SUMS OF BALANCING-LIKE SEQUENCES WITH BINOMIAL COEFFICIENTS

Sushree Sangeeta Pradhan
Department of Mathematics, National Institute of technology, Rourkela-769008, Odisha, India
515ma3004@nitrkl.ac.in
Gopal Krishna Panda
Department of Mathematics, National Institute of technology, Rourkela-769008, Odisha, India
gkpanda_nit@rediffmail.com

Key words: Balancing sequence, cobalancing sequence, balancing-like sequences, Binomial sums
2010 Mathematics Subject Classification (A. M. S.): 11 B 39, 11 B 83, 11 B 37, 11 B 65, 05 A 15

Abstract

For $a, b \in \mathbb{R}$ we study some binomial sums of the form $\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} x_{j k+m}, \sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} y_{j k+m}$, $\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} z_{j k+m}$ and $\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} w_{j k+m}$ where $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ are the balancing-like, lucas balancing-like, cobalancing-like and lucas-cobalancing-like sequences respectively. Moreover, we express these sums in a different combinatorial way and also provide some closed form solutions of many forms of these sums.

1. Introduction

Several generalizations and variations of balancing numbers is available in literature $[?, ?$, ?, ?, ?, ?, ?, ?, ?]. For each $A>2$, Panda and Rout [?] studied recurrence sequences $\left\{x_{n}\right\}$ defined by $x_{n+1}=A x_{n}-x_{n-1}$ with initial terms $x_{0}=0$ and $x_{1}=1$ which are subsequently known as balancing-like sequences. They proved that if x is a balancing-like number with respect to a given A, then $D x^{2}+1$, where $D=\frac{A^{2}-4}{4}$ is a perfect rational
square (a perfect integral square only if A is even) and its square root is known as a Lucas-balancing-like number. The Lucas-balancing-like sequence corresponding to $B L(A,-1)$ is denoted by $\left\{y_{n}\right\}$ and satisfy an identical recurrence relation as that of balancing-like numbers with initial terms $y_{0}=1$ and $y_{1}=\frac{A}{2}$. Further Panda and Pradhan [?] introduced two associates of the balancing-like sequences called the cobalancing-like sequences $\left\{z_{n}\right\}_{n=1}^{\infty}$ having the recurrence relation $z_{n+1}=A z_{n}-z_{n-1}$ with initial terms $z_{0}=z_{1}=0$ and lucas-cobalancing-like sequences $\left\{w_{n}\right\}_{n=1}^{\infty}$ satisfying the recurrence relation $w_{n+1}=A w_{n}-w_{n-1}$ with $w_{0}=-1, w_{1}=1$ for a fixed A, the balancing-like and/or the Lucas-balancing-like numbers with their above associates satisfy all properties of balancing and Lucas-balancing numbers for $A=6 .[?, ?, ?]$

The Binet forms derived from the recurrence relations of balancing-like numbers, lucas balancing-like numbers, cobalancing-like sequences and lucas-cobalancing-like sequences for a fixed A are

$$
\begin{gather*}
x_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{A^{2}-4}}, \tag{1}\\
y_{n}=\frac{\alpha^{n}+\beta^{n}}{2}, \tag{2}\\
z_{n}=\left(\frac{1}{A-2}-\frac{1}{\sqrt{A^{2}-4}}\right) \alpha^{n}+\left(\frac{1}{A-2}+\frac{1}{\sqrt{A^{2}-4}}\right) \beta^{n}-\frac{2}{A-2} \tag{3}
\end{gather*}
$$

and

$$
\begin{equation*}
w_{n}=\frac{\alpha^{n}-\beta^{n}+\alpha^{n-1}-\beta^{n-1}}{\sqrt{A^{2}-4}} \tag{4}
\end{equation*}
$$

for $n=1,2, \cdots$ where $\alpha=\frac{A+\sqrt{A^{2}-4}}{2}$ and $\beta=\frac{A-\sqrt{A^{2}-4}}{2}$. Clearly, $\alpha+\beta=A$ and $\alpha \beta=1$.
One can derive the following expression by the help of binet forms as

