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NUMERICAL SIMULATION OF ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS USING 3-SCALE HAAR
WAVELETS
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ABSTRACT. Elliptic partial differential equations (PDEs) arise in the
mathematical modelling of many physical phenomena in science and en-
gineering. In this paper, we obtain the numerical solution of Laplace
and Poisson equations using two-dimensional 3-scale Haar wavelets. The
elliptic PDEs are converted into a system of algebraic equations that
involve a finite number of variables. The numerical results are com-
pared with the exact solution to prove the accuracy of the Haar wavelet
method. The error analysis of the 3-scale Haar wavelet method proves
that the solution improves with the increase in the levels of resolution
of the wavelet.
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1. INTRODUCTION

Wavelet theory is the result of a multidisciplinary effort that brought
together mathematicians, physicists and engineers. Wavelets are mathe-
matical functions that decompose data into different frequency components
and then each component is studied with a resolution matched to its
scale. Over the recent decades, wavelets by and large have picked up a
respectable status because of their applications in different disciplines and
in that capacity have many success stories. Prominent effects of their
studies are in the fields of signal processing, computer vision, seismology,
turbulence, computer graphics, image processing, structures of the galaxies
in the universe, digital communication, pattern recognition, approximation
theory, quantum optics, biomedical engineering, sampling theory, matrix
theory, operator theory, differential equations, integral equations, numerical
analysis, statistics, tomography, and so on. A standout amongst the
best utilizations of wavelets has been in image processing. The Federal
Bureau of Investigation (FBI) has built up a wavelet based algorithm
for fingerprint compression. Wavelets have the capability to designate
functions at different levels of resolution, which permits building up a chain
of approximate solutions of equations. Compactly supported wavelets are
localized in space, wherein solutions can be refined in regions of sharp
variations/transients without going for new grid generation, which is the
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common strategy in classical numerical schemes.

In the year 1909, Alfred Haar, a Hungarian mathematician introduced
Haar function which were later known as Haar wavelets. His contribution
to wavelets is evident. There is an entire wavelet family named after him.
The Haar wavelet is a sequence of rescaled “square-shaped” functions
which together form a wavelet family or basis. They consist of piecewise
constant functions and are therefore the simplest orthonormal wavelets with
a compact support. An advantage of these wavelets is the possibility to
integrate them analytically arbitrary times. They are conceptually simple,
fast, memory efficient and exactly reversible [1]. In recent years, the wavelet
approach for the solution of differential and integral equations has become
very popular. Multiresolution analysis of wavelets capture local features
efficiently and enables to detect singularities, shocks, irregular structures
and transient phenomena exhibited by the analyzed equations. Chen and
Hsiao [2] recommended to expand into the Haar series the highest order
derivatives appearing in the differential equation. This idea has been very
prolific and applied abundantly for the solution of differential equations.
The wavelet coefficients appearing in the Haar series are calculated either
using Collocation method or Galerkin method.

Lepik [3, 4, 5, 6, 7, 8, 9] determined the numerical solutions of linear
integral equations, differential equations, nonlinear integro-differential equa-
tions, evolution equations, stiff differential equations and two-dimensional
PDEs using 2-scale Haar wavelets. Bujurke et al. [10] developed a
wavelet-multigrid method that uses Daubechies family of wavelets to
solve elliptic boundary value problems arising in mathematical physics.
Bujurke et al. [11, 12, 13] also used 2-scale Haar wavelets to obtain the
solutions of Sturm-Liouville problems, stiff differential equations arising
in nonlinear dynamics and nonlinear oscillator equations. Wang and
Zhao [14] solved two-dimensional Burgers’ equation using two-dimensional
2-scale Haar wavelets. Celik [15] also applied two-dimensional 2-scale
Haar wavelets to obtain the numerical solution of magnetohydrodynamic
flow equations in a rectangular duct in presence of transverse external
oblique magnetic field. Sumana et al. [16, 17, 18, 19, 20, 21, 22, 23] solved
two-dimensional hyperbolic, parabolic and elliptic PDEs, Fredholm and
coupled Fredholm integral equations, non-homogeneous, non-planar and
time-delayed Burgers’ equations using 2-scale Haar wavelets. Nayak et al.
[24] used two-dimensional discrete wavelet transform for finding an auto-
mated and accurate computer-aided diagnosis system for brain magnetic
resonance image classification. Patel et al. [25] solved fractional PDEs
for electromagnetic waves in dielectric media by developing new numer-
ical techniques based on two-dimensional Legendre and Chebyshev wavelets.

