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ON ANDREWS’ PARTITION FUNCTION £O(n)

FATHIMA S. N. AND VEENA V. S.

ABSTRACT. Recently, Andrews introduced partition functions £EO(n) and £O(n)
where the function £O(n) denotes the number of partitions of n in which every
even part is less than each odd part and the function £0(n) denotes the number
of partitions enumerated by £O(n) in which only the largest even part appears
an odd number of times. In this paper, we prove new congruences for £O(n) and
pp(n), the number of partitions into distinct (or, odd) parts. We further establish
linear recurrence relations for pp(n), which counts the number of partitions of n
into distinct parts with 2 types of each part and £O(n).
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1. INTRODUCTION

A partition of a positive integer n is a non-increasing sequence of positive integers
whose sum equals n. The number of partitions of n is denoted by p(n). The
generating function for p(n), is given by

(1.1) S pn)g" = —— =+,
n=0

T @G9w N

where as customary, we define
o0
fo=(d"1d"0e = T (1 = ¢™).
m=1
In [3], Andrews gave a detailed study of the partition function £O(n), where the
function £O(n) counts the number of partitions of n in which every even part is less
than each odd part. The generating function of £O(n), is given by

o0
1

1.2 M,

(12 200" = 5y
For example, £O(10) = 19 with the relevant partitions being 10,9 + 1,8 + 2,7 +
3,74+14+141,6+46+2+25+55+3+1+154+2+25+1+1+1+1+
1,44+4+2442+424+23+3+3+1,34+3+24+23+3+1+14+1+1,34+1+
1+1+14+14+1+1,2424+24+24+214+14+1+14+1+1+14+1+1+1.
Andrews [3]. also defined the partition function £O(n) that counts the number of
partitions enumerated by £O(n) in which only the largest even part appears an odd
number of times. The generating function for £O(n), is given by

e’} L - f—f
(1.3) ZS(’)(n)q =
n=0 2
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For example, £0(10)=6 with the relevant partitions being 10,6 + 2 + 2,5 + 5,
3+3+1+14+14+1,2424+2+24+21+14+14+1+1+14+14+1+1+1.
In [3], Andrews proved the congruence

(1.4) £O0(10n+8) =0 mod (5).

In this paper, we give an alternate proof for this congruence by finding the exact
generating formula for £O(10n + 8).

Let pp(n) be the partition function that counts the number of partitions of n into
distinct parts, then

bk
h

For example, pp(3) = 2, the two partitions of 3 are 3, 2+1. Using Ramanujan’s theta
function Baruah et.al., [5], have obtained exact generating function for pp(5n + 1),
pp(25n + 1) and pp(125n + 26). For more works on pp(n), see [1,11,12,15].

Now, let pp(n) be the number of partitions of n into distinct parts with 2 types of
each part, then

(1.5) Z pp(n ¢ q)oo

2

(1.6) > Pp(n)d" = 3.
n=0

1

Clearly, pp(3) = 6, where the six partitions of 3 are 3,3,2+ 1,2+ 1,2+ 1,2+ 1.
The aim of this paper is to prove new congruences for £O(n) and pp(n). The
following are our main results:

Theorem 1.1. For any integer n > 0, we have

(1.7) i%(lon +2)g" = o f31(¢ ),
n=0 f1
(1.8) i O(10n + 4)q 72f2f§‘q’ ),
n=0 1
(1.9) Z%(l()n—&—é%)q” = 5%7
n=0 1

where f(a,b) is defined in (2.1).
Theorem 1.2. For any integer n > 0, a = 1 and prime p > 5, we have

5p*~1(6) +5p) — 1
3

(1.10) %(10}720% + ) =0 (mod 10),

where j =1,2,...,p — 1.

In section 3, we prove Andrews congruence [3, Eqn. 1.6] and few new congruences
for £0(n) modulo 2, 10 and 20 are deduced from Theorem 1.1. We also prove the
following new congruences for pp(n).
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Theorem 1.3. For any integer n > 0, we have

(1.11) pp (5°n+7) =0 (mod 4),

where r = 6, 11, 16 and 21.

