Dedicated to Prof. Chandrashekar Adiga on his 62nd Birthday

ON ANDREWS' PARTITION FUNCTION $\overline{\mathcal{EO}}(n)$

FATHIMA S. N. AND VEENA V. S.

ABSTRACT. Recently, Andrews introduced partition functions $\mathcal{EO}(n)$ and $\overline{\mathcal{EO}}(n)$ where the function $\mathcal{EO}(n)$ denotes the number of partitions of n in which every even part is less than each odd part and the function $\overline{\mathcal{EO}}(n)$ denotes the number of partitions enumerated by $\mathcal{EO}(n)$ in which only the largest even part appears an odd number of times. In this paper, we prove new congruences for $\overline{\mathcal{EO}}(n)$ and $p_D(n)$, the number of partitions into distinct (or, odd) parts. We further establish linear recurrence relations for $\overline{p}_D(n)$, which counts the number of partitions of n into distinct parts with 2 types of each part and $\overline{\mathcal{EO}}(n)$.

2000 Mathematics Subject Classification. 05A17, 11P83.

Keywords and Phrases. Partitions, Generating functions, Congruences.

1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers whose sum equals n. The number of partitions of n is denoted by p(n). The generating function for p(n), is given by

(1.1)
$$\sum_{n=0}^{\infty} p(n)q^n = \frac{1}{(q;q)_{\infty}} = \frac{1}{f_1},$$

where as customary, we define

$$f_k := (q^k; q^k)_{\infty} = \prod_{m=1}^{\infty} (1 - q^{mk}).$$

In [3], Andrews gave a detailed study of the partition function $\mathcal{EO}(n)$, where the function $\mathcal{EO}(n)$ counts the number of partitions of n in which every even part is less than each odd part. The generating function of $\mathcal{EO}(n)$, is given by

(1.2)
$$\sum_{n=0}^{\infty} \mathcal{EO}(n)q^n = \frac{1}{(1-q)(q^2;q^2)_{\infty}}.$$

Andrews [3], also defined the partition function $\overline{\mathcal{EO}}(n)$ that counts the number of partitions enumerated by $\mathcal{EO}(n)$ in which only the largest even part appears an odd number of times. The generating function for $\overline{\mathcal{EO}}(n)$, is given by

(1.3)
$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}}(n) q^n = \frac{f_4^3}{f_2^2}.$$

The first author's research is supported by Pondicherry University Fellowship, Department of Mathematics, Pondicherry University, Puducherry-605014.

For example, $\overline{\mathcal{EO}}(10) = 6$ with the relevant partitions being 10, 6 + 2 + 2, 5 + 5, 3 + 3 + 1 + 1 + 1 + 1, 2 + 2 + 2 + 2 + 2, 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1. In [3], Andrews proved the congruence

$$(1.4) \overline{\mathcal{EO}}(10n+8) \equiv 0 \mod (5).$$

In this paper, we give an alternate proof for this congruence by finding the exact generating formula for $\overline{\mathcal{EO}}(10n+8)$.

Let $p_D(n)$ be the partition function that counts the number of partitions of n into distinct parts, then

(1.5)
$$\sum_{n=0}^{\infty} p_D(n)q^n = (-q;q)_{\infty} = \frac{f_2}{f_1}.$$

For example, $p_D(3) = 2$, the two partitions of 3 are 3, 2+1. Using Ramanujan's theta function Baruah et.al., [5], have obtained exact generating function for $p_D(5n+1)$, $p_D(25n+1)$ and $p_D(125n+26)$. For more works on $p_D(n)$, see [1,11,12,15]. Now, let $\overline{p}_D(n)$ be the number of partitions of n into distinct parts with 2 types of each part, then

(1.6)
$$\sum_{n=0}^{\infty} \overline{p}_D(n) q^n = \frac{f_2^2}{f_1^2}.$$

Clearly, $\overline{p}_D(3) = 6$, where the six partitions of 3 are $3, \overline{3}, 2+1, \overline{2}+1, 2+\overline{1}, \overline{2}+\overline{1}$. The aim of this paper is to prove new congruences for $\overline{\mathcal{EO}}(n)$ and $p_D(n)$. The following are our main results:

Theorem 1.1. For any integer $n \ge 0$, we have

(1.7)
$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}}(10n+2)q^n = 2\frac{f_2^5 f(q^2, q^3)}{f_1^5},$$

(1.8)
$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}}(10n+4)q^n = 2\frac{f_2^5 f(q, q^4)}{f_1^5},$$

(1.9)
$$\sum_{n=0}^{\infty} \overline{\mathcal{E}}\overline{\mathcal{O}}(10n+8)q^n = 5\frac{f_2^2 f_5^2 f_{10}}{f_1^4},$$

where f(a,b) is defined in (2.1).

Theorem 1.2. For any integer $n \ge 0$, $\alpha \ge 1$ and prime $p \ge 5$, we have

$$(1.10) \qquad \qquad \overline{\mathcal{EO}}\bigg(10p^{2\alpha}n + \frac{5p^{2\alpha-1}(6j+5p)-1}{3}\bigg) \equiv 0 \pmod{10},$$

where j = 1, 2, ..., p - 1.

In section 3, we prove Andrews congruence [3, Eqn. 1.6] and few new congruences for $\overline{\mathcal{EO}}(n)$ modulo 2, 10 and 20 are deduced from Theorem 1.1. We also prove the following new congruences for $p_D(n)$.

Theorem 1.3. For any integer $n \ge 0$, we have

$$(1.11) p_D\left(5^2n+r\right) \equiv 0 \pmod{4},$$

where r = 6, 11, 16 and 21.

In section 4, motivated by M Merca's paper [14], new recurrence relations for $\overline{p}_D(n)$ and $\overline{\mathcal{EO}}(n)$ are obtained. We conclude this paper by results relating to $\overline{p}_D(n)$ and $\overline{\mathcal{EO}}(n)$ with variants of the partition function.

2. Preliminaries

To prove the main results of this paper, we collect some definitions and lemmas in this section.

Ramanujan's general theta function f(a, b) is defined by [6, Eqn. 18.1]

(2.1)
$$f(a,b) = \sum_{n=-\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2}, |ab| < 1.$$

By [6, p.34, Entry 18] we have

$$(2.2) f(1,a) = 2f(a,a^3).$$

Three special cases of f(a, b) are [6, p.36, Entry 22]

(2.3)
$$\varphi(q) := f(q,q) = \sum_{n=-\infty}^{\infty} q^{n^2} = \frac{f_2^5}{f_1^2 f_4^2},$$

(2.4)
$$\psi(q) := f(q, q^3) = \sum_{n=0}^{\infty} q^{n(n+1)/2} = \frac{f_2^2}{f_1},$$

and

(2.5)
$$f(-q) := f(-q, -q^2) = \sum_{n=-\infty}^{\infty} (-1)^n q^{(3n^2+n)/2} = (q; q)_{\infty} = f_1,$$

where the product representations arise from Jacobi triple product identity [p.36, Entry 19]berndt2012ramanujan,

$$(2.6) f(a,b) = (-a;ab)_{\infty}(-b;ab)_{\infty}(ab;ab)_{\infty}.$$

The last equality of identity (2.5) is Euler's famous pentagonal number theorem [2, Cor. 1.7].

Lemma 2.1. [6, p.262, Entry 10] The following identity holds.

(2.7)
$$\psi^2(q) - q\psi^2(q^5) = f(q, q^4)f(q^2, q^3).$$

Lemma 2.2. [9, p.11, Eqn. 7.1] We have Jacobi's identity,

(2.8)
$$f_1^3 = \sum_{n=0}^{\infty} (-1)^n (2n+1)q^{(n^2+n)/2}.$$

Lemma 2.3. [9, p.104, Eqn. 10.7.3] We have Ramanujan's identity,

(2.9)
$$\frac{f_1^5}{f_2^2} = \sum_{n=-\infty}^{\infty} (6n+1)q^{\frac{3n^2+n}{2}}.$$