Hosseininia et al. [26] determined the numerical solution of two-
dimensional variable-order time fractional nonlinear advection-diffusion
equation with variable coefficients using two-dimensional Legendre wavelets.
Mittal and Pandit [27] developed a new numerical scheme based on 3-scale
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Haar wavelets to determine the numerical solution of one-dimensional
Burgers’ equations. Abdulkareem et al. [28] applied two-dimensional
continuous wavelet transform to detect damages in structures based on
vibration response. Haq et al. [29] determined the numerical solution of two
dimensional linear, nonlinear Sobolev and non-linear generalized Benjamin-
Bona-Mahony-Burgers’ equations by applying finite differences for temporal
part and two-dimensional Haar wavelets for the spatial part. Orug [30]
used two-dimensional non-uniform Haar wavelets to solve two-dimensional
convection dominated equations and two-dimensional near singular elliptic
PDEs. Rostami [31] developed an approximate solution of two-dimensional
nonlinear Volterra-Fredholm partial integro-differential equations with
boundary conditions using two-dimensional Chebyshev wavelets. Ray and
Behera [32, 33] solved two-dimensional Fredholm integral equations of
second kind and linear Volterra weakly partial integro-differential equations
numerically using two-dimensional Bernoulli and Legendre wavelets.

In this paper, we have obtained the numerical solution of some elliptic
PDEs using two-dimensional 3-scale Haar wavelets.

2. HAAR WAVELET
The 3-scale Haar wavelets [27] for x € [0, 1] are defined as follows,
pl(x) for even 4,

(2

W pale) = {wf(m) for odd ¢,

where
-1 for gl §I<£2,
1 ]2 for&<a<&,
(2) bi(e) = —=
V2 | -1 for & <z <y,
0 elsewhere,
1 for gl <z< 527
310 for & <z < &3,
(3) i) =[5
21 -1 for& <a<&y,
0 elsewhere,
k k+ 3 k+3 k+1
(4) 51 = €2 = ) 63 = ) 54 = .
c c c c

In the above definition ¢ = 3¢, d = 0,1,...,J indicates the level of the
wavelet; Kk = 0,1,...c— 1 is the translation parameter. J is the maximum
level of resolution. For index i = 1, hi(x) is assumed to be the scaling
function which is defined as follows.

1 forze[0,1)
(5) hi(z) =

0 elsewhere
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For index i > 1, even and odd indices are calculated from the formulae
i=c+2k+1 and i = ¢+ 2k + 2 respectively.

In order solve differential equations of any order, we need the following

integrals.
x
K 0} (z) = [} (x)dzx for even i,
©  wle)= [ e = 2
0 0?(z) = [¢Z(x)dx for odd i,
0
where
S1—x for & <z < &,
1 |2z —-36+¢ for & < x < &3,
(7) o} (x) = 7= s : ’
216 -3 +3G—a for &y <ax <&y,
0 elsewhere,
S for & <z < &9,
§2—¢ for & < x < &,
(8) 922(.%’) _ \/§ 2 1 2 3
2|+ —¢cx for & <a< &y,
0 elsewhere.
7 ¢Mz) = [0} (z)dx for even i,
9) qi(x) = /pi(:v)dx = 0
0 G(z) = Of@?(l')dm for odd 1,
where
(10)
—(& —a)? foré; <z < &,

2x - 26+ &) (z— &) — (& — &) for & <z <&,
Hx) = ENG) (38 —26 —a)(z — &) — (G —&)?  for & <o <&,
(3863 =28 — &) (&a — &) — (61— &)? for & <z <1,

0 elsewhere,
(z —&)? for & <2 <&,
(&2—&)2x - & — &) for & < @ < &3,

1 [3 | (@ —=E&)(6 + 26 — 28 —x)

1) Gl)= 2V 2 + (&2 — &1)(263 — &2 — &)
(€4 —&3)(&3 +286 — 26 — &)
+ (& —-&)28 -6 - &)

0 elsewhere.

for 53 S X <§47

fOI‘£4§J}§1,
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The Haar wavelets (1)-(5) and its integrals (6)-(11) for ¢ = 1,2,...,9 are

presented in Figure 1.

pi() ()

Figufe 1: hi(x), pi(z) and ql(z) fori=1,2,...,9

359



360

K. P. Sumana, L. N. Achala and V. N. Mishra

2.1. Function approximation. Any function g(x,y) which is square inte-
grable on [0,1) x [0,1) can be expressed as an infinite sum of Haar wavelets
as

(12) gz, y) =D aijhi(@)h;(y)
i=1 j=1

where

(13) aij—/l/lg hj(y) dz dy.
00

If g(x,y) is approximated as piecewise constant in each sub-area, then equa-
tion (12) will be terminated at finite terms, i.e.

3M1 3M>

(14) Z Z aijhi(x)h;(y

=1 j=1
where the wavelet coefficients a;;, i = 1,2,...,3My, j = 1,2,...,3M> are to
be determined. Here M; = 37t and M, = 3"27 and Ji, Jo are the maximum
levels of the resolution of the wavelet.
3. METHOD OF SOLUTION

In this section, the description of the Haar wavelet collocation method
(HWCM) to solve two-dimensional elliptic PDEs is outlined.