In section 4, motivated by M Merca’s paper [14], new recurrence relations for pp(n)

and EO(n) are obtained. We conclude this paper by results relating to pp(n) and
EO(n) with variants of the partition function.

2. PRELIMINARIES

To prove the main results of this paper, we collect some definitions and lemmas
in this section.
Ramanujan’s general theta function f(a,b) is defined by [6, Eqn. 18.1]

[o0]

(2.1) fla,b) = > a2 gh| < 1
n=-—oo
By [6, p.34, Entry 18] we have
(2.2) f(1,a) = 2f(a,d®).
Three special cases of f(a,b) are [6, p.36, Entry 22]
oo
(2.3) 0(q) = flg.q) = Zq
00 f2
(24) W) = fla,q*) =Y "D = 22,
n=0 f1
and
(2.5) Fl=q) = f(=q.—¢)) = D (=1)"¢"" 2 = (g:9)0 = f1,
n=—oo

where the product representations arise from Jacobi triple product identity [p.36,
Entry 19]berndt2012ramanujan,

(2.6) fla,b) = (—a; ab)oo(—b; ab) oo (ab; ab) s

The last equality of identity (2.5) is Euler’s famous pentagonal number theorem |2,
Cor. 1.7].

Lemma 2.1. [6, p.262, Entry 10] The following identity holds.
(2.7) ¢ (q) = a¥*(4%) = fla.a) F(* a%).
Lemma 2.2. [9, p.11, Eqn.7.1] We have Jacobi’s identity,

[e.9]

(2.8) =Y (=1"@n + 1),

n=0
Lemma 2.3. [9, p.104, Eqn 10.7. 3] We have Ramanujan’s identity,
(2.9) = 3 6+ 10

fz

n=—oo
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Lemma 2.4. [8, Theorem 2.2] If p > 5 is a prime and

L p=1 (mod6),

-1 _ 5
6 |t p=-1 (mod6).

then
4p-1 p2-1 2
f(=q)=(=1)"5 " q 27 f(—¢")
55 a2 (6 302 — (6K
(2.10) + Z k 352 =t ’(_(1‘5:’7 +<gk+1)p7_qu <g’“+1>”).
k=-251
2
s

Furthermore, if—(pgl) <k< (pgl), k # i’%_l, then 3k22+k # ”22—11 (mod p).

Lemma 2.5. The following 2-dissections holds.
[6, p.40, Entry 25](Consequence of 2-dissection of ©(q)),

1 3 filis
2.11 - = + 2(1 = 5
210 7RG s
[10, Theorem 2.1],

f5 faf3 £ fiofuo
(2:12) Al fifao T T3t

[13, Lemma 2.5],

(2‘13) flf =2 2f4f40f10 + f2 f4f10 + 2qfff20 _ 5(1f2f130-
faf3 3 fa0

Lemma 2.6. From the binomial theorem, for any positive integer k,
(2.14) 2 = 270 (mod 28).

Lemma 2.7. [6, p.49, Entry 31] The following 5-dissection holds.
(2.15) U(g) = (4" 4") + af (6% 6%°) + ¢*(¢*).

Lemma 2.8. The following 5-dissection holds.

f2_ fio
ho f3

where a:f(qw.,qw), b:f(q »q 0) and c:¢(q25).
Proof. We have

(2.16) ( + qab + ¢*b* + 243 ac + 2¢*be),

fo fio 2 3 5. 5
2.17 Li—, . -3, 0% ") o
(2.17) P f5( ", 4% ¢°)oc(—*, —¢*. "1 ")

Using (2.1) and (2.6) in (2.17), we have

é flO > 5k2—3k+512—l

=—00 l=—0
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0 0 P
Now split Z Z q B according to the residue of k + 2I modulo 5.
k=—o0l=—00
If K+ 20 =0 (mod 5), then k + 2] = 5m, define t = [ — 2m, so that k = m — 2t,
I =2m +t, and the contribution of these terms to the sum is

25m —5m+2012+)f -
(2.19) Z Z q = f(q"%:¢")%.

m=—oo t=—

If k+20 =1 (mod 5), then k+2] = 5m+1, define t = [—2m, so that k = m+1—2t,
I = 2m + t, and the contribution of these terms to the sum is

25m2+5m+25f2—15f . .
(220) q Z Z q = qf(@"% ") F(d" ¢*).