Lemma 2.4. [8, Theorem 2.2] If $p \ge 5$ is a prime and

$$\frac{\pm p - 1}{6} := \begin{cases} \frac{p - 1}{6}, & p \equiv 1 \pmod{6}, \\ \frac{-p - 1}{6}, & p \equiv -1 \pmod{6}. \end{cases}$$

then

$$(2.10) f(-q) = (-1)^{\frac{\pm p - 1}{6}} q^{\frac{p^2 - 1}{24}} f(-q^{p^2})$$

$$+ \sum_{\substack{k = -\frac{p - 1}{2} \\ k \neq \frac{\pm p - 1}{6}}}^{\frac{p - 1}{2}} (-1)^k q^{\frac{3k^2 + k}{2}} f(-q^{\frac{3p^2 + (6k + 1)p}{2}}, -q^{\frac{3p^2 - (6k + 1)p}{2}}).$$

Furthermore, if $-\frac{(p-1)}{2} \leqslant k \leqslant \frac{(p-1)}{2}$, $k \neq \frac{\pm p-1}{6}$, then $\frac{3k^2+k}{2} \not\equiv \frac{p^2-1}{24} \pmod{p}$.

Lemma 2.5. The following 2-dissections holds. [6, p.40, Entry 25](Consequence of 2-dissection of $\varphi(q)$),

(2.11)
$$\frac{1}{f_1^2} = \frac{f_8^5}{f_2^5 f_{16}^2} + 2q \frac{f_4^2 f_{16}^2}{f_2^5 f_8},$$

[10, Theorem 2.1],

(2.12)
$$\frac{f_5}{f_1} = \frac{f_8 f_{20}^2}{f_2^2 f_{40}} + q \frac{f_4^3 f_{10} f_{40}}{f_2^3 f_8 f_{20}}.$$

[13, Lemma 2.3],

$$(2.13) f_1^3 f_5 = 2q^2 \frac{f_4^6 f_{40}^2 f_{10}}{f_2 f_8^2 f_{20}^2} + \frac{f_2^2 f_4 f_{10}^2}{f_{20}} + 2q f_4^3 f_{20} - 5q f_2 f_{10}^3.$$

Lemma 2.6. From the binomial theorem, for any positive integer k,

(2.14)
$$f_1^{2^k} \equiv f_2^{2^{k-1}} \pmod{2^k}.$$

Lemma 2.7. [6, p.49, Entry 31] The following 5-dissection holds.

$$(2.15) \psi(q) = f(q^{10}; q^{15}) + qf(q^5; q^{20}) + q^3\psi(q^{25}).$$

Lemma 2.8. The following 5-dissection holds

(2.16)
$$\frac{f_2}{f_1} = \frac{f_{10}}{f_5^3} (a^2 + qab + q^2b^2 + 2q^3ac + 2q^4bc),$$

where $a=f(q^{10},q^{15})$, $b=f(q^5,q^{20})$ and $c=\psi(q^{25})$.

Proof. We have

$$(2.17) \frac{f_2}{f_1} = \frac{f_{10}}{f_5^3} (-q, -q^4, q^5; q^5)_{\infty} (-q^2, -q^3, q^5; q^5)_{\infty}.$$

Using (2.1) and (2.6) in (2.17), we have

(2.18)
$$\frac{f_2}{f_1} = \frac{f_{10}}{f_5^3} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} q^{\frac{5k^2 - 3k + 5l^2 - l}{2}}.$$

Now split $\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} q^{\frac{5k^2-3k+5l^2-l}{2}}$ according to the residue of k+2l modulo 5.