3.1. Laplace Equation. Consider the Laplace equation

Pu  0%u
— + == = <z< <y<
(15) a932+8y2 0,0<x<1,0<y<l,
with boundary conditions
u(x,0) = fi(x
) @0 =h@)
(z,1) = fa(x)
u(0,9) = g1(y)
17 0<y<Il.
" u(lg) = gol) | O 5YS

The order of the PDE (15) is 2 w.r.t.  and 2 w.r.t. y. Therefore the Haar
wavelet solution is assumed to be in the form

3M13M>

(18) Uxxyy z y Zzam

i=1j=1
Integrating equation (18) twice w.r.t. y in the limits [0,y] and using the
boundary conditions (16), we obtain

3M13Ma2

(19) tee(z,y) = D> Y aiihi(@)lg;(v) — yg; (D] + yfs (@) + (1 — ) £ ().

i=1j=1
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Integrating equation (18) twice w.r.t. = in the limits [0,z] and using the
boundary conditions (17), we arrive at

3M13M>
(20)  wyy(z,y) = D> aijlai(x) — xai(1)]h; () + 295 (y) + (1 — 2)g7 ().
i=17j=1

Integrating equation (19) twice w.r.t. x in the limits [0, 2] and using the
boundary conditions (17), we have

(21) 3M13M>
z,y) =YY aijlai@) — 2¢i(1)]g; () — yg; (D] + yfo(z) + (1 - y) i)
i=14—1

+2g2(y) + (1 = 2)g1(y) — 2[yg2(1) + (1 — y)g2(0)]
— (1= 2)[yg1(1) + (1 = y)g1(0)].

The wavelet collocation points are defined as

(22)
m—0.5 n—0.5
wm:77m:172a3a"'73M17 yn:ma

=1,2,3,...,3Ms,
3M1 n ) 2

Substituting equations (19) and (20) in equation (15), and taking z — =,
and y — y, in the resultant equations, we get

3M7 3M2

(23) Z Z aijAijmn = ¢(Tm, Yn),

i=1 j=1

where

(24)  Agjmn = hi(zm)g;(yn) = ynqi (D] + [gi(zm) — 2mai(1)]h;(yn),

(25) &(@m,Yn) = (Yn — D1 (@m) — Yn S5 (@m) + (@m — 1)g{ (Yn) — Tmgh (Yn).

Taking  — z,,, and y — y,, in the solution (21), we obtain
(26)
3M13M2

Jim, yn Zzaw (IZ xm mei(l)][Qj(yn) - yn‘]j(l)] + ynf2(1‘m)
i=1j=1
+ (1 = yn) f1r(zm) + 2mg2(yn) + (1 — 2m) g1 (yn)
— Tm[yng2(1) + (1 — yn)g2(0)]
= (1= @m)[yng1(1) + (1 = yn)g1(0)].
The wavelet coefficients a;;; @ = 1,2,...,3My, j = 1,2,...,3M> can be
calculated from equation (23). These coeflicients are then substituted in

equation (26) to obtain the Haar wavelet solution at the collocation points
T, m=1,2,...,3M1, yo, n=1,2,...,3Mo.

The Laplace equation and Poisson equation have the highest order of the
derivative w.r.t. x and y as 2 and 2 respectively. Therefore, the Haar wavelet
method outlined in (18)-(22) is common to both the equations.
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3.2. Poisson Equation. Consider the Poisson equation

v B%u

with boundary conditions

u(z,0) = fi(x)
28 0<z<1,
29 ulw1) = fofa) [ OS5

u(0,y) = g1(y)
29 0<y<1,
29) u(ly) =p@ [ 7

where F'(z,y) is the inhomogeneous term.

Substituting equations (19) and (20) in equation (27), and taking = — =,
and y — y, in the resultant equations, we get

3M;1 3M>
(30) DN i Aijmn = (T, yn),
i=1 j—1
where
(32)
¢(xma yn) = F(mmv yn) + (yn - 1) {/<517m) - ynfél(xm) + (‘Tm - 1)9/1I(yn>
- xmg/Q/(yn)~

In order to calculate the approximate solution of the Poisson equation (27),
the wavelet coefficients a;;, ¢ = 1,2,...,3M;, j = 1,2,...,3M> computed
from equation (30) are substituted in equation (26).

4. ERROR ANALYSIS

In this section, the error analysis of the Haar wavelet collocation method
has been discussed.

