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Abstract

In this paper we introduce new energy of graph that is average degree ex-
ponent sum energy. We obtain characteristic polynomial of the average degree
exponent sum of standard graphs and also obtained few graphs by some graph
operations.
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1 Introduction

All the graphs considered here are simple, finite and undirected. Basic terminologies
and notations can be found in [15]. Let A = (a;;) be an adjacency matrix of order n of
the graph G. The characteristic polynomial of G is denoted by Ch(G,\) = (\[—G),
where A is an eigenvalue of the graph G. Hence, by [13], the energy of G is defined
as B(G) = Y0, | Al -

The concept of energy of graph arose from Huckel theory in which the total 7-
electron energy of a conjugated carbon molecule was computed, which coincides
with the energy of a graph. Let V(G) be the vertex set and E(G) be an edge set of
G. The degree of a vertex G is denoted by d,(G). The average degree exponent sum
matrix of a graph G is denoted by AD(G) = (sj;) and whose elements are defined
as
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i +d?
sij=¢ 2
0 if otherwise

if v; ~ v,

2 Some basic properties of largest average degree square
sum eigenvalue

Let us define number p as
J + dd
=

1<J

Proposition 2.1. The first three coefficient of the polynomial Ch(AD(G, X)) are as

follows
(i) ap =1
(i) a1 =0
(i4i) ag = —p

Proof. (i) By the definition of characteristic poynomial we get, ag = 1

(ii) The sum of determinants of all 1 x 1 principal submatrices of AD(G) is equal
to the trace of AD(G) so

a1 =tr(AD(G)) =

(iii) We have ,
(—1)2a2 = Z (aiiajj - ajiaij)

1<i<j<n
=D
O

Proposition 2.2. If A1, Ao ,..., A\, are the average degree exponent sum eigenvalues
of AD(G) then,
n
D N =2
i=1

Proof.

Z)\Q =tr([AD(G ZZawaﬂ

=1 j=1

= 22 a,])2 —|—Z ai;)?

1<J
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=2 (a;)’

i<j

=2

Theorem 2.3 ([18]). Let a; and b; be nonnegative real numbers, then

n

n
n
330 (San) < 0nt - s 0
=1 i=1

where, My = max(a;) , M2 = max(b;),m1 = min(a;) , ma = min(b;) also i =
1,2,...,n

Theorem 2.4 ([5]). Let a; and b; be nonnegative real numbers, then

n n n
n E aibi — E a; E bi
i=1 i=1 i=1

where a, b, A and B are real constants such that a < a; < A and b < b; < B for
each i, 1 <i < n. Further, a(n) =n|2](1—2|2]).

<a(n)(A-a)(B-b) (2)

Theorem 2.5 ([11]). Let a; and b; be nonnegative real numbers, then

D+ C1Cy Y al < (Cr+Ch) Y aib; (3)
i=1 i=1 =1

where Cp and Co are real constants such that Cra; < b; < Caa; for eachi, 1 <i < n.

Theorem 2.6. Let G be a r-reqular graph of order n. Then G has only one positive
average degree exponent sum eigenvalue A = r"(n — 1).

Proof. Let G be a connected r-regular graph of order n and {v1, v, ....,v,} be the
vertex set of G. Let d; = r be the degree of v;, i = 1,2,...n. Then the characteristic
polynomial of AD(G)

ChIAD(G),\] = (A —7"(n —1))(A + ")} (4)

Therefore, the eigenvalues are r"(n — 1) and —r" which repeats (n — 1) times.

O

Theorem 2.7. Let G be a graph of order n and A1 be the largest average degree
exponent sum eigenvalue. Then

2p(n —1)

A <
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Proof. By the Cauchy-Schwartz inequality [[2]] we have

n n n
Qaibiy? <) aid b
i=1 i=1 i=1

where a; and b; are nonnegative real numbers.
now, by substituting a; = 1 and b; = \; ,we have

n n
QAP <tm-1)Y N
i=2 i=2
By using propositions 2.1 and 2.2 in the above inequality
(—A1)? < (n—=1)(2p - A7)

Hence,
2p(n —1)
n

A1 <
Remark 2.8. If G is a regular graph, then

2p(n —1)

A=

O

Remark 2.9. Let G be a r-regular graph of order n, then AD(G) = r"J — r"I.
Where J is the matriz of order n whose all entries are equal to one and I is an
identity matriz of order n.