If $k + 2l \equiv 0 \pmod{5}$, then k + 2l = 5m, define t = l - 2m, so that k = m - 2t, l = 2m + t, and the contribution of these terms to the sum is

(2.19)
$$\sum_{m=-\infty}^{\infty} \sum_{t=-\infty}^{\infty} q^{\frac{25m^2 - 5m + 25t^2 + 5t}{2}} = f(q^{10}; q^{15})^2.$$

If $k+2l \equiv 1 \pmod{5}$, then k+2l = 5m+1, define t = l-2m, so that k = m+1-2t, l = 2m+t, and the contribution of these terms to the sum is

(2.20)
$$q \sum_{m=-\infty}^{\infty} \sum_{t=-\infty}^{\infty} q^{\frac{25m^2+5m+25t^2-15t}{2}} = qf(q^{10}; q^{15})f(q^5; q^{20}).$$

If $k+2l \equiv 2 \pmod{5}$, then k+2l = 5m+2, define t = l-2m-1, so that k = m-2t, l = 2m+1+t, and the contribution of these terms to the sum is

(2.21)
$$q^2 \sum_{m=-\infty}^{\infty} \sum_{t=-\infty}^{\infty} q^{\frac{25m^2+15m+25t^2+15t}{2}} = q^2 f(q^5; q^{20})^2.$$

If $k + 2l \equiv 3 \pmod{5}$, then k + 2l = 5m + 3, define t = l - 2m - 1, so that k = m - 2t + 1, l = 2m + 1 + t, and the contribution of these terms to the sum is

(2.22)
$$q^{3} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} q^{\frac{25m^{2}+25m+25t^{2}-5t}{2}} = 2q^{3}\psi(q^{25})f(q^{10};q^{15}).$$

If $k + 2l \equiv 4 \pmod{5}$, then k + 2l = 5m - 1, define t = l - 2m + 1, so that k = m - 2t + 1, l = 2m - 1 + t, and the contribution of these terms to the sum is

(2.23)
$$q^4 \sum_{m=-\infty}^{\infty} \sum_{t=-\infty}^{\infty} q^{\frac{25m^2 - 15m + 25t^2 - 25t}{2}} = 2q^4 \psi(q^{25}) f(q^5; q^{20}).$$

Using (2.19)-(2.23) in (2.18), we complete the proof of Lemma 2.8.

3. Proof of Theorem 1.1-1.3

Proof of Theorem 1.1. Employing (2.4), we can write (1.3) as

(3.1)
$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}}(2n)q^n = \frac{f_2^3}{f_1^2} = \psi(q)\frac{f_2}{f_1}.$$

By multiplying (2.15) and (2.16), we deduce

(3.2)
$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}}(2n)q^n = \frac{f_{10}}{f_5^3} \left[a^3 + 3q^5b^2c + 2qa^2b + 2q^6ac^2 + 2q^2ab^2 + 2q^7bc^2 + 3q^3a^2c + q^3b^3 + 5q^4abc \right].$$

Extracting the terms involving q^{5n+1} from both sides of the identity (3.2) and then replacing q^5 by q, we obtain

(3.3)
$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}}(10n+2)q^n = 2\frac{f_2}{f_1^3} f(q^2, q^3) \left[f(q^2, q^3) f(q, q^4) + q\psi^2(q^5) \right].$$

Invoking Lemma 2.1 in (3.3), we obtain

(3.4)
$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}}(10n+2)q^n = 2\frac{f_2}{f_1^3}\psi^2(q)f(q^2, q^3).$$

Substituting (2.4) in (3.4), we complete the proof of (1.7). Similarly, extracting the terms involving q^{5n+2} and q^{5n+4} from both sides of the identity (3.2), we obtain (1.8) and (1.9) respectively.

Corollary 3.1. For $n \ge 0$, we have

(3.5)
$$\overline{\mathcal{EO}}(10n+r) \equiv 0 \pmod{2}$$
, where $r = 2, 4$.

$$(3.6) \overline{\mathcal{EO}}(10n+8) \equiv 0 \pmod{5},$$

(3.7)
$$\overline{\mathcal{EO}}(200n + r) \equiv 0 \pmod{10}$$
, where $r = 18, 28, ..., 198$.

(3.8)
$$\overline{\mathcal{EO}}(50n+r) \equiv 0 \pmod{20}$$
, where $r = 18, 28, 38, 48$.

Proof. Congruences (3.5) and (3.6) are direct consequences of (1.7), (1.8) and (1.9) respectively.