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{n}{k} x_{2 k+m} & =\sum_{k=0}^{n}\binom{n}{k}\left(\frac{\alpha^{2 k+m}-\beta^{2 k+m}}{\alpha-\beta}\right) \\
& =\frac{1}{\alpha-\beta}\left[\alpha^{m} \sum_{k=0}^{n}\binom{n}{k} \alpha^{2 k}-\beta^{m} \sum_{k=0}^{n}\binom{n}{k} \beta^{2 k}\right] \\
& =\frac{1}{\alpha-\beta}\left[\alpha^{m}\left(1+\alpha^{2}\right)^{n}-\beta^{m}\left(1+\beta^{2}\right)^{n}\right] \\
& =\frac{1}{\alpha-\beta}\left[\alpha^{m+n}\left(\alpha+\beta^{n}-\beta^{m+n}(\alpha+\beta)^{n}\right]\right. \\
& =\frac{1}{\alpha-\beta}(\alpha+\beta)^{n}\left(\alpha^{m+n}-\beta^{m+n}\right) \\
& =A^{n} x_{n+m}
\end{aligned}
$$

Similar to the above identity we can obtain the subsequent identities,

$$
\sum_{k=0}^{n}\binom{n}{k} y_{2 k+m}=A^{n} y_{n+m}
$$

and

$$
\sum_{k=0}^{n}\binom{n}{k} z_{2 k+m}=A^{n} z_{n+m}+\frac{A^{n}}{2}-2^{n-1}, \quad \sum_{k=0}^{n}\binom{n}{k} w_{2 k+m}=A^{n} w_{n+m}
$$

In this paper we will discuss these four parameter sums

$$
\begin{aligned}
& S_{n}(x)=S_{n}(x ; a, b, j, m)=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} x_{j k+m} \\
& S_{n}(y)=S_{n}(y ; a, b, j, m)=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} y_{j k+m}
\end{aligned}
$$

and

$$
\begin{aligned}
& S_{n}(z)=S_{n}(z ; a, b, j, m)=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} z_{j k+m} \\
& S_{n}(w)=S_{n}(w ; a, b, j, m)=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} w_{j k+m}
\end{aligned}
$$

where $a, b \in \mathbb{R}$ and $j, m \in \mathbb{N}$.

2. Results

We establish some lemmas to support the question: For two integers p and q with $p \neq q$. For what value of a and b does the identity

$$
\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} x_{q k+m}=x_{p n+m}
$$

hold? We also find out the same for y_{n}, z_{n} and w_{n}.

Lemma 2.1. The generating function of the sequences $\left\{x_{j n+m}\right\}_{n \geq 0}$ and $\left\{y_{j n+m}\right\}_{n \geq 0}$ are given by

$$
\begin{equation*}
f_{x_{j n+m}}(r)=\sum_{n=0}^{\infty} x_{j n+m} r^{n}=\frac{x_{m}+x_{j-m} r}{1-2 y_{j} r+r^{2}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{y_{j n+m}}(r)=\sum_{n=0}^{\infty} y_{j n+m} r^{n}=\frac{y_{m}-y_{j-m} r}{1-2 y_{j} r+r^{2}} \tag{6}
\end{equation*}
$$

Proof.

$$
\begin{align*}
f_{x_{j n+m}}(r)=\sum_{n=0}^{\infty} x_{j n+m} r^{n} & =\frac{1}{(\alpha-\beta)} \sum_{n=0}^{\infty}\left(\alpha^{j n+m}-\beta^{j n+m}\right) r^{n} \tag{7}\\
& =\frac{1}{(\alpha-\beta)}\left[\alpha^{m} \sum_{n=0}^{\infty} \alpha^{j n} r^{n}-\beta^{m} \sum_{n=0}^{\infty} \beta^{j n} r^{n}\right] \\
& =\frac{1}{(\alpha-\beta)}\left[\frac{\alpha^{m}}{1-\alpha^{j} r}-\frac{\beta^{m}}{1-\beta^{j} r}\right] \\
& =\frac{1}{(\alpha-\beta)}\left[\frac{\alpha^{m}-\beta^{m}+\alpha^{j-m} r-\beta^{j-m}}{1-\left(\alpha^{j}+\beta^{m}\right)+r^{2}}\right] \\
& =\frac{x_{m}+x_{j-m} r}{1-2 y_{j} r+r^{2}}
\end{align*}
$$

The similar result for the lucas balancing sequence can be acquired accordingly.
Lemma 2.2. The generating function of the sequences $\left\{z_{j n+m}\right\}_{n \geq 0}$ and $\left\{w_{j n+m}\right\}_{n \geq 0}$ are given by

$$
\begin{equation*}
f_{z_{j n+m}}(r)=\sum_{n=0}^{\infty} x_{j n+m} r^{n}=\frac{2 y_{m}-2 y_{j-m} r}{(A-2)\left(1-2 y_{j} r+r^{2}\right)}-\frac{x_{m}+x_{j-m} r}{1-2 y_{j} r+r^{2}}-\frac{2}{(A-2)(1-r)} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{w_{j n+m}}(r)=\sum_{n=0}^{\infty} w_{j n+m} r^{n}=\frac{x_{m}+x_{m-1}+\left(x_{j-m}+x_{j-m+1}\right) r}{1-2 y_{j} r+r^{2}} \tag{9}
\end{equation*}
$$