—00 t=—00

If k+20 =2 (mod 5), then k+2] = 5m+2, define t = [—2m —1, so that k = m —2t,
[ =2m+ 1+t, and the contribution of these terms to the sum is

9 > > 25m2 +15m+25t2 415t 9 5 90\2
(2.21) DI 2 = f(d% )

m=—o0 t=—00

If K+ 20 = 3 (mod 5), then k + 2l = 5m + 3, define t = I — 2m — 1, so that
k=m-—2t+1,l=2m -+ 1+t, and the contribution of these terms to the sum is

o0 [ee]
25m2 +25m+25t2 — 5t 5 5
(2.22) > g 2 =24°¢(¢*) f(q"%; ¢").

m=—o0 t=—00

If k42l = 4 (mod 5), then k + 2] = 5m — 1, define ¢ = | — 2m + 1, so that
k=m-—2t+1,1=2m —1+t, and the contribution of these terms to the sum is

25m —l5'r‘n+25f —25t 5
(2.23) g’ Z Z q =2¢"9(¢™) f(¢”3 ¢™).
-0 t=—00
Using (2.19)-(2.23) in (2.18), we complete the proof of Lemma 2.8. O

3. PROOF OF THEOREM 1.1-1.3

Proof of Theorem 1.1. Employing (2.4), we can write (1.3) as

(3.) S 20 = 22 = wig 2.
s ft fi

By multiplying (2.15) and (2.16), we deduce
(oo}
Zw@n)q" Jio [ +3¢°b? ¢ + 2qa®b + 2¢5ac? + 2¢%ab® + 2¢"bc?
(3.2) 3
+3¢3%a%c+ ¢ + 5q4abc].

Extracting the terms involving ¢°**! from both sides of the identity (3.2) and then
replacing ¢® by ¢, we obtain

(3.3) Z O(10n +2)q ;?, @) | (@ ) fa.q") + ap?(d)|.
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Invoking Lemma 2.1 in (3.3), we obtain

(3.4) S E0(10n + 2)q" = 2f—§,¢2(q)f(q2, .

n=0
Substituting (2.4) in (3.4), we complete the proof of (1.7). Similarly, extracting the
terms involving ¢°"*2 and ¢°*™* from both sides of the identity (3.2), we obtain
(1.8) and (1.9) respectively.

Corollary 3.1. For n > 0, we have

(3.5) EO(10n+7r) =0 (mod 2), where r = 2, 4.

(3.6) EO(10n+8) =0 (mod 5),

(3.7 EO(200n+7) =0 (mod 10), where r = 18, 28, ..., 198.
(3.8) EO(5On+7) =0 (mod 20), where r = 18, 28, 38, 48.

Proof. Congruences (3.5) and (3.6) are direct consequences of (1.7), (1.8) and (1.9)
respectively.
Employing binomial theorem (2.14) in (1.9), we deduce that

o0
(3.9) > EO(10n+8)¢" =52 (mod 10).

n=0
By comparing the coefficients of 2?1, ¢20n+2 = ¢20n+19 e obtain (3.7).
Again by applying binomial theorem on(1.9), we obtain

(3.10) D €0(10n+8)¢" =53 fi0  (mod 20).
n=0
5n+3 Sn+4

5n+1 5n+2
) b

By comparing the coefficients of ¢ and q , we complete the
proof of (3.8).
Remark: An alternate proof of (3.8) is given by Barman and Ray [4], where they

use arithmetic properties of modular forms to prove the congruence. O

q q

Corollary 3.2.