Employing binomial theorem (2.14) in (1.9), we deduce that

(3.9)
$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}}(10n+8)q^n \equiv 5f_{20} \pmod{10}.$$

By comparing the coefficients of q^{20n+1} , q^{20n+2} ,..., q^{20n+19} , we obtain (3.7). Again by applying binomial theorem on (1.9), we obtain

(3.10)
$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}}(10n+8)q^n \equiv 5f_5^2 f_{10} \pmod{20}.$$

By comparing the coefficients of q^{5n+1} , q^{5n+2} , q^{5n+3} and q^{5n+4} , we complete the proof of (3.8).

Remark: An alternate proof of (3.8) is given by Barman and Ray [4], where they use arithmetic properties of modular forms to prove the congruence.

Corollary 3.2.

$$(3.11) \overline{\mathcal{EO}}(20n+18) \equiv 0 \pmod{10},$$

$$(3.12) \overline{\mathcal{EO}}(40n + 28) \equiv 0 \pmod{10}.$$

Proof. In light of (2.11) and (2.12), we deduce the following 2-dissection.

$$(3.13) \qquad \frac{f_5^2}{f_1^4} = \frac{f_8^7 f_{20}^4}{f_2^9 f_{16}^2 f_{40}^2} + q^2 \frac{f_8^4 f_8^3 f_{10}^2 f_{40}^2}{f_2^{11} f_{16}^2 f_{20}^2} + 4q^2 \frac{f_8^4 f_{10} f_{16}^2 f_{20}}{f_2^{10} f_8} + 2q \frac{f_4^2 f_8 f_{16}^2 f_{20}^4}{f_2^9 f_{40}^2} + 2q \frac{f_4^3 f_8^5 f_{10} f_{20}}{f_2^{10} f_{16}^2} + 2q^3 \frac{f_8^8 f_{10}^2 f_{16}^2 f_{40}^2}{f_2^{11} f_8^3 f_{20}^2}.$$

Extracting terms involving q^{2n+1} from (1.9), then replacing q^2 by q, it follows that

$$(3.14) \qquad \sum_{n=0}^{\infty} \overline{\mathcal{EO}}(20n+18)q^n = 10 \left[\frac{f_2^2 f_4 f_5 f_8^2 f_{10}^4}{f_1^7 f_{20}^2} + \frac{f_2^3 f_4^5 f_5^2 f_{10}}{f_1^8 f_8^2} + q \frac{f_2^8 f_5^3 f_8^2 f_{20}^2}{f_1^9 f_4^3 f_{10}^2} \right]$$

This completes the proof of (3.11).

Again, extracting terms involving q^{2n} from (1.9), then replacing q^2 by q, we obtain

$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}}(20n+8)q^n = 5 \left[\frac{f_4^7 f_5 f_{10}^4}{f_1^7 f_8^2 f_{20}^2} + q \frac{f_2^6 f_4^3 f_5^3 f_{20}^2}{f_1^9 f_8^2 f_{10}^2} + 4q \frac{f_2^5 f_5^2 f_8^2 f_{10}}{f_1^8 f_4} \right]$$

Invoking binomial theorem (2.14), we obtain

(3.15)
$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}}(20n+8)q^n \equiv 5f_1^3 f_5 \left[f_2 + q \frac{f_{10}^3}{f_4} \right] \pmod{10}.$$

Using (2.13) in (3.15) and employing binomial theorem, we obtain

(3.16)
$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}}(20n+8)q^n \equiv 5\left[f_2^5 + q^2 \frac{f_{10}^6}{f_2}\right] \pmod{10}.$$

On comparing the terms involving q^{2n+1} , we complete the proof of (3.12).

Proof of Theorem 1.2.