The characteristic polynomial is given by

CHIAD(G),N] = (A= 1" (n— 1)) (A + 1)

Hence ,

E[AD(G)] = 2r*(n — 1) (5)

The complement G [15] of a graph G is a graph with vertex set V(G) and two
vertices of G are adjacent if and only if they are nonadjacent in G.

Remark 2.10. If G is a r-reqular graph , its complement G is (n — 1 — 1) regular
graph then, we have,

ChIAD(G) N =\ — (n—1)(n—1—1)""") A+ (n— 1 — r)n—Lryn=1

Thus -
E[AD(G)] =2(n—1—7)""1"(n 1) (6)

Theorem 2.11. Let G be a graph of order n and size m. Then

n2
BIAD(G) > 200~ "2 ( 0~ % )7
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Proof. Let A1, Ao, ..., A\, be the average degree exponent sum eigenvalues of G.
Substituting a; = 1 and b; =| A; | in the equation (1) We get

2

n n n 2
1257 | 2 - PURCE I VW
S - () <=

2

2pn — (BIAD(@))? < Z-( A = | |)?

n2
ELADG)] > \f2up— (1 A~ | A, P

Corollary 2.12. If G is a r-reqular graph of order n, then
E[AD(G)] > nr?\/8(n — 1) — n?
Theorem 2.13. Let G be a graph of order n, then

V2p < E[AD(G)] < \/2np

Proof. By the Cauchy-Schwartz inequality [[2]] we have
n 2 n n

(Z aibl) S Zaf Zbg
i=1 i=1 =1

where a; and b; are non-negative real numbers.
Now, substituting a; = 1 and b; = \; we have

n 2 n n
(Zl&- |> <IN I
i=1 =1 =1

(E[AD(G)])* < 2pn

Thus,
E[AD(G)] < v/2pn
and
n n 2
ZU\HZS (Z|)\i>
2p < (E[AD(G)))?
thus

E[AD(G)] > \/2p.



340 Y. Shanthakumari, M. Smitha, and V. Lokesha

Theorem 2.14. Let G be a graph of order n and A be the absolute value of the
determinent of AD(G). Then

\/Qp +n(n—1)Ar < E[AD(G)] < \/2np
Proof.

n 2
(B[AD(G)])* = (Z | Ai I>

i=1

=D A2 Nl
i=1

i<j
=2p+2) [Nl A ]
i<j
(EIAD@))? =2p+ > | N[l A | (7)
i#j

We know that for nonnegative numbers , the arithmatic mean is always greater than
or equal to the geometric mean, so

1
n(n—1)

1
- . > . .
o 2 Az (T

i#j i#j

1
- <H s |2<"—1>> o
=1
=TI B

i#]
— Ar
Therefore,
DI 2 n(n - 1A
i#]
from equation (7) we have,

E[AD(G)] > \/Zp +n(n — I)A%

Consider a nonnegative quantity

Y= 3 (M= 1502 =D (N P+ P =2l xll A )

i=1 j=1 i=1 j=1

n n n n
Y=nd [ NP4nd [N P=2D AN
=1 J=1 =1 7j=1
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Y = dnp — 2(E[AD(G)])?

since
Y >0

4np — 2(E[AD(G)])* > 0
E[AD(G)] < /2np

Corollary 2.15. If G is a r-reqular graph of order n, then
E[AD(G)] < 2nr*vn — 1

Theorem 2.16. Let G be a graph f order n and size m. Let Ay > Xo > ... > A\, be
a mon-increasing arrangement of average degree exponent sum eigenvalues. Then

E[AD(G)] 2 v/2np — a(n)(| At | — | An |)?
where a(n) = n[2](1— 1[2]).

