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CONSTRUCTION OF GENERALIZED LEIBNITZ
TYPE NUMBERS AND THEIR PROPERTIES

YILMAZ SIMSEK

ABSTRACT. The aim of this paper is to give combinatorial sums with nonnegative real
parameters a and b derived from integration of the modification of the Bernstein basis
functions. For a = 0 and b = 1, these sums reduce to the combinatorial sum of the
Leibnitz type numbers. We also give some properties of the Leibnitz numbers with
the aid of their generating functions derived from the Volkenborn integral on the set
of p-adic integers. Moreover, we give some novel identities and relations involving the
Bernoulli numbers, the Stirling numbers, the Leibnitz numbers, the Daehee numbers,
the Changhee numbers, inverse binomial coefficients, and combinatorial sums. Finally,
by coding computation formula for the generalization of the Leibnitz numbers in Math-
ematica 12.0 with their implementation, we compute and present few values of these
numbers with their tables. Finally, by using the applications of the Volkenborn inte-
gral to the Mahler coefficients, we derive some novel formulas involving the Leibnitz
numbers.
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1. INTRODUCTION

It is known by many researchers, who work on the subject of special numbers and their
applications in recent years, that this subject has became among the leading topics of
mathematics and especially analytic number theory. The Leibnitz numbers, known by the
famous German mathematician Gottfried Wilhelm Leibnitz (1646 - 1716), are considered
in this paper. These numbers, which have rarely been addressed until now, are studied by
using the techniques of generating functions and their Volkenborn integral representation
in this paper. These numbers are also closely related to the Leibniz Harmoic Triangle
numbers. The denominators of some of these numbers are also directly related to the
pronic numbers. Within the scope of this paper, it has been proved that these numbers
are also related to the Bernoulli numbers, the Stirling numbers, the Daehee numbers,
the Changhee numbers, and the combinatorial sums and numbers.

1.1. Definitions and Notations. Let N, R, and C denote the set of natural numbers,
the set of real numbers, and the set of complex numbers, respectively. No = N U {0}.
Let z € C with z = z + iy, x,y € N, i = —1 and also Re(z) = z and Im(z) = .

Let 2y =2 (x —1)...(r —n+1) with 7y = 1 and n € N.
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The Bernoulli polynomials, B, (x), are defined by the following generating function:
t [e.e]

tﬂ
t_ i
1) et =Y B

n=0

where [t| < 27 (cf. [2]-[39]).
The Stirling numbers of the first kind, S (n, k), are defined by means of the following
generating function:

log(1 +t
) (oslL 1)) Zsa (n b o
with S1 (n, k) =01if £k >n, and k € Ny (¢f. [ H 9]; and references therein).
The Leibnitz numbers, I (n, k), are defined by
1
(3) Lin k)= ——7%
(n+1)(})
whose generating function is given as follows:
log (1 —u) + log (1 — ut)
4 k) thu" =
(4) ;]kzoln ) -0 —ta) 1

where |u| < 1; k=0,1,2,...,n and n € Ny (¢f. [2, Exercise 16, p. 127]).
As seen from the equation (4), the function G; (¢,u) is the generating function for the

polynomials:
n
t)=> 1(nk)t"
k=0

whose coefficients are the Leibnitz numbers and also whose degree is n. That is, the
ordinary generating function for the polynomials L, (t) is given as follows:

(5) G (t,u) =Y L(t)u".
n=0

Observe that

:zn:l(n k

k=0
and
1
Ln(0) =1 (n,0) = .
(0)=1(0,0) = —~
The Leibnitz numbers, I (n, k), are also given by following finite combinatorial sum:
k
1 k

L(n,k) = ) L pun—— e B
©) 0 =30 i ()

where kK =0,1,2,...,n and n € Ny (¢f. [2, Exercise 16, p. 127]).

With the initial condition )

l(TL,O): nt1l
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the Leibnitz numbers satisfy the following recurrence relation:

l(n k) = ni_i_ll(nfl,k’fl)7
where k =1,2,...,n and n € N (¢f. [2, Exercise 16, p. 127]).