(3.11) EO(20n+18) =0 (mod 10),
(3.12) £0(40n +28) =0 (mod 10).
Proof. In light of (2.11) and (2.12), we deduce the following 2-dissection.

2 £ 2 [2 8 fofio Jr4(12J‘lffloffefzo

v el fa e f3 f3°fs
(3.13) 20 42 44 3 05 82 (2 2
[ fsfisf20 J1 18 f10./20 3.J1.fiofi6 10
+2q 50 T2 0m T2 im0
I3 fio 2 fi6 2 15 f3
Extracting terms involving ¢?"*! from (1.9), then replacing ¢* by ¢, it follows that
00 2 4 g 12 A 3 45 £2 4 8 43 2 42
(314) Z%(20n+18)qn:10 f2j4~§‘)f28f10+j2j48f52f10+qf2£5~§8-£20
I f3 Iifs Tifi fio

n=0
This completes the proof of (3.11).
Again, extracting terms involving ¢?" from (1.9), then replacing ¢ by ¢, we obtain
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o w sty SRR L RS fo
EO(20 8 =5 4
2_E020n+8)q [f’ff§f§0+q T

Invoking binomial theorem (2.14), we obtain

(3.15) im(QOn +8)¢" =5f f5 |:f2 + q‘?o] (mod 10).

n=0
Using (2.13) in (3.15) and employing binomial theorem, we obtain

(3.16) > EO(20n+8)q" =5[f; + QQ%%] (mod 10).
n=0 2

On comparing the terms involving ¢?**!

Proof of Theorem 1.2.
From (3.9), we have

, we complete the proof of (3.12). O

oo

Z O(10n +8)¢" =5/ (mod 10).

5(p2
Invoking Lemma 2.4 and extracting terms involving ¢”"* from the both sides

of the resulting identity and then changing ¢” to q, we obtaln

i%(m(}m—!— W) + 8>q” = E)(—l)iw1

n=0

—¢*?)  (mod 10),

Again applying Lemma 2.4 to the identity (3.9) and extracting the terms involving
5(p?~1)
6

c11’2’“L from the resulting identity and then replacing qp2 to g, we deduce

[e'S) 2
Zm(m(p% + w) + 8>q

n=0

f(=¢*°)  (mod 10).

Now apply Lemma 2.4 to the above identity and extracting the terms involving of
5(p°=1)
6

Pt and then changing ¢P to ¢, we obtain

- 25p* — 1

> 5o<1op3n + pT>q” =5f(—¢*"") (mod 10).
n=0

Hence, by induction on «, we derive that, for a > 1

)

= 25p%* — 1
ZSO <10p2a_1n + E)pT> " =5 O‘(ii 1) —¢*?)  (mod 10).
n=0

On comparing the coefficients of ¢?"*7 where j = 1, 2..., p—1, from the above identity
we obtain

S 25p** — 1
EO <1Op2a1(pn +7)+ %)q" =0 (mod 10).

Thus we complete the proof.

Proof of Theorem 1.3
Extracting the terms involving ¢°**! from the identity (2.16) and then replacing ¢°
by ¢, we obtain
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3.17 p(Bn+ 1)g" = .
(3.17) E: po( )a o
Applying (2.14) in (3.17) and comparing the coefficients of "1, ¢®"*2, ¢°"+3 and

¢°"** we complete the proof of (1.11).
Theorem 3.3. £0(2n) is odd if and only if 6n+1 is a perfect square.

Proof. From (1.3), we have

Zm(Qn)q" = f1 (mod 2),

Zm@n)qﬁ”+1 = Zq(6"+1)2 (mod 2).
n=0 =

This completes the proof of Theorem 3.1. |
Theorem 3.4. pp(n) is odd if and only if 12n+1 is a perfect square.

Proof. The proof follows on the same lines. (]

4. RECURRENCE RELATIONS FOR pp(n) AND EO(n)
In this section, we provide linear recurrence relations for pp(n) and £EO(n).

Theorem 4.1.