Proof. Let A1, Ao, ..., A\, be the average degree exponent sum eigenvalues of G.
Substituting a; =| A; |=b; and a =| A, |[=b, A =| \; |= B in the equation (2)

n n 2
nZAﬂ—(ZM,—) <am)(| M| =1 ])?
i=1 1=1

Since E[AD(G)] =Y, | i | and D1 | Ai |*= 2p we get the required result. [

Theorem 2.17. Let G be a graph of order n and size m. Let Ay > Ao > ... > X\, be
a non-increasing arrangement of average degree exponent sum eigenvalues. Then

[ A1 || A |+ 2p
E[AD(G)] >
AD(G)] = [ A+ Al

where | A1 | and | A2 | are mazimum and minimum of the absolute value of ;s

Proof. Let A1, A2, ..., A\, be the average degree exponent sum eigenvalues of G.
Substituting a; = 1 and b; =| A; |, C1 =| A\n |, C2 =| A1 | in the equation (4)

n

Z)\z'2+|>\1||>\n|212<(|>\1|+|)\n|)<Z|/\i|)

i=1 i=1 i=1
Since E[AD(G)] =Y, | i | and 321 | Ai |?= 2p we get the required result. [
Definition 2.18. [15] The line graph L(G) of a graph G is a graph with vertez set as

the edge set of G and two vertices of L(G) are adjacent whenever the corresponding
edges in G are adjacent.

The k" iterated line graph [6, 7, 15] of G is defined as L*(G) = L(LF~Y(Q)),
k=1,2,3.. where L°(G) & G and LY(G) = L(G)
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Remark 2.19 ([6, 7]). The line graph L(G) of a r-regular graph of G of order n is

an 1 = (2r —2)-regular graph of order ny = "5 . Thus, LF(G) is an ry-regular graph
of order ny, given by

k—1

ng = 2% H(?ir — 2L 4 9) and 1 =28 — 2142
i=1

Theorem 2.20. Let G be a r-reqular graph of order n and let L*(G) be the ry,-regular
graph of order ny, then average degree exponent sum energ of LF(QG)

E[AD(L¥(@))] = 2r(¥(n — 1) where, 1= 2" — 2k 42

Proof. The average degree exponent sum characteristic polynomial of L¥(G) with
vertex set ny ( see equation (1) and remark 2.15) is given by

ChIAD(LF(G)), \] = [ — (2Fr — 281 4 2)25r=2""142(p 1))\

+(2k7, _ gk+1 + 2)2k‘r72k+1+2]nk71

Thus,
E[AD(L*(G))] = 2r}*(n — 1) where, 1y =2Fr — 281 42

O

Lemma 2.21 ([21]). If a,b,c and d are real numbers, then the determinent of the
form
A+ a)I,, —ady, —cJny xny
—dJnyxn, A+ b)1,, — by,

=A+a)" YA+ 0"\ = (ng — Da][A — (n2 — 1)b] — nynacd)]

Definition 2.22 ([15]). The subdivision graph S(G) of a graph G is a graph with
vertex set V(G) U E(G) and is obtained by inserting a new vertex of degree 2 into
each edge of G.

Definition 2.23 ([22]). The semitotal line graph T1(G) of a graph G is a graph with
vertex set V(G) U E(G) where two vertices of T1(G) are adjacent if and only if they
corresponds to two adjacent edges of G or one is a vertex of G and another is an
edge G incident with it in G.

Definition 2.24 ([22]). The semitotal point graph To(G) of a graph G is a graph
with vertex set V(G) U E(G) where two vertices of To(G) are adjacent if and only if
they corresponds to two adjacent vertices of G or one is a vertex of G and another
is an edge G incident with it in G.

Definition 2.25 ([15]). The total graph T(G) of a graph G is the graph whose
vertex set is V(G) U E(G) and two vertices of T(G) are adjacent if and only if the
corresponding elements of G are either adjacent or incident.
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Definition 2.26 ([21]). The graph G** is a graph obtained from the graph G by
attaching k pendant edges to each vertex of G. If G is a graph of order n and size
m, then G1F is graph of order n + nk and size m + nk.

Definition 2.27 ([15]). The union of the graphs G1 and G2 is a graph G U Ga
whose vertex set is V(G1 U Ga) = V(G1) UV (G2) and the edge set E(G1 U Gg) =
E(Gl) U E(Gg)

Definition 2.28 ([15]). The join G1 + Ga of two graphs Gy and Go is the graph

obtained from G1 and Go by joining every vertex of G1 to all vertices of Go.

Definition 2.29 ([15]). The product G x H of two graphs G and H is defined as
follows

Consider any two points u = (uy,u2) and u = (v1,ve) in V. =Vy x V. Then u and
v are adjacent in G x H whenever fu; = v1 and ug adj va] or fus = vy and uy adj
1)1].