In [19], whose content could not be reached but whose existence is known, Zhao and
Wuyungaowa claimed in its abstract that they gave a series of identities involving Leibniz
numbers, Stirling numbers, harmonic numbers, and arctan numbers by making use of
generating functions. They also claimed that give the asymptotic expansion of certain
sums related to Leibniz numbers by the Laplace method. On the other hand, there is
no data to comment on whether the Leibniz numbers mentioned there and the Leibnitz
numbers discussed in this study point to the same concept or the relationship of the
results. Due to the expression Leibniz numbers in the abstract of the relevant study, we
cite it here.

The Daehee numbers, D,,, are defined by

™ G (u) = B 5 p W
n=0
where
n!
0 Dy = (-1
(cf. [14]).

Combining (1) and (7), one has the following novel identity:

(9) Zle(nJ - +)1n'

(¢f. [3, p. 117], [14], [22, p. 45, Exercise 19 (b)]).
The Changhee numbers, Ch,,, are defined by

(10) gCh( =TT ZChn

where
(11) Chy, = (71)”;—2
(cf. [15]).

The numbers, Y, (), are defined by

(12) Gy (u,\) ::m ZY “i:
where

n 2 "
13) Y= 0" 2 ()
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The relation between Changhee numbers and the numbers Y,, (A) is given as follows:
(14) Chy = (=1)"1y, (-1)

(¢f. [36], [40]). The numbers Y;, (—1) are also related to the other combinatorial numbers
(cf. for detail, see, [2], [3], [8], [22]).

Next, we summarize the contents of this paper as follows:

In Section 2, we give combinatorial identities and relations related to the Bernoulli
numbers, the Stirling numbers, the Leibnitz numbers, the Dachee numbers, and the
Changhee numbers. We also give some computational formulas for these numbers.

In Section 3, we give further remarks and observations on the Leibnitz numbers. More-
over, by using finite sums derived from application of the integral to the modification
for the Bernstein basis functions, we introduce a generalization of the Leibnitz numbers.

In Section 4, we give Mathematica implementation of the generalized Leibnitz numbers
and by this implementation, we compute and present a few values of these numbers with
their tables.

In Section 5, by applying the Volkenborn integral on the set of p-adic integers, we
derive some novel formulas involving the Leibnitz numbers.

In Section 6, we give further remarks and observations with two open questions.
Finnaly, we give acknowledgement about Professor Lee Chae Jang.

2. COMBINATORIAL IDENTITIES AND RELATIONS INVOLVING THE LEIBNITZ NUMBERS,
DAEHEE NUMBERS AND CHANGHEE NUMBERS

By using functional equations of the generating functions for the Leibnitz numbers,
the Daehee numbers and special series, we find many formulas, identities and relations
involving the Changhee numbers and combinatorial numbers and sums.

By using (4), we get

15 L(n, k) thu" = —— — | — (1 t”’k“) .
1) Syt =535y () (et

Comparing the coefficients 4™ on both-sides of the equation (15), we get the following
theorem:

Theorem 2.1. Let n € Ng. Then we have

k
(16) Zl(n’k)tk_ti1zn/1g+1<ti1> (1+t”’k+1).

k=0 k=0

n n

Substituting ¢ = 1 into (16), we get the finite summation of the Leibnitz numbers as
in the following corollary:

Corollary 2.2. Let n € Ny. Then we have

n n 1
(17) kzzol(mk) :kzzom.
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Theorem 2.3. Let n € Ng. Then we have

n—j
18 L(n, k)t -1y’ — 14+ t771).
1 >t 1“2( 2 (Hn) e

Proof. By using (4) and (7), we get the following functional equation of generating
functions:

_ Gp(—u) +tGp (—ut)
(19) G (t,u) = 1+t—ut
which yields
S [ t" = (-1)"D = (=1)" Dyun
k. n __ n n_ n n n
nz:%kg:ol(n,k)tu 71+tnz:%u s (le;)n! u +t;7n! t" .

Hence, we get

iil("’k)tk“n - 1+tZZ j! ( +t) T

n=0 k=0 n= 0] 0

e e e ()

n=0 j=0

Comparing the coefficients of 4™ on both sides of the above equation, we arrive at the
desired result. O

Combining (18) with (8) and (9), we arrive at the following theorem:
Theorem 2.4. Let n € Ng. Then we have

" L+ ) BuSiG)
l(n,k)th = L
; " Z::Z:: (L) !

Remark 1. Combining (18) with (8), we also arrive at the equation (16).

