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Abstract

In this paper, we prove four new infinite families of congruences modulo 13
for the general partition function p,(n) for negative values of r. Our emphasis
throughout this paper is to exhibit the use of g-identities to generate congru-
ences for general partitions.
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1 Introduction

Throughout this paper, we assume |¢| < 1 and as customary, define
o0
(a;¢)00 := H(l —agb).
k=0
For |ab| < 1, Ramanujan’s general theta function f(a,b) is given by
© k(k+1)  k(k—1)
fla,b) = Z a 2 b oz .
k=—o0
By Jacobi’s triple product identity [4, p.35], we have
fla,b) := (—a; ab)oo(—b; ab) oo (ab; ab) .
One of the special case of f(a,b) as defined by S. Ramanujan [4, p.36] is as follows:
o0
n(3n—1)

) =f=¢—) = Y (-D"¢ 7 = (69w

n=—od

For convenience, we write f, = f(—¢"). Due to Euler, we have
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00 - 1
;p(n)q _Ea

where p(n) is the number of partitions of n. S. Ramanujan initiated the general
partition function p,(n) as

> pr(n)g" = <, (1.1)
n=0

1

for non-zero integer r. For partition function p(n), Ramanujan’s so called “most
beautiful identity” is given by

oo 5

> p(Gn+4)¢" =55,
1

n=0

which readily implies
p(bn+4) =0 (mod 5).

Ramanujan’s two more beautiful congruences are

p(Tn+5) =0 (mod 7),
p(1ln+6) =0 (mod 11).

The generalization of the above congruences are as follows:

p(5*n+(¢s5,) =0 (mod 54),
p(™"n+¢r,) =0 (mod 7“‘/2”1),
p(11*n +¢i1,) =0 (mod 11#),

where (j, = 1/24 (mod j#). The generalization of the congruences modulo powers
of 5 and 7 for all p,(n) was proved by K. G. Ramanathan [16]. Later A. O. L. Atkin
[1] found that Ramanathan’s proof is not correct. M. Newmann [13-15], studied the
function p,(n) and obtained several interesting congruences and identities involving
pr(n). The functions p,(n) have been studied by many mathematicians. For the
wonderful work one can see [1-3,5,6,8-10,12,17-20]. For » = —2, P. Hammond and
R. Lewis [11] proved that

p_2(dbn+£)=0 (mod 5),
where ¢ € {2,3,4}. Also in [7], W. Y. C. Chen et. al. proved

p—2(25n+23) =0 (mod 25)
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by using modular forms. More recently D.Tang [21] for p,(n) proved some new
congruences for p,(n), where r € {2, -6, —7}. For example,

. 7 52671 1
D2 (52"_171 + %) =0 (mod 5°),

3x54+1

D¢ <526n + 1 ) =0 (mod 5°)

and

13 x 5201 47
D7 (52‘5—1n + %) =0 (mod 5%).

In the sequel, in this paper, we demonstrate four new infinite families of congruences
modulo 13 by using g¢-identities, for the general partition function p,(n), where r
being negative. In particular, for any non-negative integer A we demonstrate the
following congruences and more frequently, we use the below mentioned binomial
theorem. ,

3= fi3 (mod 13)  and U =/fe (mod13). (1.2)

Theorem 1.1. We have
p_zr(13n+v) =0 (mod 13),
forv =3,4,6,8,10,11,
Theorem 1.2. We have
P—asr3)(I3n+v) =0 (mod 13),
forv=4,57,8,9,11,12.
Theorem 1.3. We have
P—(1692+1) (1697 + 130 +7) =0 (mod 13),
for1 <v <12
Theorem 1.4. We have
P—(1693+2) (1697 + 130 +1) =0 (mod 13),

for1 <wv <12,

2 Proofs of Theorem 1.1-1.4

All the congruences in this section are considered under modulo 13.

Proof of Theorem 1.1. From [4, p. 372, Entry 8(i)], we have

Fij1s = fia(a— g/ B3b — @2/ Be 4 P13 4 T3 _ 1213 4 q22/13f), (2.1)
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where
0= (450%)o0(d% 070 p— (84)e0(974")
(4% 0")o (g5 4"3) 0 (2% 43) 00 (1% ¢13) 0
o (@%0)o(a7 5 07) g (@070 4o
(4:0") 0 (0% 4"%) o0’ (0% 4") (0% 4" 0’
o =@ 000000 (40000147 )o
(6% 0") o0 (4% 4" o0’ (4% 0")0(a":4"%) o0
On letting q to ¢ in (2.1), we obtain
fi = fieo(A—qB—¢’C+¢"D+q" — ¢°E + ¢*°F), (2.2)

where A = a(¢'?), B = b(¢*?),C = ¢(¢**), D = d(¢*®), E = e(¢*®) and F = f(¢*?).
In (1.1), set r = —(13\ + 1), then we see that