Definition 2.30 ([15]). The composition G[H] of two graphs G and H is defined
as follows: Consider any two points u = (ui,uz) and v = (v1,v2) ) in V="V x Va.
Then uw and v are adjacent in G[H| whenever Juy adj v1 | or [u1 = v1 and uy adj

1)2/.

Definition 2.31 ([15]). The corona G o H of graphs G and H is a graph obtained

from G and H by taking one copy of G and | V(G) | copies of H and then joining

by an edge each vertex of the it" copy of H is named (H,i) with the it" vertex of G.

Definition 2.32 ([8]). The jump graph J(G) of a graph G is defined as a graph
with vertex set as E(G) where the two vertices of J(G) are adjacent if and only if
they correspond to two nonadjacent edges of G.

3 Main results

Theorem 3.1. Let G be a r- reqular graph of order n and size m. Then,

ChlAD(S(GQ))] = A +7")" T +4)5 1A% — (4(% — 1)+ (n—1)A

nr n27‘

Jé(mrr(n ~ (5 1) = 5P+ 2)%)

Proof. The subdivision graph of the r-regular graph has two types of vertices. The
n vertices with degree r and 5 vertices with degree 2. Hence

7y — 1) A

AD(S(G)) = [(ﬂim ) N
i 4(J% — I%)
ChIAD(S5(G))] =| A\l — AD(S(G)) |
DS} A A L o

2 I
_wj%xn ()\-1-4)[% —4J%
Now by using Lemma 2.17, we get the desired result. O

343
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Theorem 3.2. Let G be a r- reqular graph of order n and size m. Then,

CHIAD(T3(@))] = (A + (2r)*)" (A +4)F N = (405 = 1) + (2)7 (n = 1)A

2
+4(20)7 (= D(5 — 1) = " (42 27
Proof. The semitotal point graph of an r-regular graph has two types of vertices.

The n vertices with degree 2r and % vertices with degree 2. Hence

(2r)27 (J,, — I,) %Jnx%

AD(TQ): 24 927
e )

ChlAD(T2)] =| M = AD(T2(G)) |

A+ @) — @)y =Y g
4T2 22r
—%J%m A+ 4)Tur — 4T

Now by using Lemma 2.21, we get the desired result. O

Theorem 3.3. Let G be a r- reqular graph of order n and size m. Then,

CIAD(T1)] = A+ 77" (4 (20)) E =102 = (20)2" (50 = 1) + (n = 1)r")A

2 (8)

P+ 2r))?)

7 (n = 1) — D) - =

Proof. The semitotal line graph of an r-regular graph has two types of vertices. The
n vertices with degree r and - vertices with degree 2r. Hence

2r ks
(g, — I, @) o
AD(TY) = | ) Ty |

T2r )"
U2 Jor sy (20)2 (. — Toz)

Ch[AD(Th)] =| M — AD(T1(G)) |

A+ )L, — ", O g e
D) e (A (20)7) Tar — (20)27 e

Now by using Lemma 2.21, we get the desired result. O

Theorem 3.4. Let G be a - regular graph of order n and size m. Then,
CHAD(T(G))] = (A = ()" (n+ T = D)(A+ (20)2)" 57!

Proof. The total graph of a r-regular graph is a regular graph of degree 2r with
n + % vertices. Hence the result follows from equation (4)
O
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Theorem 3.5. Let G be a r- reqular graph of order n and size m. Then,

CRIAD(G'M)] = (A + (r + &))" LA+ D)™ N — ((nk — 1) + (r + k)" (n — 1))\
1
+Z(4(r + k)R (n — 1) (nk — 1) — n?k(r + k +1)?)]
Proof. The graph G* of a r-regular graph has two types of vertices. The n vertices

with degree r + k and nk vertices with degree 1. Hence

(T‘ + k)TJrk(Jn - In) (T+k2+1)‘]n><nk] )

D(G+k) = (r+k+1) 7
2

nkxn (Jnk - Ink)

ChJAD(G™)] =| A\I — AD(GF) |
()‘ + (T + k)TJrk)In - (r + k)TJrkJn _anxnk
_%Jnkxn ()\+ ) nk — Jnk .