By combining (3) with (16), we get the following corollary:
Corollary 2.5. Let n € Ny. Then we have

n k n i+1 n—j
t 1 14+t t
20 (7”b+1)("):1+tZ + 1 (1+t) '
k=0 k j=0 J

Substituting ¢ = 1 into (20) yields the following result:

Corollary 2.6. Let n € Ny. Then we have

1
«(n+1) () :;jﬂ‘

(21)
k=

Observe that the combination of (3) with equation (21) is equivalent to equation (17).
Combining (21) with (11), we have the following result:

315



316 Y. Simsek

Theorem 2.7. Let n € Ng. Then we have

n n

)" Chy—
(22) Z(n—i—l) Z‘7+1 )

part = -
Substituting (14) into (22), we arrive at the following corollary:
Corollary 2.8. Let n € Ny. Then we have

n n Y
Z(n—i—l) Z]—i—l)n—j)'

k=0 J=
Theorem 2.9. Let n € N. Then we have

n 1 n—1 (71)71
(23) kzﬂl(n,k)fikzﬂl(nfl,k): D

Proof. We set
(24) Gp (—u) = (1 - 7) Gi(Lu).

By using the above equation, we obtain

iil (n, k) u" — lizﬂ:l(n,k) u"tl = i(_””])nui:.
n=0 k=0 2 n=0 k=0 n—=0 n:
Therefore
oo n—1 00 n
n=1k=0 n=1 k=0 =1 n:

Comparing the coefficients of u™ on both sides of the above equation yields the desired
result. ]

Combining (23) with (8), we obtain the following result:
Theorem 2.10. Let n € N. Then we have

7L1

1
Zl(nkz Zl =

Remark 2. By using (24), assuming that |u| < 1, we obtain

ZZlnku _Zn—l—l

n=0 k=0
Therefore
2k n
ZZl (n, k) u™ —sz+1
n=0 k=0 n=0 k=0

Comparing the coefficients of u™ on both sides of the above equation yields the equation
(21).
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3. GENERALIZED LEIBNITZ TYPE NUMBERS

In this section, we give further remarks and observations on the Leibnitz numbers and
their relations with finite sums derived from application of the integral to the modifica-
tion for the Bernstein basis functions. By using the following well-known beta functions:

1

B(a,B) = /ta—l (1-t)’tdt =B (B, a)

0
where Re () > 0 and Im (8) > 0 (¢f. [20], [39]), one has the following novel integral
formula for the function B («, 3):

b
(25) / (= a)* (b= 2)"Vdz = (b—a)*** 1 B(a, B)

a

(cf. [39, p.10, Eq. (69)]).
Let z € [a,b] and k = 0,1,2,...,n. The modification for the Bernstein basis functions
are defined by

(26) B;g(x;a,b):<z> @:Z)k(i’):z)nk; a<b

(cf. [6], [31]; see references therein).
By applying (25) to (26), in [31], we not only found the following combinatorial type
sums

k n—k . _ k—jpn+j—k+1 _ n—v+1lpv
(27) Z Z iy k n—~k\a*7b . a b ’
j v n+j—k—v+1

j=0 v=0

a <b(a,b e [0,00)), but also gave many identities and relations involving other combi-
natorial numbers and special numbers.

With the aid of (27), we introduce generalized Leibnitz type numbers by the following
definition:

Definition 3.1. Let a and b be nonnegative real parameters with a < b. Let k =
0,1,2,...,n andn € Ny. Then generalized Leibnitz type numbers L (n, k; a,b) are defined

by

k n—k ; k n—k ak*janrj*kJrl _ anvarlbv
2 . — -1 n—j—v .
(28)  Lnkab)=) Y (-1) ()( v ) ntj—k-v+tl

=0 v=0 J

<.

Note that in (28) we assume that 0° = 1.

Remark 3. Settinga =0 and b =1 in (28), we have (6). Combining (3) with (6), we
have

l(n,k)=L(n,k;0,1).
On the other hand,

_ nkfv n—k 1
(n+ _Z ( v >nv+1'
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With the help of integration of Bernstein basis functions, recently, we have studied on
the above combinatorial sums (cf. [26, 28, 30], [31, Eq. (29)]). Observe that further
identities and new number families may be discovered by using the methods in paper
[28, 26, 30, 31], of the generalized Leibnitz numbers, which seem to be closely related
to the integral applications for the modification and unification of the Bernstein basis
functions.