From (3.9), we have

$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}}(10n+8)q^n \equiv 5f_{20} \pmod{10}.$$

Invoking Lemma 2.4 and extracting terms involving $q^{pn+\frac{5(p^2-1)}{6}}$ from the both sides of the resulting identity and then changing q^p to q, we obtain

$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}} \left(10 \left(pn + \frac{5(p^2 - 1)}{6} \right) + 8 \right) q^n \equiv 5(-1)^{\frac{\pm p - 1}{6}} f(-q^{20p}) \pmod{10},$$

Again applying Lemma 2.4 to the identity (3.9) and extracting the terms involving $q^{p^2n+\frac{5(p^2-1)}{6}}$ from the resulting identity and then replacing q^{p^2} to q, we deduce

$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}} \left(10 \left(p^2 n + \frac{5(p^2 - 1)}{6} \right) + 8 \right) q^n \equiv 5(-1)^{\frac{\pm p - 1}{6}} f(-q^{20}) \pmod{10}.$$

Now apply Lemma 2.4 to the above identity and extracting the terms involving of $q^{pn+\frac{5(p^2-1)}{6}}$ and then changing q^p to q, we obtain

$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}} \left(10p^3n + \frac{25p^4 - 1}{3} \right) q^n \equiv 5f(-q^{20p}) \pmod{10}.$$

Hence, by induction on α , we derive that, for $\alpha \geqslant 1$,

$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}} \left(10p^{2\alpha - 1}n + \frac{25p^{2\alpha} - 1}{3} \right) q^n \equiv 5(-1)^{\alpha \left(\frac{\pm p - 1}{6}\right)} f(-q^{20p}) \pmod{10}.$$

On comparing the coefficients of q^{pn+j} where j = 1, 2..., p-1, from the above identity we obtain

$$\overline{\mathcal{EO}}\bigg(10p^{2\alpha-1}(pn+j) + \frac{25p^{2\alpha}-1}{3}\bigg)q^n \equiv 0 \pmod{10}.$$

Thus we complete the proof.

Proof of Theorem 1.3

Extracting the terms involving q^{5n+1} from the identity (2.16) and then replacing q^5 by q, we obtain

(3.17)
$$\sum_{n=0}^{\infty} p_D(5n+1)q^n = \frac{f_2^2 f_5^3}{f_1^4 f_{10}}.$$

Applying (2.14) in (3.17) and comparing the coefficients of q^{5n+1} , q^{5n+2} , q^{5n+3} and q^{5n+4} we complete the proof of (1.11).

Theorem 3.3. $\overline{\mathcal{EO}}(2n)$ is odd if and only if 6n+1 is a perfect square.

Proof. From (1.3), we have

$$\sum_{n=0}^{\infty} \overline{\mathcal{E}}\overline{\mathcal{O}}(2n)q^n \equiv f_4 \pmod{2},$$

$$\sum_{n=0}^{\infty} \overline{\mathcal{E}}\overline{\mathcal{O}}(2n)q^{6n+1} \equiv \sum_{n=0}^{\infty} q^{(6n+1)^2} \pmod{2}.$$

This completes the proof of Theorem 3.1.

Theorem 3.4. $\overline{p}_D(n)$ is odd if and only if 12n+1 is a perfect square.

Proof. The proof follows on the same lines.

4. Recurrence relations for $\overline{p}_D(n)$ and $\overline{\mathcal{EO}}(n)$

In this section, we provide linear recurrence relations for $\overline{p}_D(n)$ and $\overline{\mathcal{EO}}(n)$.

Theorem 4.1.

(4.1)

$$\sum_{k=-\infty}^{\infty} (6k+1)\overline{p}_D\left(n-\frac{(3k^2+k)}{2}\right) = \begin{cases} (-1)^k(2k+1) & if \ n=T_k, k \in \mathbb{N} \ or \ n=0\\ 0 & otherwise. \end{cases}$$

where T_k is the triangular number.

It is easy to evaluate $\overline{p}_D(n)$ for small values of n, say

$$\begin{split} \overline{p}_D(0) &= 1, \\ \overline{p}_D(1) &= -3 + 5\overline{p}_D(0) = 2, \\ \overline{p}_D(2) &= 5\overline{p}_D(1) - 7\overline{p}_D(0) = 3, \\ \overline{p}_D(3) &= 5 - 7\overline{p}_D(1) + 5\overline{p}_D(2) = 6, \\ \overline{p}_D(4) &= 5\overline{p}_D(3) - 7\overline{p}_D(2) = 9. \end{split}$$

Proof. On multiplying $\frac{f_2^2}{f_1^2}$ to Ramanujan's identity (2.9) we deduce that