Now by using Lemma 2.21, we get the desired result. ]

Theorem 3.6. Let G be a r- reqular graph of order n and size m. Then,

(r + 7"31)2
4

Proof. The graph G U H has two types of vertices, the n; vertices of degree r; and

the remaining ny vertices are of degree 2. Hence

Ch[AD(G U H)] = Ch(AD(G))Ch(AD(H)) — (A + )" Y\ 4+ r52)2 " nyn

DIGUH] =

AD(G) @menz
%Jnﬂm AD(H) ’

Tl (Jnl - Inl) WJH1XH2‘| .

2
Mjnzxm TSQ (JHQ - InQ)

Ch[AD(GUH)] =| X - AD(GUH) |
()\+7“ ) n _Tll‘]nl w‘]nlxnz
ri2 Ty !
O e ) L — 732y
Now by using Lemma 2.21, we get
ChIAD(G U H)] = (A1) T O+ r52)™ (A = (1 — i) (A = (n2 — 1)ry?)—
nany(ry® + 7”51)2]
4
Since G and H are regular graphs of order n; and ns and degree r; and 19
respectively, by equation (4) we have

ChAD(G)] = (A = ri* (1 = 1)) (A + )™~

and
Ch[AD(H)] = (A = r3?(ng — 1)) (A +r52)" !

Hence the result follows. O
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Theorem 3.7. Let G be a r- reqular graph of order n and size m. Then,
Ch[AD(G + H)] = (A + R{)™ (A + RY2)"™2 A2 — (R2 (n2 — 1) + R{™ (n1 — 1))\
1
+Z(RflR§'2(n1 —1)(ng — 1) = nang(R{™® + Ry™)?)]

Proof. If G is a rq - regular graph of order n; and H is a ry-regular graph of order
ng then G + H has two types of vertices, the n; vertices with degree Ry = r1 + ng
and ng vertices with degree R = r9 + n1. Hence

RF24 I
RRl(Jnl - nl) ( ; )Jnl Xng

(RI2 +R

D(G+H) = Rl) Ry B
anxm R2 (‘]ﬂ'z Im)

Ch[AD(G + H)] =| NI — AD(G + H) |

R R
A+ REOL, —RP g, RNy

R R
_MJMXM ()\—l—R )T, — RRQan

Now by using Lemma 2.21, we get the desired result. O

Theorem 3.8. Let G be a r1- reqular graph of order ny and H be ry-regular graph
of order ny. Then,

Ch[AD(G x H)] = (A = (r1 +72)" T2 (nyng — 1)) (A 4 (11 4 1)1 Fr2)mn2—1

Proof. Since G is a ri- regular graph of order n; and H is re-regular graph of order
ng, we have G X H as an (r1 + r2)- regular graph with niny vertices. Hence the
result follows fron equation (4). O

Theorem 3.9. Let G be a r1- reqular graph of order ny and H be a r2- regqular
graph of order no. Then,

Ch[AD(G[H])} = (/\ + (n2r1 + r2)n2r1+r2)n1n271()\ — (TLQ?”l + TQ)”QTNLTQ (’I”Ll’I”LQ — 1))

Proof. Since G is a r1- regular graph of order n; and H is ra-regular graph of order
ng, we have G[H] as a (ngry + rg)- regular graph with njng vertices. Hence the
result follows fron equation (4). O

Theorem 3.10. Let G be a r- reqular graph of order n and size m. Then,

CHIAD(G 0 H)] = (A+ R (A + R 71[x2 — (RE? (mmg — 1) + BRI (my — 1))A
4 (RIRE (ny = 1)(mama — 1) — nitma (R + B)?)]

Proof. Since G is a ry - regular graph of order n; and H is a re-regular graph of order

ng then G o H has two types of vertices, the ny vertices with degree Ry = r1 + ng
and remaining nino vertices with degree Ry = r9 + 1. Hence

Ry | pR1
RRl(Jnl_ 711) (R +R )Jnlxmnz

(RR2+R

AD(Go H) = R
1)Jn1n2><n1 R2 (Jn1n2 - In1n2)
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ChIAD(G o H)] =| Al — AD(G o H) |

R R
A+ REOYL, —RR g, —ERD

RI24 gl ‘
_ B’ ‘5 o )Jnlngxm ()\+R2R2)In1n2 *R§2Jn1n2

Jn1 Xning

Now by using Lemma 2.21, we get the desired result. O

Theorem 3.11. If W, is a wheel graph, then

(3" 4 (n = 1Y)
i |

Ch[AD(Wy,)] = (A + 27)”_2[)\2 —27(n — 2)\ — (n—1)

