTRODUCTION

In this paper we consider multiplicity of solutions for the following 2m-Laplacian prob-

lem with Dirichlet boundary condition and jumping nonlinearities;
—div(|Vul?Vu) = blu*"2ut — alu™*u” + s in Q, (1.1)

u=>0 on 0f),

where  is a bounded domain in R", n > 2, with smooth boundary 9§2,s € R, m € N,
m < 0o, ut = max{u,0} and ©v~ = — min{w, 0}.

p—Laplacian boundary value problems with p—growth conditions arise in applications
of nonlinear elasticity theory, electro rheological fluids, non-Newtonian fluid theory in a
porous medium (cf. [5], [11]. Our problems are characterized as a jumping problem.

1*corresponding author.
2% Submission date: June 14, 2018.
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Jumping problem was first suggested in the suspension bridge equation as a model of the

nonlinear oscillations in differential equation
Ust + K Upge + Kou™ = W(x) + ef (2, 1), (1.2)
w(0,t) = u(L,t) =0, Ui (0,8) = Uy (L, t) = 0.
This equation represents a bending beam supported by cables under a load f. The constant
b represents the restoring force if the cables stretch. The nonlinearity u* models the fact
that cables resist expansion but do not resist compression. Choi and Jung (cf. [1], [3],
[4]) and McKenna and Walter (cf.[10]) investigate existence and multiplicity of solutions

for the single nonlinear suspension bridge equation with Dirichlet boundary condition. In

[2], the authors investigate the multiplicity of solutions of a semilinear equation
Au+but —au” = f(x) in Q,
u=0 on £,
where €2 is a bounded domain in R™, n > 1, with smooth boundary 92 and A is a a
second order linear partial differential operator when the forcing term is a multiple s¢q,

s € R, of the positive eigenfunction and the nonlinearity crosses eigenvalues.

We know that the eigenvalue problem

—Au = lu in Q,

u=0 on 0]
has infinitely many positive eigenvalues A;, j = 1,2,---, 0 < Ap < Ay < --- < A <
- and the corresponding normalized eigenfunctions ¢;, j = 1,2,---, where the first

eigenfunction ¢; is positive. We note that the 2m—Laplacian eigenvalue problem
—div(|Vul*"?Vu) = Ajul*" 2y in Q,
u=0 on
has infinitely many eigenvalues A; = )\;-”, O< A =A< A=< <A =20 <
- and the corresponding normalized eigenfunctions ¢;, j = 1,2,---, where the first

eigenfunction ¢; > 0..

In general, It was proved in [7] that when 1 < p < oo, the eigenvalue problem
—div(|Vu|)P2Vu) = A|ul[f2u in Q,
u=0 on 0f)

has a nondecreasing sequence of nonnegative eigenvalues v; obtained by the Ljusternik-

Schnirelman principle tending to co as j — oo, where the first eigenvalue 14 is simple and
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only eigenfunctions associated with v; do not change sign, the set of eigenvalues is closed,
the first eigenvalue 14 is isolated.
Let LP(2, R) be the p-Lebesgue space defined by

d
LP(Q, R) = {u] u: Q — R is measurable, / |ulPdz < oo}
and WHP(Q, R) be the p—Lebesgue Sobolev space defined by
W' (Q, R) = {u € LP(Q, R)| Vu(z) € LP(Q, R)}.

We introduce norm on LF(Q, R) and W'P((2, R) respectively, by

: ¢ u(x
|l (@) = inf{\ > 0 / |¥|p <1},

lullwroo,m) = | / ' [Vu(o)r.
By [6], when 1 < p < oo, the embedding )
W'P(Q, R) — LP(Q, R)
is continuous and compact and for every v € C§°(€2, R), we have
[ulleg,r) < Cllullwie@,r)
for a positive constant C' independent of u. Thus we have that the solutions of the problem
—div(|Vu|)*2Vu) = f(z,u) in LP(Q),
u=0 o

belong to WhP(Q).

Let us set the operator —As,, by

—Agpu = —div(|Vu*"?Vu).
Then (1.1) is equivalent to the equation
0= (=) P2 — auP P 67,

Our main theorem is as follows:

THEOREM 1.1. Letm e N, m <oo,a<b, —oo<a <A, AJ'! <b< A ands <0.
Then (1.1) has at least four solutions.