(4.2)
$$f_1^3 = \sum_{n=0}^{\infty} \overline{p}_D(n) q^n \sum_{n=-\infty}^{\infty} (6n+1) q^{\frac{3n^2+n}{2}}.$$

Comparing (4.2) with Jacobi's identity (2.8), we obtain

(4.3)
$$\sum_{n=0}^{\infty} (-1)^n (2n+1) q^{\frac{n^2+n}{2}} = \sum_{n=0}^{\infty} \overline{p}_D(n) q^n \sum_{n=-\infty}^{\infty} (6n+1) q^{\frac{3n^2+n}{2}}.$$

Applying Cauchy multiplication of two power series on identity (4.3), we obtain recurrence relation (4.1).

Theorem 4.2.
$$\overline{\mathcal{EO}}(2n) = \sum_{k=-\infty}^{\infty} (-1)^k \overline{p}_D(n - (3k^2 + k)).$$

Proof. Using (1.3), (1.6) and (2.5) we have

(4.4)
$$\sum_{n=0}^{\infty} \overline{\mathcal{EO}}(2n) q^n = \sum_{n=0}^{\infty} \overline{p}_D(n) q^n \sum_{n=-\infty}^{\infty} (-1)^n q^{3n^2 + n}.$$

Applying Cauchy multiplication for power series on the identity (4.4). On comparing the coefficients of q^n in the resulting identity we obtain Theorem 4.2.

Using above values of $\overline{p}_D(n)$, we evaluate $\overline{\mathcal{EO}}(2n)$ for small values of n, say

$$\begin{split} \overline{\mathcal{E}}\overline{\mathcal{O}}(0) &= \overline{p}_D(0) = 1, \\ \overline{\mathcal{E}}\overline{\mathcal{O}}(2) &= \overline{p}_D(1) = 2, \\ \overline{\mathcal{E}}\overline{\mathcal{O}}(4) &= -\overline{p}_D(0) + \overline{p}_D(2) = 2, \\ \overline{\mathcal{E}}\overline{\mathcal{O}}(6) &= -\overline{p}_D(1) + \overline{p}_D(3) = 4, \\ \overline{\mathcal{E}}\overline{\mathcal{O}}(8) &= -\overline{p}_D(0) + \overline{p}_D(4) - \overline{p}_D(2) = 5. \end{split}$$

5. $\overline{p}_D(n)$, $\overline{\mathcal{EO}}(n)$ and variants of partition functions

In [7], Corteel and Lovejoy introduced overpartitions. An overpartition of a non-negative integer n is a partition of n where the first occurrence of parts of each size may be overlined. Let $\overline{p}(n)$ denote the number of overpartitions of n, then

(5.1)
$$\sum_{n=0}^{\infty} \overline{p}(n)q^n = \frac{f_2}{f_1^2}.$$

Let $\overline{pp_0}(n)$ denote the number of over partition pairs of n into odd parts, then

(5.2)
$$\sum_{n=0}^{\infty} \overline{pp_0}(n)q^n = \frac{f_2^6}{f_1^4 f_4^2}.$$

Let $\overline{p_0}(n)$ denote the number of overpartitions of n into odd parts, then

(5.3)
$$\sum_{n=0}^{\infty} \overline{p_0}(n) q^n = \frac{f_2^3}{f_1^2 f_4}.$$

Theorem 5.1. For any nonnegative integer n, we have

(5.4)
$$\sum_{k=-\infty}^{\infty} \overline{p}_D(n-k^2) = \sum_{k=-\infty}^{\infty} (-1)^k \overline{p} \overline{p}_0(n-(3k^2+k)),$$

(5.5)
$$\overline{p}_D(n) = \sum_{k=-\infty}^{\infty} (-1)^k \overline{p}(n - (3k^2 + k)).$$

Proof. Using (1.6), (2.3), (2.5) and (5.2) we have

(5.6)
$$\sum_{n=0}^{\infty} \overline{p}_D(n)q^n \varphi(q) = \sum_{n=-\infty}^{\infty} (-1)^n q^{3n^2 + n} \sum_{n=0}^{\infty} \overline{pp_0}(n)q^n.$$

Applying Cauchy multiplication of two power series in identity (5.6), we obtain

(5.7)
$$\sum_{n=0}^{\infty} \sum_{k=-\infty}^{\infty} \overline{p}_D(n-k^2)q^n = \sum_{n=0}^{\infty} \sum_{k=-\infty}^{\infty} (-1)^k \overline{p}_{p_0}(n-(3k^2+k))q^n.$$

Equating the coefficients of q^n on each side of identity (5.7), we complete the proof of (5.4).