Proof. The graph W,, of order n has two types of verices namely, (n—1) rim vertices
are of degree 3 and central vertex has degree (n — 1). Hence,

an—1 n— 3
AD(W,) = [ 27(Jn-1 — In-1) W%—DM] .

n—14(p_1)3 e
w&x(nq) (n—1)"" 11— )

Ch[AD(Wy,)] =| \XI — AD(W,,) |

(A +27) [y — 27, — BT F iy

2
SO Ty A+ (0= )L = (0= 1)

Now by using Lemma 2.21, we get the desired result. O
Theorem 3.12. If F} be an friendship graph, then

2t(2% + (2t)%)2

ChIAD(FP)] = (A + 4271 A2 — 4(2t — )X — . ]

Proof. The graph F? of order 2t + 1 has two types of verices namely, 2¢ vertices of
degree 2 and 1 vertex of degree 2¢t. Hence,

2t 2
AD(Fts) _ l 4(J2t _I2t) 2 +2(2t) )J2t><1‘| )

2t 2
%Jlx% (2)2 (1 — L)

CHIFP) =| I — AD(F}) |

O+ —ag D
- 2t 2 .
ST Jor (A (20201 — (20)%0,
Now by using Lemma 2.21, we get the desired result. O

Theorem 3.13. If H,, — c is a helm without central vertez, then

ChlAD(H, — ¢)] = (A +27)"2(A + 1)""2[A\2 — 28(n — 2)\ + 27(n — 2)® — 4(n — 1)?

347
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Proof. The graph H, — ¢ with order 2(n — 1) having two types of vertices namely,
(n — 1) vertices has degree 3 and remaining (n — 1) vertices has degree 1. Hence,

AD(H, — ¢) = [27(‘7"—1 —In-1) 2‘](711)*(”1)} .

2J(n,1)x(n,1) (Jn—l - In—l)
Ch[AD(H,, — ¢)] =| AI — AD(H,, — ¢) |

_ ‘()\ +27) 1,1 — 27J,1 72J(n71)><(n71)
—2J(n-1)x(n—1) A+ DIt = Jna|

Now by using Lemma 2.21, we get the desired result. ]

Theorem 3.14. If H;L — c is a closed helm without central vertex, then,
Ch[AD(H, — ¢)] = (A — 27(2n — 3))(A + 27)>"3

Proof. The closed helm without central vertex H,/l — ¢ is 3 - regular graph with
2(n — 1) vertices. Hence the result follows fron equation (4). O

Theorem 3.15. If SF,, — c is a sun flower graph without central vertex, then

ChIAD(SFy—c)] = ()\+27)"_2()\+4)"‘2[)\2—31(n—2))\+108(n—2)2_w]

Proof. The sun flower graph SF,, — ¢ without central vertex is a graph of order
2(n — 1), which has two types of vertices namely, (n — 1) vertices has degree 3 and
the remaining (n — 1) vertices has degree 2. Hence,

27(Jne1 = In—1)  H Tt 1yx(n1
AD(SF, —¢) = 2 Y (n—1)x(n-1) .
(5Fn =) [ T Jn-tyxm-1) 4(Jn-1 — In1)

Ch[AD(SF, — ¢)] =| \I — AD(SF, —¢) |

_ ‘()\ + 201 =270t =Y Iy
“SJo-xe-n A+ DI = 4|
Now by using Lemma 2.21, we get the desired result. O

Theorem 3.16. If DC,, is a double cone, then,

Ch[AD(Cy)] = (A +256)" "1 (A +n") [\ — (n" 4 256(n — 1))\
n n(4" 4 n*)?
+256n"(n — 1) — f]

Proof. The double cone is a graph of of order (n + 2) has two types of vertices
namely, n vertices having degree 4 and the remaining 2 vertices having degree n.
Hence,

256(J, — I,) Wy,

n 4 .
wubxn n"(Jo — Is)

AD(DC,) =
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CH[AD(DC,)] =| X — AD(DC,,) |
|+ 256)1, — 2560, @D,
- 6)1n .
*%JQXTL (>\+7’Ln).[2 —n"Jy

Now by using Lemma 2.21, we get the desired result. O
Theorem 3.17. If By, is a book graph, then

ChIAD(By)] = A+ 4T\ + (b+ 1)PTH[N2 — ((b+ 1) +4(26 — 1))\
+4(20 — 1)(b + 1) — p(22L + (b +1)%)?