(4.1)
o0 .
_ (3k% + k) (-D)*2k+1) ifn=TwnkeN or n=0
6k + 1 n—-——) =
k::z—oo( +Dpp <n 2 0 otherwise.

where Ty, is the triangular number.
It is easy to evaluate Pp(n) for small values of n, say

pp(0) =1,

pp(1) =-=3+5pp(0) =2,

Pp(2) =5pp(1) = Tpp(0) =3,

pD(3) =5—"Tpp(1) +5pp(2) =6,
Pp(4) =5pp(3) — Tpp(2) = 9.

Proof. On multiplying ; to Ramanujan’s identity (2.9) we deduce that
i

(4.2) £="mpme" Y (6n+1)q°
n=0

n=-—oo

Comparing (4.2) with Jacobi’s identity (2.8), we obtain

(4.3) Z( D™(2n +1)q

o0

i Z (6n + 1)q3n22+n.

n=—oo
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Applying Cauchy multiplication of two power series on identity (4.3), we obtain
recurrence relation (4.1). O
Theorem 4.2. £0(2n) = Z (=1)*pp(n — (3K + k).
k=—o00

Proof. Using (1.3), (1.6) and (2.5) we have

o0 o [e.e] oo 9
(4.4) > E0@2n)g" =D ppn)g" > (1)

n=0 n=0 n=-—00

Applying Cauchy multiplication for power series on the identity (4.4). On comparing
the coefficients of ¢" in the resulting identity we obtain Theorem 4.2.

(]
Using above values of pp(n), we evaluate £EO(2n) for small values of n, say
E0(0) =pp(0) =1,
€0(2) =pp(1) =2,
EO(4) = —PD(O) +Pp(2) =2,
EO0(6) = —pp(1) +Dp(3) = 4,
E0(8) = —pp(0) +Pp(4) —Pp(2) = 5.

5. pp(n), EO(n) AND VARIANTS OF PARTITION FUNCTIONS

In [7], Corteel and Lovejoy introduced overpartitions. An overpartition of a non-
negative integer n is a partition of n where the first occurrence of parts of each size
may be overlined. Let p(n) denote the number of overpartitions of n, then

(5.1) > pln)g" = %
n=0 1

Let ppo(n) denote the number of over partition pairs of n into odd parts, then

(5.2) pro n)q" =
f1 f4
Let pg(n) denote the number of overpartitions of n into odd parts, then
(o] f.ﬁ?,
(5.3 po(n)q" = —5=.
) ;} fi fa
Theorem 5.1. For any nonnegative integer n, we have
o0 o0
(5.4) Y oln—k) = Y (=1)*Ppo(n — (3> + k),
k=—00 k=—o00
[ee]
(5.5) pp(n) = Y (=1)*p(n — (3k* + k).

k=—00

441



442

Fathima S. N. and Veena V. S.

Proof. Using (1.6), (2.3), (2.5) and (5.2) we have
(5.6) Y pomaela) = > (~1)"¢" > Bro(n)q”
n=0 n=-—00 n=0

Applying Cauchy multiplication of two power series in identity (5.6), we obtain

o0 o0
57 > > Ppln- Z Z —1)*ppo(n — (3k” + k))q"
n=0k=—oco n=0k=—o00
Equating the coefficients of ¢" on each side of identity (5.7), we complete the proof
of (5.4).
Using (1.6), (2.5) and (5.1) we have
- — n S -— n - n n2 n
(5.8) > Bp(n)d" =Y Bn)g” > (1),
n=0 n=0 n=—00
Again, applying Cauchy multiplication for power series in identity (5.8) and then
comparing the coefficients of ¢™ in the resulting identity, we complete the proof of
(5.5).

O
Theorem 5.2. For any nonnegative integer n, we have
o0
(5.9) E0(2n) = > pp(n—Ty),
n=0
oo
(5.10) po(n) =Y _EO(2n — 8k)p(k).
k=0
Proof. We omit the proof since it is similar to Theorem 5.1. |
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