4. MATHEMATICA IMPLEMENTATION OF THE NUMBERS L (n, k;a,b)

In this section, in order to give some applications of the computation formulas given
in the previous sections, we present Mathematica implementation (see: Implementation
1) for the numbers £ (n, k; a,b) by coding (28) in Mathematica 12.0.

IMPLEMENTATION 1. The following Mathematica code returns the values
of the generalized Leibnitz numbers £ (n, k; a, b).

Unprotect[Power];

Power[0,0]=

Protect[Power];

GLeibnitzNum[n_k_,a_,b_]:=Sum[Sum[((—1)"(n—j—v))*Binomial[k,j]*Binomial[n—k,v]+((a" (k—j))*(b"(n
+j—k+1))—(a"(n—v+1))(b"Vv))/(n+j—k—v+1), {v,0,n—k}], {j.0.k}]

Then, by (1), we compute few values of the numbers £ (n, k; a, b), and give their tables
as follows:

TABLE 1. For k=1 and n € {0,1,2,3,4}, few values of the generalized
Leibnitz numbers L (n, k; a,b) .

0, 1;a, b |@
(1, 1; a, b az-ab-%[-a2+b2}

(2, 1; a, b all:!-abl-‘i1 [-a®+ab?) +J:J' (a®-b?) + % (-a'b+b*)
3 b

4 b

(3, 1; a, b -a3b-a1b1-‘51|'a“-ab3:.+ "-a‘-b“':-%-:-a3b—b“‘|-%|’-azb2+b“:.

1
40
i|a*bsa’b?ca?b? - 2ab* b3 (-a®vab®) i (-a®b?iab’) s (a® b%) 2 (-a'b.b%) 1 a’b? bt

~ -~ M~ ™~

4, 1; a,

TABLE 2. For k =2 and n € {0,1,2,3,4}, few values of the generalized
Leibnitz numbers £ (n, k; a, b) .

L0, 2:a, b |0

L{l, 2; a, b) |®

L2, 2; a, b lb—ab1—§[—83+b3'}

L(3, 2; a, b) 1b1-ab3-%[a"-a2b2}+§:i-a“-ab3:: j{a“ b|——| a’b+b*)

L4, 2; a, b) a“b-ab“-%[-as+azb3::-+%:‘a5-ab“::-‘31:-a“b ab“l—-|a“b b%) +J-E:_-a5 b %{-a3b1—b5]

TABLE 3. Forn € {0,1,2,3} and k € {0,1,2}, few values of the general-
ized Leibnitz numbers L (n, k; a, b).

| k=8 k= k
L{B, k; a, b) -~a+b 4] <]
L(1, k; a, b) -ab-bl-%[az-hz} a’-ab+ :21[-32+b1:. 8

L(2, k; a, b) albfab27%|¥ai+b3'} azbfablfé\'7a3+ab2'j-+§:'a37b3':7§{7a1b7b3‘| azbfab17§|¥a3+b3'}
J sl | | )
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Substituting @ = 0 and b = 1, the numbers £ (n, k;a,b) are reduced to the classical
Leibnitz numbers I (n, k).

TABLE 4. For n € {0,1,2,...,8} and k € {0,1,2,...,8}, few values of
the generalized Leibnitz numbers £ (n, k; 0,1), namely { (n, k).

I
@
I
[
=
I
[
=
0]
w
I
o
=
I
w
0]
@
ES
I
-~
I
w

L{O, k; 0, 1)
L{l, k; 0, 1)
Li{2, k; 0, 1)
L{3, k; B, 1)
Li4, k; 0, 1)
L{5, k; 0, 1)
Li{G, k; 0, 1)
Li(T, k; 0, 1)
L{8, k; B, 1)

o @ @ @

Slegleglee- @ @
Yenie @ @ @ o|x

=
[
|~
o @ ® @ @@

=
|-&
3
=
|~%
]
-
-8
]
|~
gt @ @ ® @ © o

Bl 8= g = B e e @] X
-
=
g
o
.
g
.
.
B
-
=
g

5 B8l e G0 UYL B L L L B e b4 |
[
[
|-
[
|~

Qo= @ @ @ @ @ 20
]
- @ @ 2 @ 2 © 9 O x

-
]
ra
o
iy
@
=
@
=
n
@
4
ra
4

5. THE VOLKENBORN INTEGRAL REPRESENTATION OF THE LEIBNITZ NUMBERS ON
THE SET OF p-ADIC INTEGERS

In this section, by applying Volkenborn integral on the set of p-adic integers not only
to the Mahler coefficients, but also to uniformly differential function on the set of p-adic
integers, we obtain some novel formulas involving the Leibnitz numbers.