Proof. The Book graph Bj of order 2b + 2 has two types of vertices namely, 2b
vertices with degree 2 and 2 vertices are with degree b+ 1. Hence,

b+1 2
AD(Bb) _ [ 4(J2b _IQb) %JQIJXQ ‘| )

b+1 2
2 g op (b 1)PT (s — D)

Ch[AD(By)] =| A\ — AD(B) |

b+1 2
(A +4) 1o — 4Ty —%Jm)w

; —wa]zx% A+ (b+ D" — (b+ 1)+,

Now by using Lemma 2.21, we get the desired result. O
Theorem 3.18. B; is a book with triangular pages, then

Ch[AD(B;)] = A+ )Y+ (. + DIFH N2 — (4 D)L +4(t — 1)\
B2 (t + 1)2)2]
2

+4(t —1)(t+ 1) —

Proof. The book B; with triangular pages of order ¢ + 2 has two types of vertices
with ¢ vertices having degree 2 and the remaining 2 vertices having degree ¢t + 1.
Hence,

AD(By) =

t+1 2
e E, |
%J%d (t+ 1) (Jy — )

ChIAD(By)] =| Al - AD(By) |
_‘ A+ 4], — 4J; S

- 2b+1

PO g (A (B4 1) — (4 1)L,

Theorem 3.19. If L, is a ladder graph, then

Ch[AD(Ly)] = (A27)2 S (A+4)3 N2+ —(27(2n—5) +12) A\ +324(2n—5) —289(2n—4)
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Proof. The graph L, is a ladder graph of order 2n and has two types of vertices.
There 2n-4 vertices has degree 3 and 4 vertices has degree 2. Hence,

27(Jon—4 — Ion—4) 127<](2n4)><4:|

AD(L,) =
(Ln) [ L Jix(2n-1) 4(Jy — 1y)

Ch[AD(Ly)] =| M — AD(Ly,) |

A+ 27)1-52%4 = 2TJon—s  — S Jon-ayxa
— 5 Jax(2n—4) (A+4)1, —4J4

Now by using Lemma 2.21, we get the desired result. O

Theorem 3.20. If Pr, is a prism graph, then
Ch[AD(Pry)] = (A4 27)2" "1\ — 27(2n — 1))

Proof. The prism Pr, is 3-regular graph with 2n vertices. Hence, the result follows
from equation (4).

O
Theorem 3.21. If T, is a triangular snake, then
Ch[AD(T})] = (A 4)"(A+256)"3[X\2—(256(n—3)+4n)A\+1024n(n—3)—256(n+1) (n—2)]

Proof. The triangular snake T}, has two types of vertices with n+1 vertices having
degree 2 and the remaining n — 2 vertices having degree 4. Hence,

4(Jng1 — Int1)  16J041)x(n—2) ] .

AD(Tn) = |:]-6J(n2)><(n+1) 256(Jn—2 — In_2)

Ch[AD(T,)] =| M — AD(T,,) |

A+ )y — AT —16J(n+1)x (n-2)
—16J(n—2)x (n+1) (AN +256)1,—2 — 25652
Now by using Lemma 2.21, we get the desired result. O

Theorem 3.22. If Q, is a quadrilateral snake, then
ChIAD(Qy)] = (A +4)* 1\ 4+ 256)" 3 [A\? — (256(n — 3) + 4(2n — 1))\
+1024(2n — 1)(n — 3) — 512n(n — 2)]

Proof. The quadrilateral snake @, of degree 3n — 2 has two types of vertices with 2n
vertices having degree 2 and the remaining n — 2 vertices having degree 4. Hence,

4(J2n - IZn) 16J(2n)><(n—2) :|
AD(Qy) = .
(@n) |:16J(n—2)><(2n) 256(Jn—2 — In-2)
ChlAD(Qn)] =| M — AD(Qn) |

_ ()\ + 4)I2n —4Ja, _16J(2n)><(n—2)
_16J(n—2)><(2n) (AN +256)1,—2 — 256J,,—2

Now by using Lemma 2.21, we get the desired result. O
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Theorem 3.23. If G is an r-regular graph of order n, then

n—4)r

CHAD(I(G)] = (41 (%~ 1)~ r)ED where, = "2 1

Proof. The jump graph J(G) is r-regular graph is r; = (("_24)7’ + 1)-regular graph

with %5 vertices. Hence, the result follows from equation (4). O
Theorem 3.24. If S, is a Star graph, then