For the proof of Theorem 1.1 we use the finite dimensional reduction method to reduce
the problem from an infinite dimensional one on L*™(2) to a finite dimensional one, and
geometric mapping on the finite reduced subspace. The outline of the proof of Theorem

1.1 is as follows: In Section 2, we introduce some preliminaries. In Section 3, we prove
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Theorem 1.1 by using finite dimensional reduction method and geometric mapping on the

finite reduced subspace.

2. FINITE DIMENSIONAL REDUCTION AND MAPPING ON FINITE DI-
MENSIONAL SUBSPACE

We assume that m € N, m < o0, a < b, —00o < a < A", Ay’ < b < AJ". Under these
assumptions, we are concerned with multiplicity of solutions of 2m—Laplacian Dirichlet

boundary value problem

—div(|Vu|)**Vu) = blu*"*u’ — alu|*™ 2u” + f(x) in Q, (2.1)

u=20 on 0f),
where we suppose that f(z) = s¢?™"!, s € R. To study equation (2.1), we shall reduce
an infinite dimensional problem on L?>™(2) to a finite dimensional one.
Let V be the two dimensional subspace of L2™({)) spanned by ¢; and ¢, and W be the

orthogonal complement of V in L?™(2). Let P be an orthogonal projection from L*™(()

onto V. Then every element u € L?™(f2) is expressed by
u=9v-+z,
where v = Pu, z = (I — P)u. Hence equation (2.1) is equivalent to a pair of equations
(I-P) (*div(‘V(U+Z)|2m_2V(’U+Z))) = (I-P) (b|v+z|2m_2(v+z)+fa|v+z|2m_2(v+z)_)7
(22)

P(=div(|V(v+2) " *V(v+2))) = P(blo+2[" 2 (v+2)  —alv+2[*" " (v+2) " +s67" ).
(2.3)

We can consider (2.2) and (2.3) as a system of two equations in two unknowns v, z.

LEMMA 2.1. Let Let m € N, m < 00, a < b, —00 < a < A", A\J" < b < A},
For fixed v € V, (2.2) has a unique solution z = 0(v). Furthermore, 6(v) is Lipschitz

continuous (with respect to L*™ norm) in terms of v.

Proof.  We suppose that for fixed v € V, (2.2) has two solutions 21, z2. Then we have
(I=P)[(=div(|V(v + 20)*"*V(v + 21))) — (= div(|V (v + 22)*" >V (v + 22)))]

= = P)[(blv + 21" (v +21)" —alv+ z " (v +21)7)

—(blv+ 2" (v + 22)" —alv+ 2P (v+ 2) 7)) (2.4)
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Taking the inner product of (2.4) with z; — 22, we have
((I=P)[(=div(|[V(v+2) " V(v + 21)))
— (= div(|V(v + 2) "V (v + 22)))], 21 — 22)
=((I = P)[(blv + 21" (v +21)" —alv+ z " (v +21)7)
—(blv + 2|2 (v+ 22)T — alv + 2| (v + 22)7)], 21 — 22). (2.5)
The left hand side of (2.5) is equal to
((I=P)[(=div(|[V(v+2) " V(v + 21)))
— (= div([V(v + 2) "V (0 + 22)))], 21 — 22)
= Cm=1) [ (1= PV @+ 2+ 0(e1 = )P
V(v + 22+ 0(21 — 22))(V(21 — 22))?)]da
> (2m — 1A} /Q[([ — P)(|(v + 22) + 0(21 — 22) "™ 2 (21 — 22)°)]d. (2.6)
by mean value theorem. On the other hand, the right hand side of (2.5) is equal to
(I =P)[(blo+ 2" (v+21)" —alo+ 2" (v+2))
—(blv+ 22w+ 22)t —alv+ 2 (v 4 2) )] 2 — 22)
< (2m — l)b/ [[I — P]lv+ 20 + 0(21 — 2)|*™2(21 — 22)%]dw (2.7)
for 0 <0 < 1. On St]he other hand, by (2.6) and (2.7), we have
(2m — 1)%”/9[(1 = P)(l(v+ 22) + 0(21 = 22) " (21 — 22)°) Jdee

< 2m—=0b [ [[I— Pllv+ 2+ 0(z1 — 2) "™ %(21 — 20)?]|dz,
Q

which is a contradiction because b < AJ*. Thus z; = 2z5. Thus for fixed v € V, every
solution of (2.2) is a unique solution z = f(v) € W which satisfies (2.2). It follows that,
by the standard argument principle, that 6(v) is Lipschitz continuous in v. ]

By Lemma 2.1, the study of multiplicity of solutions of (2.1) is reduced to the study of

multiplicity of solutions of an equivalent problem

P( —div(|V(v + 0()) "2V (v + 9(7)))))