Proof. The proof is similar to that of Lemma??.
Lemma 2.3. The generating functions for $S_{n}(x), S_{n}(y)$ and $S_{n}(z), S_{n}(w)$ are

$$
\begin{align*}
f_{S_{n}(x)}(r) & =\sum_{n=0}^{\infty} S_{n}(x) r^{n}=\frac{x_{m}+\left(a x_{j-m}-b x_{m}\right) r}{1-\left(2 b+2 a y_{j}\right) r+\left(a^{2}+2 y_{j} a b+b^{2}\right) r^{2}} \tag{10}\\
f_{S_{n}(y)}(r) & =\sum_{n=0}^{\infty} S_{n}(y) r^{n}=\frac{y_{m}-\left(a y_{j-m}+b y_{m}\right) r}{1-\left(2 b+2 a y_{j}\right) r+\left(a^{2}+2 y_{j} a b+b^{2}\right)} \tag{11}
\end{align*}
$$

and

$$
\begin{align*}
& f_{S_{n}(z)}(r)=\sum_{n=0}^{\infty} S_{n}(z) r^{n}= \frac{2 y_{m}-\left(2 a y_{j-m}+2 b y_{m}\right) r}{(A-2)\left\{1-\left(2 b+2 a y_{j}\right) r+\left(a^{2}+2 y_{j} a b+b^{2}\right) r^{2}\right\}} \tag{12}\\
&-\frac{x_{m}-\left(a x_{j-m}-b x_{m}\right)}{1-\left(2 b+2 a y_{j}\right) r+\left(a^{2}+2 y_{j} a b+b^{2}\right)}-\frac{2}{(A-2)(1-(a+b) r)} \\
& f_{S_{n}(w)}(r)=\sum_{n=0}^{\infty} S_{n}(w) r^{n}=\frac{x_{m}+x_{m-1}+\left(a x_{j-m}+a x_{j-m+1}-b x_{m}-b x_{m-1}\right)}{1-\left(2 b+2 a y_{j}\right) r+\left(a^{2}+2 y_{j} a b+b^{2}\right) r^{2}} \tag{13}
\end{align*}
$$

Proof. Applying Theorem 1 from [?] it follows that for a integer sequence $\left\{e_{n}\right\}_{n \geq 0}$,

$$
f_{S_{n}(e)}(r)=\frac{1}{1-b r} f_{e_{j n+m}}\left(\frac{a r}{1-b r}\right)
$$

So using the above relation and the equations from Lemma 1 and Lemma 2 this Lemma can be proved.

Theorem 2.4. We have

$$
\begin{align*}
& \sum_{k=0}^{n} a^{k} b^{n-k} x_{q k+m}=x_{p n+m} \tag{14}\\
& \sum_{k=0}^{n} a^{k} b^{n-k} y_{q k+m}=y_{p n+m} \tag{15}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n} a^{k} b^{n-k} w_{q k+m}=w_{p n+m} \tag{16}
\end{equation*}
$$

if and only if $a=x_{p} / x_{q}$ and $b=x_{q-p} / x_{q}$.
Proof. Comparing (??) and (??) we get the following system of equations

$$
\begin{aligned}
y_{p} & =b+a y_{q}, \\
x_{p-m} & =a x_{q-m}-b x_{m}, \\
1 & =a^{2}+2 y_{j} a b+b^{2} .
\end{aligned}
$$

The above equations gives

$$
a=\frac{x_{p-m}+y_{p} x_{m}}{x_{q-m}+y_{q} x_{m}}=\frac{x_{p}}{x_{q}}
$$

and

$$
b=y_{p}-y_{q} \frac{x_{p}}{x_{q}}=\frac{x_{q-p}}{x_{q}} .
$$

The proofs of second and third parts are similar so it can be easily inferred.
The cobalancing-like sequences however have some different results regarding the Theorem ?? which we can find out through the following theorem

Theorem 2.5. The sum

$$
\begin{equation*}
\sum_{k=0}^{n} a^{k} b^{n-k} z_{q k+m}=z_{p n+m} \tag{17}
\end{equation*}
$$

has no solutions.