CHIAD(S)) = (h + 1" 232 - (n -~ 2)2 — =01

Proof. The graph S, of order n has two types of verices, namely, n — 1 rim vertices
having degree 1 and central vertex has degree n — 1. Hence,

(Jnfl _Infl) EL](n—l)xl :|
AD(S,) = |, 25 .
(Sn) { §J1x(n—1) (n—1)" 1(J1 — )

Ch[AD(S,)] =| Xl — AD(S,,) |

_ ‘()\ + 1)L — Jnot =5 n—1)x1
=5 J1x(n—1) A+ @m—1)""HL —(n—1)""1)

Now by using Lemma 2.21, we get the desired result. O
Theorem 3.25. If S, is a double star graph, then
Ch[AD(Sp)] = A1 3N+ A2 = ((2n—3)+n")A+(2n—3)n" — (n—1)(n+1)?]

Proof. The graph Sy, of order 2n has two types of vertices, with 2n — 2 vertices
having degree 1 and remaining two vertices having degree n. Hence,

(Jon—2 — lon—2) n+1J(2n—2)x2]
AD(Sy ) = | 2 .
(San) [ 2 o (on-g)  n"(J2—Iy)

ChlAD(Spn)] =| M — AD(Sn.n) |

A+ 1) Iap—2 — Jon—2 *@J@nﬂ)w
(nt1) Jox@n-2y  (A+n")l2—n"Js

Now by using Lemma 2.21, we get the desired result. O
Theorem 3.26. If K,,,, is a complete biparite graph, then

ChIAD(Kpp)] = (A +0")" " A +m™)" A2 — (m™(n — 1) +n"(m — 1))\
mn(m™ + n™)?

+(m—1)(n—1)m™n" — 1 ]
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Proof. The graph K,,, of order m + n has two types of vertices, with m vertices
having degree n and n vertices having degree m. Hence,

O Jmm]
AD Km n) — n m 2 .
( s ) |:m ;—n Jnxm mm(Jn _ In)

Ch[AD(Km,n)] :I Al — AD(Km,n) |

|+, =0t T T
T S e (A ™)L, —m™, |
Now by using Lemma 2.21, we get the desired result. O

Theorem 3.27. If P, is a path graph, then

ChlAD(Pa)] = A+ 4" A+ 1[N = (4(n = 3) + A+ 4(n - 3) — w]

Proof. The graph P,, of order n has two types of vertices, with n — 2 vertices having
degree 2 and remaining two end vertices having degree 1. Hence,

4(Jpo — Iy 2) ST s 2}

AD(P,) = 2V (n=2)x2|

(Fr) [ 3 Jax (n—2) (Jo — I2)
Ch[AD(P,)] =| \I — AD(P,) |

_ ‘(A + 4¥n—2 —4Jny =3 Jm_2)x2
—5J2x(n-2) A+ 1)L —Js

Now by using Lemma 2.21, we get the desired result. O

A dumbbell is the graph obtained from two disjoint cycles by joining them by a
path.

Theorem 3.28. If Dy, ,, is a dumbbell graph, then

. 578(n —1
Ch[ED(Dy, )] = (A+4)2"*3(A+27)[A2—(4(2n—3)+27)A+108(2n—3)—%}
Proof. The graph D, ,, of order 2n has two types of vertices, with 2n — 2 vertices
having degree 2 and remaining two having degree 3. Hence,
A(Jan-2 — Ion—2) TJon_o 2}
ED(D,,) = 2 (2n=2)x2|
(Drn) { 177J2><(2n—2) 27(J2 — Ip)

Ch[ED(Dn,n)} :| Al — ED(Dn,n) |

_ ’(A + ) on—g —4Jom—2 =T Jon_2)x2
— U Jox2n—2) (AN +27)15 — 27J3

Now by using Lemma 2.19, we get the desired result. O
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4 Conclusion

We conclude with the following observations.

In this paper, we have obtained the characteristic polynomial of the average
degree exponent sum matrix of graphs obtained by some graphs operations. Also,
bounds for both largest average degree exponent sum eigenvalue and average degree
exponent sum energy of graphs are established.
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