Lemma 4.1. If g(z,y) € L*(R?) is a continuous function in (0,1) x (0,1)
with |92(2, Y)| < Ku, lgy(z,y)| < Ko ¥ (z,9) € (0,1)x (0, 1); Ki, K> > 0 and

ZZa” x)h;j(y), then

i=1 j=1
|aij\ < 3_%(d1+d2_2) (3_d1K1 + 3_d2K2> .
Proof. According to the two-dimensional multiresolution analysis,

(33) g(@y) =D aijhi(x)h;(y)

i=1 j=1
where

(34) hi(z) =3Fh(3%z —ki); ki=0,1,....30 1, d1=0,1,...,J1,

(35) hj(z) =3Fh(3%y —ky): ky=0,1,...,3% —1, dy=0,1,...,.J5,
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(36)

hj(y)dzdy.

Substituting equations (34) and (35) in equation (36) gives

(37)

We have,

(38)

(43)

Here, &
g = (k1 +1)3™%

1 1
://37172 Yh(3%
0 0

h(3Mz — k) = ' (3%

— k1)h(3%y — ko) dx dy.

k1) +¢% 3%z — k),

h(3y — ky) = ' (3%y — ko) + 9*(3%y — ky),

1
1/9d
3hy ) = —
Y (3% — k1) 7
3
VM = ki) =/
1/]1(3d2y _ k2) — L
V2
3
P2(3%y — ko) = 2
k13id1, EQ =
1= ko372,

Ny = (kg +1)37%,

=1 for & <z <&,
2 forfo <z <&,
—1 for & <z <&y,
0 elsewhere,
1 for&§ <z <&,
0 for& <o <&,
—1 for &3 <z <&y,
0 elsewhere,
=1 form <y <o,
2 formp <y <,
—1 formy <y <m,
0 elsewhere,
1 form <y<nm,
0 form <y<mns,
-1 formg <y <m,
0 elsewhere.
(k1 +3)3 &g o= (bt
= (ky+3)37%, 3 = (k2 +

363
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Substituting equations (38) and (39) in equation (37), we get
11
aij = //3%<d1+d2>{¢1(3dlx — k) + ¥2(3% 2 — k) Ho' 3%y — ka)
00

+ 92 (3%y — ko) }g(z, y) dz dy.

We have,
(44) a;; = 3(di+dz) (Aij + Bij + Cyj + Dyj)
where
1 1
45) Ay = / / o,y (3 — b (3% — hy) dardy,
0 0
1 1
(46) By = / / o,y (3 — kWA (3%y — ky) dardy,
0 0
1 1
(47) Cij = / / g(z, ) (3% x — k)Y (3%y — ke) dz dy,
0 0
1 1
(48) Dyj = / / 9(z, )* (31 — k1 )?(3%y — ky) dz dy,
0 0

To evaluate the integrals in equations (45)-(48), we use the Mean Value
theorem and the conditions |gq(z,y)| < K1, |gy(z, y)| < K2V (z,y) € (0,1) x
(0,1); K1, K2 > 0. We obtain,

(49) Ay <4 {3*<d1+d2+2) (3*‘11 K+ 3% K)}
(50) 1Bi;| <2V3 {3*<d1+d2+2> (3*‘11 Ky + 37% Kg)} ,
(51) Cigl < 2v3 {32 (3t gy gt gy )}
(52) 1Dy <3 {3—<d1+d2+2) (3—d1 Ky + 37% Kg)} :

Using equation (49)-(52) in equation (44), we arrive at
(53) layj| < 37 2(d1Fd2-2) (?fdlKl v 3*‘121(2) .
]

Theorem 4.2. Ifu(z,y) is the ezact solution and ugpr, 3, (T, y) is the Haar
wavelet solution, then

VC

—_— {37%J13%(J2+2)K1

2_4(3°3)
+3%(J1+2)3—%J2K2}

1E5 .21l = llu(z,y) — usnr 30 (7, 9)|| <

where C, K1, Ko > 0, J1, Jo are the levels of resolution of the wavelet, M =
3, and My = 372,
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Proof. From equation (21), the Haar wavelet solution is given by
(54)
3M13Ms

ugnn v (2,y) = Y Y aijlai(@) — xai(1)][;(y) — ya;(1)] + yfo()

i=1j5=1
+ (1 =y)fi(@) + 292(y) + (1 = 2)91(y)
— 2[yg2(1) + (1 = 9)g2(0)) = (1 = 2)[yg1 (1) + (1 = ¥)91(0)].
Taking the asymptotic expansion of equation (54), we get
(55)
u(z,y) = ZZ% qi(x) — 2qi(1)][q;(y) — yq; (V)] + yfo(z) + (1 —y) fi(2)
i=1j=1
+ag2(y) + (1 — 2)g1(y) — x[ygz2(1) + (1 — y)g2(0)]
- (1 =2)[ygr(1) + (1 = y)g1(0)].
The error estimation at the J;*™ and Jyt™ levels of resolution is
(56) IEn .l = llulz,y) = usan 300 (2, y) |
Substituting equations (54) and (55) in equation (56), we arrive at