= P (b +0(v)"" (v + 0(0))* — alv + 0(v)" (v +0(0))” + 567" )  (2.8)
defined on the two-dimensional subspace V spanned by {¢1, ¢2}. For some special case

u's, we know 6(v) as follows: If v > 0 or v < 0, then #(v) = 0. In fact, for example, take

v >0 and §(v) = 0. Then (2.2) is reduced to

(I = P)(—div(|]V(v)]*"*Vv)) = (I = P)(blo]*"*v" —alo["*v) =0
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because vT = v, v~ =0, (I = P)( — div(|V(v)[*"2Vv)) = 0 and (I — P)bjv|*"~2v = 0.
If v <0 and #(v) = 0, then

(I = P)(—div([V()]*" Vo)) = (I —P)(blv]"" vt —alv]* 0™ + s¢i™ ")
(= PP+ st ) =0

because v =0, v~ = —v, (I — P)( —div(|V(v)|*"2Vv)) = 0 and (I — P)a|v[*""?v = 0.
Thus (2.1) is reduced to

P( _ diV(|VU|2m_2VU) _ P(b|’l)|2m_27]+ _ a|'u\2m_2v_ + S(Zﬁm—l)’

where v = c¢q, ¢ € R.
We define a map h: V — V given by

h(v) = P(—Agm(v—i—ﬂ(v))—P(b|v—|—9(v)|2m72(v+0(v))+—a|v+9(v)|2m72(v+9(v))7) (2.9)
for v € V. Then h is continuous on V/, since # is continuous on V.
LEMMA 2.2.  h(dv) = d*"'h(v) ford > 0 and v € V.

Proof. We can easily check that 6(dv) = df(v). It follows the lemma. .

LEMMA 2.3.  Let m € N and m < oo. Then there exists 7 > 0 such that

(h(d1y + dagha), p7™ ") < —7|da[*™ .

Proof. Let u = di¢ + dachs + 6(d1,dz). Then
(h(dir + datha), 67" ")
= (P(=Daom(di61 + dayy + 0(dy, d2)) = N (diy + dapp + 0(dy, d2))*™ 1), 97" 1)
,<(P(b|u‘2m—2u+ _ a|u|2m’2u’ + )\*inu2m71)7¢%m71>'

The first part of the right hand side is equal to 0 because (P(—Ag, (d1¢1+dago+0(dy, dy)—
MNP (d1py + datpy + 0(dy, do))*™ )™ = 0. Since

P(blul™u™ — alu[™ 0™ + AP > min{b — A AP — a}u*"
we have
(h(di¢1 + dagpa), ¢7™ ") < —min{b — A", A\[" — a} / ™t pam L,
Since min{b — A", \* — a} > 0, there exists a constant 7 > 0 such that
minfb — A A — a}6im ! > 7ol
for some 7 > 0. It follows that

(h(dvy + daths), 97" 1) < —T/ u]?™ 3™ | < —7 /(Wﬁz)?m*l\ = —7|(u, ¢2)]" .
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3. PrROOF OF THEOREM 1.1

By Lemma 2.2, h maps a cone with vertex 0 onto a cone with vertex 0.
Let us split V into four regions as follows: Since the subspace V is spanned by {¢1, ¢}
and ¢;(z) > 0 in €2, there exists a cone D; defined by

Dy ={v=dip1+dags:dy >0, |ds] < €odr}
for some small number €y > 0 so that v > 0 for all v € D; and a cone D3 defined by
={v=dip +dagpy : d1 <0, |da| < €o|ds|}

so that v < 0 for all v € D3. Thus by the above statement, #(v) = 0 for v € D; U D3. Let
us set
Dy = {v =di¢1 + dagps : d2 > 0, €o|dyi| < da}

and

Dy ={v=diy +dagpa : dy <0, €|dy| < |[da]}.
Then the union of four cones D; (1 < i < 4) is the space V. Now we investigate the
images of the cones D; and D3 under h. First we consider the image of the cone D;.
If v =di¢ + €opa > 0, then v > 0 and 6(v) = 0. It follows that (v + 0(v))" = v and
(v+46(v))” = 0. Thus we have
h(v) = P(=Dgum(v+0(v)) = P(blv +0(v) " (v + (v))" — alv+ 0(v)[*" (v + 0(v))")

/\dem 1 2m 1+)\md2m 1 2m 1 b(d2m 1 2m 1+d2m 1 2m 1)

= A7 = DB 4 (O — b

Thus the images of the rays di¢; & egdipa(d; > 0) can be explicitly calculated and they
are

BT = )i £ T AT (AR = b)gEm T (dy > 0).