Proof. Analogous to the Theorem ?? we compare the equations (??) and (??) and can produce $a=\frac{x_{p}}{x_{q}}$ and $b=\frac{x_{q-p}}{x_{q}}$. But we can also see that here $a+b=1$ which gives $x_{q-p}=x_{q}-x_{p}$ which is only possible if $p=q$ which is trivial or $p=0$ and q be any integer.

Now, we look into some special binomial sums.
Theorem 2.6. For n be any positive integer, the sums

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}\left(\frac{1}{y_{j}}\right)^{k} x_{j k+m}= \begin{cases}\left(\frac{A^{2}-4}{4}\right)^{\frac{n}{2}} x_{m}\left(\frac{x_{j}}{y_{j}}\right)^{n}, & \text { if } n \text { is even } \tag{18}\\ -\left(\frac{A^{2}-4}{4}\right)^{\frac{n-1}{2}} y_{m}\left(\frac{x_{j}}{y_{j}}\right)^{n}, & \text { if } n \text { is odd }\end{cases}
$$

and

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}\left(\frac{1}{y_{j}}\right)^{k} y_{j k+m}= \begin{cases}\left(\frac{A^{2}-4}{4}\right)^{\frac{n}{2}} y_{m}\left(\frac{x_{j}}{y_{j}}\right)^{n}, & \text { if } n \text { is even } \tag{19}\\ -\left(\frac{A^{2}-4}{4}\right)^{\frac{n+1}{2}} x_{m}\left(\frac{x_{j}}{y_{j}}\right)^{n}, & \text { if } n \text { is odd }\end{cases}
$$

holds.

Proof. If we choose $a=-b / y_{j}$, then $\left(2 b+2 a y_{j}\right) r=0$ from (??). Again we can see that

$$
a^{2}+2 y_{j} a b+b^{2}=\frac{b^{2}\left(1-y_{j}^{2}\right)}{y_{j}^{2}}=-b^{2} \frac{\left(\frac{A^{2}-4}{4}\right) x_{j}^{2}}{y_{j}^{2}}
$$

and

$$
a x_{j-m}-b x_{m}=-b \frac{x_{j} y_{m}}{y_{j}}
$$

Hence,

$$
f_{S_{n}(x)}(r)=\sum_{n=0}^{\infty} x_{m}\left(\frac{\left(\frac{A^{2}-4}{4}\right) x_{j}^{2}}{y_{j}^{2}}\right)^{n} b^{2 n} r^{2 n}-\sum_{n=0}^{\infty} \frac{x_{j} y_{m}}{y_{j}}\left(\frac{\left(\frac{A^{2}-4}{4}\right) x_{j}^{2}}{y_{j}^{2}}\right)^{n} b^{2 n+1} r^{2 n+1}
$$

comparing the coefficients of x^{n} from (??) proves the stated identity. Similarly equation (??) can be inferred without proof.

The companion result for cobalancing-like numbers and lucas-cobalancing-like numbers are stated in the following theorem

Theorem 2.7. For n be any positive integer, the sums
$\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}\left(\frac{1}{y_{j}}\right)^{k} z_{j k+m}=\left\{\begin{array}{l}\left(\frac{2 y_{m}}{A-2}-x_{m}\right)\left(\frac{A^{2}-4}{4}\right)^{\frac{n}{2}}\left(\frac{x_{j}}{y_{j}}\right)^{n}-\frac{2}{A-2}\left(\frac{y_{j}-1}{y_{j}}\right)^{n}, \quad \text { if } n \text { is even } \\ \left(y_{m}-x_{m}\left(\frac{A+2}{2}\right)\right)\left(\frac{A^{2}-4}{4}\right)^{\frac{n-1}{2}}\left(\frac{x_{j}}{y_{j}}\right)^{n}-\frac{2}{A-2}\left(\frac{y_{j}-1}{y_{j}}\right)^{n}, \quad \text { if } n \text { is odd }\end{array}\right.$
and

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}\left(\frac{1}{y_{j}}\right)^{k} w_{j k+m}= \begin{cases}\left(x_{m}+x_{m-1}\right)\left(\frac{A^{2}-4}{4}\right)^{\frac{n}{2}}\left(\frac{x_{j}}{y_{j}}\right)^{n}, & \text { if } n \text { is even } \tag{21}\\ -\left(y_{m}+y_{m-1}\right)\left(\frac{A^{2}-4}{4}\right)^{\frac{n-1}{2}}\left(\frac{x_{j}}{y_{j}}\right)^{n}, & \text { if } n \text { is odd }\end{cases}
$$

holds.