GT) NEnRl=] D> D aylalx) —za(1)]g(y) - yg;(1)]]-

i=3M;+1 j=3My+1

Bl =| [ {33 asla) - a0l - vas0),

i=N1 j=Na

—0o0 —O0

S tlan®) 20 ()]an(y) — vaa(1)] e dy ]

m=N1 n:NQ
where Ny =3M; +1, Ny =3Ma +1
1

i i i i aijam"//{[‘]i(x)_in(l)HQj(y)
0 0

i=N; j=Nz m=Ni n=N3

= g e) = (1)) ()] e |

S Z Z Z Z ‘aij| |a7rm‘c

i=N1 j=Na m=N1 ’n*NQ

1
where C — sup / / lai(2) — 2:(1)][g5 () — 5 (1)][gom ()
0

%,J,m,n

~ 24 (D][ga(y) — yaa(1)] }dz dy

Therefore,

(58) HEJ17J2H2 <C Z Z ‘aij| Z Z |amn|-

i=N1 j=N2 m=N1 n=Ns

365
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Using Lemma 4.1, we have

i i laij| < Z Z 3—3(di+dz-2) (30 + 3 )

1=N1 j=N2 1=N1 j=N2
3d1+1 o 3dg+1

— 3K, Z Z Z Z 3-3(3di+dz)

di=J1+1 =341 41 do=J2+1 j=3d2 41
gd+1 3da+1

+ 3K, Z > Z 3 3adisd)

di=J1+1 =391 41 do=J2+1 j=3d2 41

= 3K, Z Z 3~3(di—d

di=J1+1da=J2+1
00 0o ;
f3 YYD s
di=J1+1do=J2+1
Thus, we get
7J132(J2+2)K1+32(J1+2)3 2J2K2

(59) Yo D layl <3 24}

i=N1 j=N3
Similarly,
3**1132(J2+2)K + 32(114»2)37—‘]2[(
(60) Z Z |amn| < : _1 ’.
m=N1 n=Ns 274(3 2)

Substituting equations (59) and (60) in equation (58), we obtain
3734330 g | 3303 R, |
—4(372) '

(61) ”EWJl,Jz”2 < C{

Therefore,

VC {37%J13%(J2+2)K1 + 3%(J1+2)3*%JQK2}

(62) 1En.2| <
" 2 —4(372)

It is clear from equation (62) that the error bound || Ey, j,|| = 0 as Jyi, JJo —

00. Hence the accuracy of the Haar wavelet method improves as the levels

of resolution J; and Jy are increased. O

Error Estimate: We define the wavelet error estimate as
1

(63) n= Wm lu(z,y) = vez(z, )|,

where ue,(z,y) is the exact solution.

5. EXAMPLES AND DISCUSSIONS

In this section, two examples each of Laplace equation and Poisson
equation are discussed. The Haar wavelet is defined in the domain [0,1].
In the examples considered, wherever the domain is not [0, 1], the problem
is transformed using suitable transformations to [0,1] and then solved
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using HWCM. Lagrange bivariate interpolation is used to determine the
solution at the specified points. The entire computational work is done
using MATLAB.

Example 1:

Consider the two-dimensional Laplace equation

Pu  O%u
64 —+-—==0, 0<z<1,0<y<1
(64) 6’x2+8y2 ’ Sr=hUsYsS
subject to the boundary conditions
u(z,0) =0 u(0,y) =0
65 0<z<1 0<y<1.
(65) u(z,1) = sin(wx)} =E=5 u(l,y) =0 =v=

The exact solution is
sin(mx) sinh(my)
sinh(7)
The HWCM solution of this example with J; = Jo = 2 is given in Table
1. The results are compared with the exact solution and are found to be in

good agreement. Figure 2 shows the physical behaviour of the HWCM solu-
tion. The error estimates obtained for different J;, J5 are given in Tables 2-4.

(66) u(z,y) =

Example 2:
Consider the two-dimensional Laplace equation
Pu  d%u B

72 Top =0 lsTs20<ys<l

subject to the boundary conditions

(67)

(68) u(z,0) = 2log(x) 00) = ol 1)} 0<y<L

1<2 <2,
u(z,1) = log(z? + 1)} T 7 T u(l,y) =log(y?* +4)
The exact solution is

(69) u(z,y) = log(2? + y*).

The HWCM solution of this example with J; = Jy = 2 is given in Table
5. The results are compared with the exact solution and are found to be in
good agreement. Figure 3 shows the physical behaviour of the HWCM solu-
tion. The error estimates obtained for different Jy, J5 are given in Tables 6-8.