Using (1.6), (2.5) and (5.1) we have

(5.8)
$$\sum_{n=0}^{\infty} \overline{p}_D(n) q^n = \sum_{n=0}^{\infty} \overline{p}(n) q^n \sum_{n=-\infty}^{\infty} (-1)^n q^{3n^2 + n},$$

Again, applying Cauchy multiplication for power series in identity (5.8) and then comparing the coefficients of q^n in the resulting identity, we complete the proof of (5.5).

Theorem 5.2. For any nonnegative integer n, we have

(5.9)
$$\overline{\mathcal{EO}}(2n) = \sum_{n=0}^{\infty} p_D(n - T_k),$$

(5.10)
$$\overline{p_0}(n) = \sum_{k=0}^{\infty} \overline{\mathcal{EO}}(2n - 8k)p(k).$$

Proof. We omit the proof since it is similar to Theorem 5.1.

Acknowledgment: The authors would like to thank Professor M. D. Hirschhorn, for his valuable comments and helpful suggestions, which has substantially improved our paper.

References

- [1] S. Ahlgren, J. Lovejoy, The arithemetic of partitions into distinct parts, Mathematica 48 (2001), 203-211.
- [2] G. E. Andrews, The Theory of Partitions, Cambridge Univ. Press, Cambridge, 1998.
- [3] G. E. Andrews, Integer partitions with even parts below odd parts and the mock theta functions, Ann. Comb. 22 (2018), 433-445.
- [4] R. Barman and C. Ray, On Andrews' integer partitions with even parts below odd parts, (2018), arXiv:1812.08702.
- [5] N. D Baruah, N. M Begum, On exact generating functions for the number of partitions into distinct parts, Int. J. Number Theory 14 (2018), 1995-2011.
- [6] B. C. Berndt, Ramanujans Notebooks, Part III, Springer, New York, 1991.
- [7] S. Corteel, J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356 (2004), 1623-1635.
- [8] S. P Cui, N. S. S Gu, Arithmetic properties of l-regular partitions, Adv. Appl. Math. 51 (2013), 507-523.
- [9] M. D. Hirschhorn, The Power of q, Developments in Mathematics 49, Springer, 2017.
- [10] M. D. Hirschhorn, J.A Sellers, Elementary proofs of parity results for 5-regular partitions, Bull. Aust. Math. Soc. 81 (2010), 58-63.
- [11] J. Lovejoy, The divisibility and distribution of partitions into distinct parts, Adv. Math. 158 (2001), 253-263.

- [12] J. Lovejoy, The number of partitions into distinct parts modulo powers of 5, B. Lond. Math. Soc. **35** (2003), 41-46.
- [13] M. S. Mahadeva Naika, B. Hemanthkumar, Arithmetic properties of 5-regular partitions, Int. J. Number Theory 165 (2017), 937-956.
- [14] M. Merca, New relations for the number of partitions with distinct even parts, J. Number Theory 176 (2017), 1-12.
- [15] Ø. Rødseth, Congruence properties of the partition functions q(n) and $q_0(n)$, Arbok Univ. Bergen Mat.-Natur. Ser. **13** (1969), 3-27.

Assistant Professor, Department of Mathematics, Pondicherry University, Puducherry- $605014\,$

 $E ext{-}mail\ address: dr.fathima.sn@gmail.com}$

Research Scholar, Department of Mathematics, Pondicherry University, Puducherry- $605014\,$

 $E\text{-}mail\ address: \verb|veenavsmath@gmail.com||$