Proof. We have already seen that taking $a=-b / y_{j}$, then

$$
\begin{aligned}
a^{2}+2 y_{j} a b+b^{2} & =-b^{2} \frac{\left(\frac{A^{2}-4}{4}\right) x_{j}^{2}}{y_{j}^{2}} \\
a x_{j-m}-b x_{m} & =-b \frac{x_{j} y_{m}}{y_{j}}
\end{aligned}
$$

and

$$
a y_{j-m}+b y_{m}=b\left(\frac{A^{2}-4}{4}\right) \frac{x_{m} x_{j}}{y_{j}}
$$

So,

$$
\begin{aligned}
f_{S_{n}(z)}(r) & =\left(\frac{2 y_{m}}{A-2}-x_{m}\right) \sum_{n=0}^{\infty}\left(\frac{A^{2}-4}{4}\right)^{n}\left(\frac{x_{j}}{y_{j}}\right)^{2 n} b^{2 n} r^{2 n} \\
& +\left(y_{m}-x_{m}\left(\frac{A+2}{2}\right)\right) \sum_{n=0}^{\infty}\left(\frac{A^{2}-4}{4}\right)^{n}\left(\frac{x_{j}}{y_{j}}\right)^{2 n+1} b^{2 n+1} r^{2 n+1}-\frac{2}{A-2} \sum_{n=0}^{\infty}\left(\frac{y_{j}-1}{y_{j}}\right)^{n} b^{n} r^{n}
\end{aligned}
$$

and thus comparing the coefficients we get the proof. In the case of lucas cobalancing-like sequences applying the similar conditions we have

$$
a x_{j-m}+a x_{j-m+1}-b x_{m}-b x_{m-1}=-b \frac{x_{j}}{y_{j}}\left(y_{m}+y_{m-1}\right)
$$

which leads to
$f_{S_{n}(w)}(r)=\left(x_{m}+x_{m-1}\right) \sum_{n=0}^{\infty}\left(\frac{A^{2}-4}{4}\right)^{n}\left(\frac{x_{j}}{y_{j}}\right)^{2 n} b^{2 n} r^{2 n}-\left(y_{m}+y_{m-1}\right) \sum_{n=0}^{\infty}\left(\frac{A^{2}-4}{4}\right)^{n}\left(\frac{x_{j}}{y_{j}}\right)^{2 n+1} b^{2 n+1} r^{2 n+1}$
and the proof can be inferred.

Theorem 2.8. For $n \geq 1$ the following identities are valid:

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \alpha^{j k} x_{j k+m}=(-1)^{n}\left({\left.\sqrt{A^{2}-4}\right)^{n-1} \alpha^{j n+m} x_{j}^{n}, ~}_{n}\right. \tag{22}\\
& \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \beta^{j k} x_{j k+m}=-\left(\sqrt{A^{2}-4}\right)^{n-1} \beta^{j n+m} x_{j}^{n} \tag{23}\\
& \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \alpha^{j k} y_{j k+m}=\frac{(-1)^{n}}{2}\left(\sqrt{A^{2}-4}\right)^{n} \alpha^{j n+m} x_{j}^{n} \tag{24}\\
& \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \beta^{j k} y_{j k+m}=-\frac{1}{2}\left(\sqrt{A^{2}-4}\right)^{n} \beta^{j n+m} x_{j}^{n} \tag{25}
\end{align*}
$$

Proof.

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \alpha^{j k} x_{j k+m} & =\frac{1}{(\alpha-\beta)} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \alpha^{j k}\left(\alpha^{j k+m}-\beta^{j k+m}\right) \\
& =\frac{1}{(\alpha-\beta)} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k}\left(\alpha^{2 j k+m}-\beta^{m}\right) \\
& =\frac{1}{(\alpha-\beta)}\left(\alpha^{m}\left(1-\alpha^{2 j}\right)^{n}\right) \\
& =\frac{(-1)^{n} \alpha^{m+j n}\left(\alpha^{j}-\beta^{j}\right)^{n}}{(\alpha-\beta)} \\
& =(-1)^{n}(\alpha-\beta)^{n-1} \alpha^{j n+m} x_{j}^{n}
\end{aligned}
$$

which concludes the proof for the Equation(??). The proofs of Equations(??), (??) and (??) can similarly be obtained.