Example 3:

Consider the two-dimensional Poisson equation

O o

(70) 922 + 9,2

= (@ +y%)e™, 0<z<1,0<y<1,
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subject to the boundary conditions

(71) u(x,O)—1}0<x<1 u(07y)—1}0<y<1.
u(z,1) = e” -t u(l,y) = e -0

The exact solution is

(72) u(z,y) = ™.

The HWCM solution of this example with J; = Jy = 2 is given in Table
9. The results are compared with the exact solution and are found to be
in good agreement. Figure 4 shows the physical behaviour of the HWCM
solution. The error estimates obtained for different Jy,Jo are given in
Tables 10-12.

Example 4:

Consider the two-dimensional Poisson equation

Pu Pu oz oy
—+t—=—4+=, 1<zx<2, 1<y<L?2
8z2+8y2 y—'_:r7 =rssisi=s

subject to the boundary conditions

(74)

The exact solution is

(75) u(z,y) = zylog(zy).

The HWCM solution of this example with J; = Jy = 2 is given in Table
13. The results are compared with the exact solution and are found to be
in good agreement. Figure 5 shows the physical behaviour of the HWCM
solution. The error estimates obtained for different Jp, Jo are given in Tables
14-16.

(73)

u(z,0) = zlog(x)

u(0,y) = ylog(y)
u(m,l):xlog(4x2)} 1<z <2, } <y<2.

u(1,y) = ylog(4y?)

6. CONCLUSION

In this paper, an efficient numerical scheme based on two-dimensional
uniform 3-scale Haar wavelets is used to solve elliptic PDEs, namely, two-
dimensional Laplace and Poisson equations. The numerical scheme is tested
for four examples. The obtained numerical results are compared with the
exact solutions. These results establish the high accuracy of two-dimensional
3-scale Haar wavelet collocation method even with a small number of grid
points. The wavelet error, absolute error and relative error values for all
the examples are very small. This indicates that the HWCM solution is
very close to the exact solution. The error analysis of the 3-scale Haar
wavelet method is also carried out. The theorem proves that the accuracy
of the method improves with the increase in the levels of resolution of the
Haar wavelet. This method is most convenient for solving boundary value
problems as it takes care of boundary conditions automatically. This method
is simple, fast, reliable, flexible and computationally efficient. This method
can also be used to solve nonlinear PDEs.
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Table 1: Comparison of the HWCM
solution and exact solution of

Table 2: Wavelet Error in the
solution of Example 1

Example 1
Ji | 2 &
(z.3) i) = =
’ HWCM Exact 1 | 1 | 1.0248E-05 | 1.2877E-05
(0.1,0.2) | 0.0179448129 | 0.0179405685 2 | 2 | 4.4111E-07 | 5.3499E-07
(0.1,0.4) | 0.0432044270 | 0.0431998876 3 | 3 | 1.6605E-08 | 2.0087E-08
(0.1,0.5) | 0.0615797240 | 0.0615773244 4 | 4 | 6.1611E-10 | 7.4493E-10
(0.1,0.6) | 0.0860811546 | 0.0860823492
(0.1,0.8) | 0.1640724902 | 0.1640816042
(0.3,0.2) | 0.0469801301 | 0.0469690182 | Table 3: Absolute Error in the
(0.3,0.4) | 0.1131106582 | 0.1130987739 solution of Example 1
(0.3,0.5) | 0.1612178104 | 0.1612115282
(0.3,0.6) | 0.2253633885 | 0.2253665161 | [ ; [ Absolute Error
(0.3,0.8) | 0.4295473560 | 0.4295712167 Ly Lo
(0.5,0.2) | 0.0580706344 | 0.0580568993 1| 1 |8.3005E-04 | 1.0431E-03
(0.5,0.4) | 0.1398124626 | 0.1397977728 2 | 2 | 3.2157E-04 | 3.9001E-04
(0.5,0.5) | 0.1992761728 | 0.1992684077 3 | 3 | 1.0895E-04 | 1.3179E-04
(0.5,0.6) | 0.2785644679 | 0.2785683338 4 | 4 | 3.6381E-05 | 4.3988E-05
(0.5,0.8) | 0.5309497315 | 0.5309792250
(0.7,0.2) | 0.0469801301 | 0.0469690182
(0.7,0.4) | 0.1131106582 | 0.1130987739 |  Tuble 4: Relative Error in the
(0.7,0.5) | 0.1612178104 | 0.1612115282 solution of Example 1
(0.7,0.6) | 0.2253633885 | 0.2253665161
(0.7,0.8) | 0.4295473560 | 0.4295712167 | g Relative Error
(0.9,0.2) | 0.0179448129 | 0.0179405685 Ly Lo
(0.9,0.4) | 0.0432044270 | 0.0431998876 1| 1 |1.2063E-02 | 8.9674E-03
(0.9,0.5) | 0.0615797240 | 0.0615773244 2 | 2 | 4.0717E-03 | 3.0736E-03
(0.9,0.6) | 0.0860811546 | 0.0860823492 3 | 3 | 1.3591E-03 | 1.0283E-03
(0.9,0.8) | 0.1640724902 | 0.1640816042 4 | 4 | 4.5310E-04 | 3.4289E-04