ZP—(lg,\H)(n)q" = f113/\+1 _ f113’\f1.
n=0

Employing (2.2) and (1.2) in the above, we observe that

o0
> p_aanin ()" = fyfiee(A— B — ¢*C +¢°D+q" — ¢°E + ¢*F).
n=0

On picking the terms containing ¢'*"™” on both sides of the above for v =

3,4,6,8,10,11, we obtain the required congruence. O

Proof of Theorem 1.2. From [4, p. 39, Entry 24(ii)], we have

oo

£ =31 n+ 1)g R,

n=0

which simplifies to

12 =10(a") = 3¢11(¢") + 5¢° I (") — 7¢°I5(¢") + 9¢'°14(¢"?)
—11¢"15(¢"%) + 13¢* Is(¢"),

equivalently

£ =1o(¢") — 3¢11(¢") + 5¢°L(¢"?) — 7¢°I3(¢"®)
+9q10[4(q13) o 11q15]—5(q13)’ (23)

where I, I1, Is, I3, I4, I5 and I are the series with integral powers of ¢'3. In (1.1),
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set r = —(13\ + 3), we have

[oe]

ZP—(13A+3) (n)q" = f113)‘+3 = f113/\f%-

n=0
Utilizing (1.2) and (2.3) in the above, we obtain

o0

D p-asany ()" = fiy(lo — 3¢1 +5¢° T — 7¢° I3 + 9¢'°1y — 11¢%15).

n=0
On picking the terms containing ¢'3"*" for v = 4,5,7,8,9,11,12, on the both sides

of the above, we obtain Theorem 1.2. O

Proof of Theorem 1.3. In (1.1), set r = —(169X + 1), it follows that

o

ZP7(169A+1)(W)¢Z" = {0 = fl9A g (2.4)

n=0
Utilizing (1.2) in (2.4), we obtain

oo

Zp7(169,\+1)(n)qn = fiso/1- (2.5)

n=0
Invoking (2.2) in (2.5), it is observed that

oo

> p_geonin(n)g" = figh (A= qB = ¢*)C+¢*D+q" — ¢°E+¢*F).  (2.6)

n=0

On selecting the terms containing ¢'*"*7 on both sides of (2.6), dividing by ¢ and
letting ¢ to ¢'3, we obtain

o0

ZP7(169>\+1)(")Q" = 1/\;1

n=0

Selecting the terms containing ¢'3"*" in both sides of the above for 1 < v < 12, we
arrive at Theorem 1.3. O

Proof of Theorem 1.4. In (1.1), put r = —(169X\ + 2), we have
o0
Zp—(169)\+2)(n)qn = 1169/\+2 = f1%7 (2.7)
n=0

Utilizing (1.2) in (2.7), we obtain

ZP7(169,\+2)(N)Q" = fisofi- (2.8)
n=0
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On squaring (2.2), we obtain
i = fiso(A* +[¢"° = 2(AB — CEq"® — DF¢*)]q + (B® - 2AC)¢*
+2BC¢ + C*¢* + 2AD¢® — 2BDq® + 2(A — CD)q" — 2B¢® — 2C¢°
+ D*¢!° +2(D — AE)¢"? + 2BE¢"® — 2DEq'" — 2E¢" + 2AF¢*
—2BF¢* + (E? — 2CF)¢** + 2F¢*° — 2EF¢** + F2¢*). (2.9)

Using (2.9) in (2.8), we obtain

(oo}

> p_eont2y(n)d" = figh? (A* + [¢" — 2(AB — CEq"™ — DF¢*)lq

n=0
+(B? —2A4C)¢* + 2BC¢ + C*¢* + 2ADg® — 2BD¢°
+2(A—CD)q" —2B¢® — 2C¢° + D*¢'° + 2(D — AE)q*?
+2BEq"® — 2DEq" — 2E¢" + 2AF¢* — 2BF¢*
+ (E? = 2CF)¢** + 2F¢* — 2EF ¢ + F2¢*). (2.10)

From [4, p.372 Entry 8(i)], we have

fi_ab
1+ =5 = — — ce — q¢df,
Qf123 q
where a,b,¢,d, e, and f are as defined as in (2.1). On letting ¢ to ¢** in the above,
we obtain )
g+ J{;ﬁ = (AB — ¢"3CE — ¢®°DF), (2.11)
69

where A, B,C,D,E and F are as defined as in (2.2). Using (2.11) in the second
term of the right side of (2.10) and selecting the terms containing ¢'3"*! on both
sides, dividing throughout by ¢ and then letting ¢ to ¢/, we deduce that

o0
D p_eort)(13n+ 1)g" = (=) f5.
n=0

Selecting the terms containing ¢'*"” on both sides of the above for 1 < v < 12, we
obtain the desired congruence. O
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