Corollary 2.9. For $n \geq 1$ we have

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} x_{j k} x_{j k+m}= \begin{cases}2\left(\sqrt{A^{2}-4}\right)^{n-2} x_{j}^{n} y_{j n+m}, & n \text { is even } \\
-\left(\sqrt{A^{2}-4}\right)^{n-2} x_{j}^{n} x_{j n+m}, & n \text { is odd }\end{cases} \tag{26}\\
& \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} y_{j k} x_{j k+m}= \begin{cases}\frac{1}{2}\left(\sqrt{A^{2}-4}\right)^{n} x_{j}^{n} x_{j n+m}, & n \text { is even } \\
-\left(\sqrt{A^{2}-4}\right)^{n-1} x_{j}^{n} y_{j n+m}, & n \text { is odd }\end{cases} \tag{27}\\
& \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} x_{j k} y_{j k+m}= \begin{cases}\frac{1}{2}\left(\sqrt{A^{2}-4}\right)^{n} x_{j}^{n} x_{j n+m}, & n \text { is even } \\
-\left(\sqrt{A^{2}-4}\right)^{n-1} x_{j}^{n} y_{j n+m}, & n \text { is odd }\end{cases} \tag{28}\\
& \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} y_{j k} y_{j k+m}= \begin{cases}\frac{1}{2}\left(\sqrt{A^{2}-4}\right)^{n} x_{j}^{n} y_{j n+m}, & n \text { is even } \\
-\frac{1}{4}\left(\sqrt{A^{2}-4}\right)^{n+1} x_{j}^{n} x_{j n+m}, & n \text { is odd }\end{cases} \tag{29}
\end{align*}
$$

3. Combinatorial Identities for $S_{n}(x), S_{n}(y), S_{n}(z)$ and $S_{n}(w)$

Theorem 3.1. The following combinatorial identity is valid

$$
\begin{equation*}
S_{n}(x)=\delta(n)+\sum_{l=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-l-1}{l}(-1)^{l}(v+b u)^{l} u^{n-2 l-1}\left(\frac{n}{n-2 l}\left(b+a y_{j}\right) x_{m}+a y_{m} x_{j}\right) \tag{30}
\end{equation*}
$$

where $u=2\left(b+a y_{j}\right), v=a^{2}-b^{2}$ and

$$
\delta(n)=\left\{\begin{array}{l}
x_{m}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}(v+b u)^{\left\lfloor\frac{n}{2}\right\rfloor}, \tag{31}\\
0, \quad \text { if } n \text { is even } \\
\text { if } n \text { is odd. }
\end{array}\right.
$$

Proof. We set $h=a x_{j-m}-b x_{m}$. Then, again from (??) we have

$$
\begin{aligned}
f_{S_{n}(x)}(r) & =\left(x_{m}+h r\right) \sum_{n=0}^{\infty} r^{n}(u-(v-b u) r)^{n} \\
& =x_{m} \sum_{n=0}^{\infty} \sum_{s=0}^{n}\binom{n}{s}(-1)^{s}(v+b u)^{k} u^{n-s} r^{n+s} \\
& +h \sum_{n=0}^{\infty} \sum_{s=0}^{n}\binom{n}{s}(-1)^{s}(v+b u)^{s} u^{n-s} r^{n+s+1} \\
& =x_{m} \sum_{k=0}^{\infty} \sum_{l=0}^{\left[\frac{k}{2}\right]}\binom{k-l}{l}(-1)^{l}(v+b u)^{l} u^{k-2 l} r^{k} \\
& +h \sum_{k=1}^{\infty} \sum_{l=0}^{\left[\frac{k-1}{2}\right]}\binom{k-l-1}{l}(-1)^{l}(v+b u)^{l} u^{k-2 l-1} r^{k} .
\end{aligned}
$$

Comparing the coefficients gives the relation

$$
S_{n}(x)=\delta(n)+\sum_{l=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}(-1)^{l}(v+b u)^{l} u^{n-2 l-1}\left(u x_{m}\binom{n-l}{l}+h\binom{n-l-1}{l}\right)
$$

where $\delta(n)$ is defined above. We have $h=-\frac{1}{2} u x_{m}+a y_{m} x_{j}$. The statement now follows since

$$
\binom{n-l}{l}=\frac{n-l}{n-2 l}\binom{n-l-1}{l}
$$

and

$$
\binom{n-l}{l}-\frac{1}{2}\binom{n-l-1}{l}=\frac{n}{2(n-2 l)}\binom{n-l-1}{l}
$$

