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ONE-DIMENSIONAL PSEUDOREPRESENTATIONS

WITH SMALL DEFECT

THAT ARE TRIVIAL ON A NORMAL SUBGROUP

A. I. Shtern

Abstract. We prove that every one-dimensional pseudorepresentation of a

group with a sufficiently small defect that is trivial on a normal subgroup

is defined by a one-dimensional pseudorepresentation of the corresponding

quotient group.

§ 1. Introduction

Let G be a group, let N be a normal subgroup of G, and let π be a
one-dimensional pseudorepresentation of G, i.e., π : G → C∗ = C \ {0} and

(1) |π(gh)−π(g)π(h)| ≤ ε, g, h ∈ G, and π(gk) = π(g)k, k ∈ Z.

The minimum number ε satisfying (1) is called the defect of the pseudorep-
resentation π. A pseudorepresentation is said to be pure if its restriction
to every amenable subgroup of G is an ordinary complex character of the
subgroup. For the generalities concerning pseudorepresentations, see [1–5];
for the specific features concerning one-dimensional pseudorepresentations,
see [6].

Suppose that the restriction of the pseudorepresentation π to the normal
subgroup N is a sufficiently small perturbation of the mapping taking N to
one. The main result of the present note is that π(N) = {1} and there is a
one-dimensional pseudorepresentation ρ of G/N such that

(2) π(g) = ρ(gN), g ∈ G.
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§ 2. Preliminaries

Lemma. Let G be a group and let π be a one-dimensional pure pseudorep-
resentation of G. If

|π(g) − 1| <
√

3 for all g ∈ G,

then π(g) is identically equal to one for all g ∈ G.

Proof. Let g ∈ G, g �= eG, where eG stands for the identity element of G.
Let G(g) be the cyclic subgroup of G generated by g. By assumption, the
restriction of π to G(g) is an ordinary complex character χ of G(g), which
satisfies the inequality

|χ(h) − 1| <
√

3 for all h ∈ G(g).

Therefore, χ is bounded, and therefore unitary; however, the image χ(G(g))
of G(g) is a subgroup of the unit circle; if it contains no elements at a distance
from 1 which is greater than or equal to

√
3, then the subgroup is {1}, which

completes the proof.

§ 3. Main theorem

Theorem. Let G be a group, let N be a normal subgroup of G, and let π be
a pure one-dimensional representation of G whose defect is less than 1. Let

|π(n) − 1| <
√

3 for all n ∈ N.

Then there is a pure one-dimensional representation ρ of G/N such that

π(g) = ρ(gN) for all g ∈ G.

Proof. It follows from the assumption of the theorem and from the above
lemma that

π(n) = 1 for every n ∈ N.

Let us consider the relationship between the cyclic groups generated by the
numbers π(gn) and π(g) for any g ∈ G and n ∈ N . For every integer k we
have

π(gn)k = π((gn)k) = π(gkng,k) = π(g)k + δ(g, n, k),
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where |δ(g, n, k)| < 1. As is well known, two complex characters whose
difference is pointwise less than one are equal. Thus,

π(gn)k = π(g)k

for all integers k and all g ∈ G and n ∈ N . Therefore, π is constant on the
cosets by N . Introducing a one-dimensional mapping

ρ : G/N → C∗

by the rule
ρ(gN) = π(g) for all g ∈ G,

we can immediately see that ρ is well defined and satisfies the conditions im-
posed on pseudorepresentations, this pseudorepresentation is pure and satis-
fies (2) by the very definition. This completes the proof of the theorem.

§ 4. Discussion

Corollary. Let G be a group, let N be a normal subgroup of G, and let π
be a one-dimensional representation of G whose defect is less than 0.24. Let

|π(n) − 1| <
√

3 for all n ∈ N.

Then there is a pure one-dimensional representation ρ of G/N such that

π(g) = ρ(gN) for all g ∈ G.

Proof. The proof follows immediately from the theorem and from the fact
that a one-dimensional pseudorepresentation of a group whose defect is less
than 0.24 is pure [6].
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