01 02 03 04 05 06 07 08 09

X

Figure 2: Physical behaviour of the HWCM solution of Example 1
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Table 5: Comparison of the HWCM
solution and exact solution of

Table 6: Wavelet Error in the
solution of Example 2

Example 2

u(z,y) Ji| T2 Lo T Loo
(@) HOWCM Exact T | 1 | 8.4940E-07 | 1.1409E-06
(0.1,0.2) | 0.2231421963 | 0.2231435513 2 | 2 | 3.4791E-08 | 4.6102E-08
(0.1,0.4) | 0.3148094640 | 0.3148107398 3 | 3 | 1.3031E-09 | 1.7235E-09
(0.1,0.5) | 0.3784352826 | 0.3784364357 4 | 4 ]4.8322E-11 | 6.3896E-11
(0.1,0.6) | 0.4510746145 | 0.4510756194
(0.1,0.8) | 0.6151850892 | 0.6151856391
(0.3,0.2) | 0.5481190148 | 0.5481214085 |  Tuble 7: Absolute Error in the
(0.3,0.4) | 0.6151847065 | 0.6151856391 solution of Example 2
(0.3,0.5) | 0.6626878058 | 0.6626879731
(0.3,0.6) | 0.7178401152 | 0.7178397932 A Absolute Error
(0.3,0.8) | 0.8458688191 | 0.8458682676 Ly Lo
(0.5,0.2) | 0.8285496773 | 0.8285518176 1| 1 |6.8802E-05 | 9.2413E-05
(0.5,0.4) | 0.8796266033 | 0.8796267475 2 | 2 | 2.5363E-05 | 3.3608E-05
(0.5,0.5) | 0.9162916219 | 0.9162907319 3 | 3 | 8.5495E-06 | 1.1308E-05
(0.5,0.6) | 0.9593517462 | 0.9593502213 4 | 4 12.8534E-06 | 3.7730E-06
(0.5,0.8) | 1.0612579841 | 1.0612565021
(0.7,0.2) | 1.0750010434 | 1.0750024230
(0.7,0.4) | 1.1151417814 | 1.1151415906 Table 8: Relative Error in the
(0.7,0.5) | 1.1442238069 | 1.1442227999 solution of Example 2
(0.7,0.6) | 1.1786565038 | 1.1786549963
(0.7,0.8) | 1.2612992616 | 1.2612978709 | Relative Error
(0.9,0.2) | 1.2947267124 | 1.2947271676 Lo Lo
(0.9,0.4) | 1.3270751307 | 1.3270750015 1 | 1 |1.1590E-04 | 1.5549E-04
(0.9,0.5) | 1.3506676127 | 1.3506671835 2 | 2 | 4.7619E-05 | 7.9493E-05
(0.9,0.6) | 1.3787667058 | 1.3787660947 3 | 3 | 1.6224E-05 | 2.7444E-06
(0.9,0.8) | 1.4469195333 | 1.4469189829 4 | 4 ]5.4215E-06 | 9.1842E-06
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Figure 3: Physical behaviour of the HWCM solution of Example 2
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Table 9: Comparison of the HWCM
solution and exact solution of