The analogue result for $S_{n}(y)$ is stated without proof

Theorem 3.2. The following combinatorial identity is valid
$S_{n}(y)=\delta^{*}(n)+\sum_{l=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-l-1}{l}(-1)^{l}(v+b u)^{l} u^{n-2 l-1}\left(\frac{n}{n-2 l}\left(b+a y_{j}\right) y_{m}+\left(\frac{A^{2}-4}{4}\right) a x_{m} x_{j}\right)$,
where $u=2\left(b+a y_{j}\right), v=a^{2}-b^{2}$ and

$$
\delta^{*}(n)=\left\{\begin{array}{l}
y_{m}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}(v+b u)^{\left\lfloor\frac{n}{2}\right\rfloor}, \tag{33}\\
0, \quad \text { if } n \text { is even } \\
\text { if } n \text { is odd. }
\end{array}\right.
$$

Similarly, in the case of cobalancing-like numbers we have the following result
Theorem 3.3. The following combinatorial identity is valid

$$
\begin{aligned}
S_{n}(z)=\gamma(n) & +\sum_{l=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-l-1}{l}(-1)^{l}(v+b u)^{l} u^{n-2 l-1} \\
& \left(u\left(\frac{n-l}{n-2 l}\right)\left(\frac{2}{A-2} y_{m}-x_{m}\right)-\left(\frac{2 g}{A-2}+h\right)\right)-\frac{2}{A-2}(a+b)^{n}
\end{aligned}
$$

where $g=a y_{j-m}+b y_{m}, h=a x_{j-m}-b x_{m}$ and

$$
\gamma(n)= \begin{cases}\left(\frac{2}{A-2} y_{m}-x_{m}-\frac{2}{A-2}\right)+ \tag{34}\\ \left(\frac{2}{A-2} y_{m}-x_{m}\right)(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}(v+b u)^{\left\lfloor\frac{n}{2}\right\rfloor}, & \text { if } n \text { is even } \\ 0, & \text { if } n \text { is odd }\end{cases}
$$

Proof. Let $h=a x_{j-m}-b x_{m}$ and $g=a y_{j-m}+b y_{m}$, and then by (??), we have

$$
\begin{aligned}
f_{S_{n}(z)}(r) & =\sum_{n=1}^{\infty}\left(\left(\frac{2}{A-2} y_{m}-x_{m}\right)+\left(\frac{2}{A-2} y_{m}-x_{m}\right)\binom{n-\left\lfloor\frac{n}{2}\right\rfloor}{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}(v+b u)^{\left\lfloor\frac{n}{2}\right\rfloor}\right. \\
& +\sum_{l=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-l-1}{l}(-1)^{l}(v+b u)^{l} u^{n-2 l-1}\left\{u\left(\frac{n-l}{n-2 l}\right)\left(\frac{2}{A-2} y_{m}-x_{m}\right)-\left(\frac{2 g}{A-2}+h\right)\right\} \\
& \left.-\frac{2}{A-2}-\frac{2}{A-2}(a+b)^{n}\right) r^{n}
\end{aligned}
$$

Thus, the proof follows
Likewise, for the lucas cobalancing-like numbers we can state the following theorem without proof.

Theorem 3.4.

$$
\begin{equation*}
S_{n}(w)=\gamma^{*}(n)+\sum_{l=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-l-1}{l}(-1)^{l}(v+b u)^{l} u^{n-2 l-1}\left(u\left(x_{m}+x_{m-1}\right) \frac{n-l}{n-2 l}+t\right) \tag{35}
\end{equation*}
$$

where $t=a x_{j-m}+a x_{j-m+1}-b x_{m}-b x_{m-1}$ and

$$
\gamma^{*}(n)= \begin{cases}\left(x_{m}+x_{m-1}\right)(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}(v+b u)^{\left\lfloor\frac{n}{2}\right\rfloor}, & \text { if } n \text { is even } \tag{36}\\ 0, & \text { if } n \text { is odd. }\end{cases}
$$

The following examples demonstrate some identities which can be derived from the above results.