Therefore h maps D onto the cone

AP —b
{61¢2m 1+e¢2m1 61<O‘€2|<62m 1</\3n b>el}'
m—

The cone Ej is in the left half-plane of V' and the restriction h|p, : D; — Ej is bijective.
Next We determine the image of the cone Ds. If v = —dj¢1 + dagpy < 0, we have

h(v) = P(=Bam(v +0(v)) = P(blv+ )" *(v + 0(v))" = alv + 0(v) " (v + 0(v)) ")
— AEIL(_d§TVL71)¢%7rL71 + )\g,Ld§7rL71¢§rrL71 _ a(—d277L71)¢%7rL71 + d§7'L71¢§T'L71)
— O = A OF e,
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Thus the images of the rays —di¢; + eodipo. (di > 0) can be explicitly calculated and
they are

—ETI O - @) E @ ET 08 — a)edn T (d 2 0).

Therefore h maps D3 onto the cone

by = {el¢2m Peay e <0, fes| <™ 1‘/\m: le 1}

The cone Fj is in the left half-plane of V' and the restriction h|p, : D3 — Ej3 is bijective.
We note that £y C Ej since a < AT" < A" < b < AY'.
Thus h(v) = s¢?™~1 s < 0, has one solution in each of the cones Dy, D3, namely

S

1 S
o

)\T)Wlflgbl < 0.

Now we investigate the images of the cone Dy and D4 under the map h. Let us consider
the image under h of the line L in Dy: L : v = dy¢1 + dagpa € Dy with dy > €l|dy|, do = k
for some k£ > 0.
By Lemma 2.3, we have

(P(v), o7 ) < —7do™ 1.

Therefore the image of h(L) of L : dy = k, d < }Uk must lie to the left of the line
e; = —7k? L. Thus we have shown that if u = dy¢1 + koo + 0(dy, k), k > 0, |di] < g

then u satisfies, for some dy,
—div(|Vu|)* 2Vu) — blu|*™2ut + a|u|*™ 2u" = s¢?™ !

for some s < —7k?™~! and k is positive.

Similarly we can get one solution of (1.1) in the region D, as follows: Let us consider
the image under & of the line L in Dy:L : v = dy¢y +dags € Dy with |do| > €ldy|, dy = —k
for some k£ > 0.

By Lemma 2.3, we also have
< ( ) ¢2m 1> —T|d2‘2m 1 _ Tk2m71.

Therefore the image of h(L) of L : dy = —k, |di| < | — k| must lie to the left of the
line e; = —7| — k|*™~!. Thus we have shown that if u = dy¢; — k¢ + 0(dy, —k), k > 0,
|dy | <l k‘ , then @ satisfies, for some d;,

—div(|Vu|)*2Vu) — blu*™2ut + a|u|*™ 2u" = s¢?™ !

for some s < —7| — k"1 and —k is negative. Thus for some s < 77'| + kP k>0,

—)om-1 1¢>2m Lis in Ds, the

one solution (-2 )2m 16?1 is in Dy, another solution —(

b—AT" /\m

third one is in Dy and the fourth one is in D,. Thus we prove that (1.1) has at least four
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solutions, one in each of the four cones, which D; and D3 divide the , ¢, ¢2 plane into.

Thus we prove Theorem 1.1. .
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GROUPS OF ONE-DIMENSIONAL
PURE PSEUDOREPRESENTATIONS OF GROUPS

A. 1. SHTERN

ABSTRACT. The group of bounded one-dimensional pure pseudorepresen-
tations of a group is introduced together with its subgroup generated by
bounded one-dimensional pure pseudorepresentations with sufficiently small
defects. This subgroup of “good” one-dimensional pseudorepresentations is

described for connected Lie groups.

§ 1. INTRODUCTION

Let G be a group and let @ be a one-dimensional pseudorepresentation
of G, ie., m: G — C* = C\ {0}, w(e) = 1, where 7 is the identity element
of G, and

(1) [w(gh)—m(g)n(h)| <e,  g,heG, and =(g")=n(9)*, ke

The minimum number ¢ satisfying (1) is called the defect of the pseudorep-
resentation m. A pseudorepresentation is said to be pure if its restriction
to every amenable subgroup of GG is an ordinary complex character of the
subgroup. For the generalities concerning pseudorepresentations, see [1-5];
for the specific features concerning one-dimensional pseudorepresentations,
see [6].
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