Table 10: Wavelet Error in the
solution of Example 3

Example 3
Ji | K

(x,1) u(,y) Lo Loo

’ HWCM Exact 1 [ 1 ]29651E-06 | 3.7196E-06
(0.1,0.2) | 1.0202022364 | 1.0202013400 2 | 2 [ 1.1238E-07 | 1.4133E-07
(0.1,0.4) | 1.0408122706 | 1.0408107742 3 | 3 | 4.1726E-09 | 5.2449E-09
(0.1,0.5) | 1.0512727418 | 1.0512710964 4 | 4 | 1.5459E-10 | 1.9430E-10
(0.1,0.6) | 1.0618382105 | 1.0618365465
(0.1,0.8) | 1.0832882780 | 1.0832870677
(0.3,0.2) | 1.0618388559 | 1.0618365465 | Tapble 11: Absolute Error in the
(0.3,0.4) | 1.1275006816 | 1.1274968516 solution of Example 3
(0.3,0.5) | 1.1618384458 | 1.1618342427
(0.3,0.6) | 1.1972216090 | 1.1972173631 | | ; | ;. Absolute Error
(0.3,0.8) | 1.2712522436 | 1.2712491503 Ly Lo
(0.5,0.2) | 1.1051739713 | 1.1051709181 1 | 1 |24017E-04 | 3.0129E-04
(0.5,0.4) | 1.2214078171 | 1.2214027582 2 | 2 [ 8.1922E-05 | 1.0303E-04
(0.5,0.5) | 1.2840309804 | 1.2840254167 3 | 3 | 2.7377E-05 | 3.4412E-05
(0.5,0.6) | 1.3498644496 | 1.3498588076 4 | 4 |9.1282E-06 | 1.1473E-05
(0.5,0.8) | 1.4918288620 | 1.4918246976
(0.7,0.2) | 1.1502766260 | 1.1502737989
(0.7,0.4) | 1.3231345186 | 1.3231298123 | Tuple 12: Relative Error in the
(0.7,0.5) | 1.4190727545 | 1.4190675486 solution of Example 3
(0.7,0.6) | 1.5219668761 | 1.5219615556
(0.7,0.8) | 1.7506765129 | 1.7506725003 | | ; | ;. Relative Error
(0.9,0.2) | 1.1972186585 | 1.1972173631 Ly Lo
(0.9,0.4) | 1.4333315974 | 1.4333294146 1 | 1 |1.8355E-04 | 2.3051E-04
(0.9,0.5) | 1.5683146235 | 1.5683121855 2 | 2 | 6.2509E-05 | 7.8074E-05
(0.9,0.6) | 1.7160093832 | 1.7160068622 3 | 3 | 2.0886E-05 | 2.6079E-05
(0.9,0.8) | 2.0544351693 | 2.0544332106 4 | 4 | 6.9637E-06 | 8.6951E-06

1 1 1 1 1 1 1 1 1
0t 02 03 04 05 06 07 08 09

X

Figure 4: Physical behaviour of the HWCM solution of Example 3
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Table 13: Comparison of the HWCM  Table 14: Wavelet Error in the
solution and exact solution of

solution of Example 4

Example 4
Ji | J2 K

(x,) u(z,y) Lo Lo

’ HWCM Exact 1 [ 1 [55111E-17 | 8.4980E-17
(0.1,0.2) | 0.3664738923 | 0.3664738923 2 | 2 | 1.0840E-17 | 2.5890E-17
(0.1,0.4) | 0.6649449213 | 0.6649449213 3 | 3 ]2.6333E-18 | 8.4269E-18
(0.1,0.5) | 0.8262792251 | 0.8262792251 4 | 4 | 7.5110E-19 | 3.0835E-18
(0.1,0.6) | 0.9949523039 | 0.9949523039
(0.1,0.8) | 1.3525317525 | 1.3525317525
(0.3,0.2) | 0.6937098812 | 0.6937098812 | Tyuble 15: Absolute Error in the
(0.3,0.4) | 1.0898824320 | 1.0898824320 solution of Example 4
(0.3,0.5) | 1.3022672765 | 1.3022672765
(0.3,0.6) | 15233252189 | 1.5233252189 | | ; | ;. Absolute Error
(0.3,0.8) | 1.9893531747 | 1.9893531747 Lo Lo
(0.5,0.2) | 1.0580159968 | 1.0580159968 1 | 1 |44352E-14 | 1.8208E-13
(0.5,0.4) | 1.5580684239 | 1.5580684239 2 [ 2 | 1.7277E-14 | 5.5289E-14
(0.5,0.5) | 1.8245929865 | 1.8245929865 3 | 3 ]7.9025E-15 | 1.8874E-14
(0.5,0.6) | 2.1011249696 | 2.1011249696 4 | 4 | 4.4640E-15 | 6.8834E-15
(0.5,0.8) | 2.6817797871 | 2.6817797871
(0.7,0.2) | 1.4544176080 | 1.4544176080
(0.7,0.4) | 2.0636991607 | 2.0636991607 | Tuble 16: Relative Error in the
(0.7,0.5) | 2.3870380659 | 2.3870380659 solution of Example 4
(0.7,0.6) | 2.7217187144 | 2.7217187144
(0.7,0.8) | 3.4223496429 | 3.4223496429 A Relative Error
(0.9,0.2) | 1.8791200100 | 1.8791200100 Lo Lo
(0.9,0.4) | 2.6023474866 | 2.6023474866 1 | 1 |21744E-14 | 1.0767E-13
(0.9,0.5) | 2.9848591337 | 2.9848591337 2 | 2 | 8.1127E-15 | 2.9218E-14
(0.9,0.6) | 3.3800468469 | 3.3800468469 3 | 3 | 3.4416E-15 | 9.0284E-15
(0.9,0.8) | 4.2053706847 | 4.2053706847 4 | 4 | 1.4880E-15 | 2.5270E-15

1 1 1 . 1 1 i 1 1
0t 02 03 04 05 06 07 08 09

X

Figure 5: Physical behaviour of the HWCM solution of Example 4
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