From $S_{n}(x ; 1,1,2,0)$ we get the identity

$$
x_{n}=\sum_{l=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-l-1}{l}(-1)^{l} A^{n-2 l-1}
$$

. Likewise, $S_{n}(y ; 1,1,2,0)$ gives

$$
y_{n}=d(n)+\sum_{l=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-l-1}{l}(-1)^{l} A^{n-2 l} \frac{n}{2(n-2 l)}
$$

where

$$
d(n)=\left\{\begin{array}{lr}
(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}, & \text { if } n \text { is even } \\
0, & \text { if } n \text { is odd }
\end{array}\right.
$$

From, $S_{2 n}(z ; 1,1,2,0)$ we have the identity
$z_{2 n}=\frac{2}{A-2}\left((-1)^{n}-1\right)+\sum_{l=0}^{n-1}\binom{2 n-l-1}{l}(-1)^{l} A^{2 n-2 l-2}\left(\frac{2 A^{2}}{A-2}\left(\frac{2 n-l}{2 n-2 l}\right)-\frac{A^{2}}{A-2}-A\right)$
and similarly from $S_{2 n+1}(z ; 1,1,2,0)$ we have

$$
z_{2 n+1}=\sum_{l=0}^{n}\binom{2 n-l}{l}(-1)^{l} A^{2 n-2 l-1}\left(\frac{2 A^{2}}{A-2}\left(\frac{2 n+1-l}{2 n+1-2 l}\right)-\frac{A^{2}}{A-2}-A\right)-\left(\frac{2}{A-2}\right)
$$

. Now from $S_{2 n}(w ; 1,1,2,0)$ we have

$$
w_{2 n}=(-1)^{n+1}+\sum_{l=0}^{n-1}\binom{2 n-l-1}{l}(-1)^{l} A^{2 n-2 l-2}\left(-A^{2}\left(\frac{2 n-l}{2 n-2 l}\right)+A^{2}+A\right)
$$

and from $S_{2 n+1}(w ; 1,1,2,0)$, we get

$$
w_{2 n+1}=\sum_{l=0}^{n}\binom{2 n-l}{l}(-1)^{l} A^{2 n-2 l-1}\left(-A^{2}\left(\frac{2 n+1-l}{2 n+1-2 l}\right)+A^{2}+A\right) .
$$

References

[1] J. Bartz, B. Dearden and J. Iiams, Almost gap balancing numbers, Integers, 18 (2018), \# A79.
[2] A. Behera and G. K. Panda, On the square roots of triangular numbers, Fib. Quart., 37(1998), 98-105.
[3] A. B'erczes, K. Liptai, I. Pink, On Generalized Balancing Sequences, Fibonacci Quart., 48(*)(2010),121-128.
[4] L. Carlitz, Some classes of Fibonacci Sums, Fibonacci Quart., 16(1978), no. 5, 411-426.
[5] P. Haukkanen, Formal Power Series for Binomial Sums of Sequences of Numbers, Fibonacci Quart., 31(1993), no. 1, 28-31.
[6] K. Liptai, F. Luca, A. Pintor and L. Szalay, Generalized balancing numbers, Indagat. Math. New Ser., 20(1)(2009),87-100.
[7] G. K. Panda and P. K. Ray, Cobalancing numbers and cobalancers, Internat. J. Math. Math. Sc., 8(2005),1189-1200.
[8] G. K. Panda, Sequence balancing and cobalancing numbers, Fib. Quart., 45(3),(2007),265-271.
[9] G. K. Panda, Some fascinating properties of balancing numbers, Congr. Numerantium, 194(2009),185-189.
[10] G. K. Panda and P. K. Ray, Some links of balancing and cobalancing numbers with Pell and associated Pell numbers, Bull. Inst. Math. Acad. Sinica (N.S.), 6(1),(2011),41-72.
[11] G. K. Panda and S. S. Rout, A class of recurrent sequences exhibiting some exciting properties of balancing numbers, Int. J. Math. Comp. Sci. Eng., 6(2012),46.
[12] G. K. Panda and A. K. Panda, Almost balancing numbers, Journal of the Indian Math. Soc., 82(3-4), (2015), 147-156.
[13] G. K. Panda and S. S. Rout, K-Gap balancing numbers, Periodica Mathematica Hungarica, 70(1) (2015), 109-121.
[14] G. K. Panda and S. S. Pradhan, Associates sequences of a balancing-like sequence, To appear in Math. Reports.
[15] B. K. Patel, N. Irmak and P. K. Ray, Incomplete balancing and Lucas-balancing numbers, 20(70) (1) (2018), 59-72.
[16] P. K. Ray, Balancing and cobalancing numbers [Ph.D. thesis], Department of Mathematics, National Institute of Technology, Rourkela, India, 2009.
[17] Tam'as Szak‘acs, Multiplying balancing numbers, Acta Univ. Sapientiae, Mathematica, 3(1) (2011),90-96.