Here, we follow notations of the following references: [10, 13, 24, 37]; and the references
cited therein.

Some notations and definitions for p-adic integrals are given as follows:

Let m € N. Let ord,(m) denote the greatest integer k (k € Np) such that p* divides
m in Z. If m = 0, then ord,(m) = cc.

||, is a norm on Q. This norm is given by

|x| B p—ordp(z) if = 7é 07
o 0 if x = 0.

p
Let Z, be a set of p-adic integers which is given by

Zp:{xe(@p:mpgl}.
Let f be defined on Z,. The function f is called a uniformly differential function at

a point a € Z, if f satisfies the following conditions:
If the difference quotients ®; : Z;, x Z;, — C, such that

flz) = fy)
o SPAC7 b AL )
£(@,9) Ty
have a limit f’(a); (z,y) — (a,a). A set of uniformly differential functions is indicated
by f € UD(Z,) or f € CY(Z, — Cp).

The well-known Volkenborn integral (bosonic p-integral) is given by

pN—1
[7@ @) = i Y 1),
Zp z=0
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where u1 () = (:c + pNZp) denotes the Haar distribution, which is defined by

p () = N

(¢f. [7]-[15], [24]; see also the references cited in each of these earlier works).
In order to achieve the results of this section, we let
> z
(29) o =3 w(l) ez, - )
n=0
where (%) = “% denotes the Mahler coefficients. Applying the Volkenborn integral to

the function f (1;) in terms of the Mahler coefficients (i)’ we have the following well-
known formula:

RNE
(30) Z/ (@) ) =30 o

(¢f. |24, p. 168-Proposition 55.3]).
In order to give generating function (4), we apply the Volkenborn integral to the
following uniformly differential function on Zj:

flz,ut) =(1—uw)" (1 —tu)”,

where u, x € Zj.
Substituting the above function into the following well-known integral equation:

[+ 0dim @) = [ F@dis @)+ 70
Zp Zp

(cf. [24]), we get

(31) /(1 C ) (1 — ) dpn () =

Zp

log [(1 — u) (1 — tu)]
1-w(l—tu) -1

Consequently, the function on the right of equation (31) gives the generating function
given in equation (4) for the Leibnitz numbers.
Combining (31) with the binomial series

[ee] n

U xr
Zx(n)ﬁ = (1+u)",

n=0

and using (30), we obtain

Z - n; Z( )tn_k/ T ()T (n—k) A1 (T ZZI n, k) thu™.

n=0 Zp n=0 k=0

Comparing the coefficients of ©™ on both sides of the above equation yields the following
theorem:
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Theorem 5.1. Let n € Nyg. Then we have

n

(32) (_nl' ! Z <Z> tnfk/x(k)x(n_k)d,ul (z) = Zl (n,k)tk.

k=0 k=0

P

Combining (32) with the following formula:

k=0

P

where m,n € Ny (c¢f. [38]), we arrive at the following theorem:

Theorem 5.2. Let n € Nyg. Then we have

o Erene- R Q)

k=0 j=0
Substituting ¢ = 1 into (33), we get the following corollary:
Corollary 5.3.

(34) ZZ:I (n,k) = ;én:(_ly (Z) (n ; k) (j)%

k=0 j=
6. REMARKS AND OPEN QUESTIONS

The factorials involving binomial coefficients and combinatorial sums have many im-
portant applications in theory of combinatorial analysis, in theory of discrete probability,
and in theoretical computer science related to finite differences. Especially in the calcu-
lus of finite differences, in combinatorial analysis, and in discrete mathematics, factorials
involving binomial coefficients and special numbers such as the Lebnitz numbers have
also used to construct mathematical models and their applications (cf. [1]-[42]).

In order to study applications of the special numbers involving Lebnitz numbers in
analytic number theory, not only generating functions, but also interpolation functions
related to zeta-type functions are very useful and efficient areas.

Therefore, the following two open problems involving the Leibnitz numbers are come
up with at the and of this section:

1- How can we construct generating functions for the (generalized) Leibnitz num-
bers?

2- Are there any zeta-type functions, on the set of complex numbers, which inter-
polates the (generalized) Leibnitz numbers?
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