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EVEN-ODD BALANCING AND COBALANCING NUMBERS

S.G. RAYAGURU, R.K. DAVALA, AND G.K. PANDA

ABSTRACT. In this paper, we solve the Diophantine equation

2444+ +2k=2n+1)+2n+3)+ -+ 2n+2r—1)
for k € {n—1, n}. Further, we study some properties and identities involving these numbers.
We also establish some relations of these numbers with Pell, associated Pell, balancing and
cobalancing numbers.
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1. INTRODUCTION

The concept of balancing numbers was first introduced by Behera and Panda [1] in the year
1999. They call a natural number n a balancing number if
142+ +(n-1)=Mn+1)+n+2)+---+(n+r)
for some natural number r, which they call the balancer corresponding to n. Subsequently,

Panda and Ray [9] defined cobalancing numbers with little modification to the defining equa-
tion of balancing numbers. A natural number n is called a cobalancing number if

1424+ +n=n+1)+n+2)+ -+ (n+7)

for some natural number r, called the cobalancer corresponding to n. Panda [10], further
generalized the concept of balancing and cobalancing number to define sequence balancing and
cobalancing numbers. For any sequence {a,}5; of real numbers, ap, is a sequence balancing
or sequence cobalancing number according as aj + a2+ -+ am—1 = Gm+1+ Amy2+ - - -+ Cmtr
oraj+ag+---+am = Gmt1+amy2+- - -+ @m4r for some natural number r. If a,, = 2n then the
sequence balancing numbers are 2,,, where B,, denotes the nth balancing number. Similarly,
the sequence balancing numbers corresponding to the sequence a,, = n/2 are B, /2. Panda
also proved that in the sequence of odd natural numbers, the sequence of sequence balancing
numbers is given by { B,41+B,}52,; and there does not exist any sequence cobalancing number.
Panda and Panda [12], defined almost balancing numbers as solution of the Diophantine
equation

{n+1)+n+2)+--+n+r)}—-{1+24+ -+ (n-1} =1
Subsequently, Davala and Panda [3, 4] studied the Diophantine equations

Hn+)+n+2)+---+(n+r)}—{1+2+---+(n-1} =D (1.1)
and

Hn+1)+n+2)+---+n+r)}—{1+24+---+n} =D. (1.2)

The solutions of (1.1) are called subbalancing and superbalancing numbers, where as the
solutions of (1.2) are called subcobalancing and supercobalancing numbers respectively.

”Dedicated to Prof. Chandrashekar Adiga on his 62nd Birthday”.
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In this paper, we define even-odd balancing and even-odd cobalancing numbers and estab-
lish their existence. We also establish some relations with the sequence of Pell, associated
Pell, balancing and cobalancing numbers. Furthermore, we examine some ratio formulas and
identities involving these numbers.

2. PRELIMINARIES

A brief study on balancing and cobalancing numbers have been done in [14]. Further,
identities involving Pell; associated Pell, balancing, Lucas-balancing and cobalancing numbers
have been established [2, 8, 11, 13]. The Binet formulas of these numbers are given by:

P, = aff —af = of + oy B, — a%”—a%n C, = a%"—i—oz%” b, = a%nfl —a%nfl 1
2\/§ ) 2 ) 4\/5 b 2 ) 4\/5 2 b
where a0y =1+ v2 and ag =1 — V2.

The identities in the following lemmas are useful in the forthcoming sections.

Lemma 2.1. If k and n are natural numbers, then
(a) P2,, — P2, =4ByB,
(b) Q(Pr%-}—k + Pifk) + (=1)"F = CCy
(C) Pn+kPn+k71 - Pnfkpnfk:—l - 2Bk(-Bn - Bn—l)
(d) 2Pn+kPn+k—1 + 2Pn—kPn—k—1 - (71)n—k - Ck(Bn + anl)-
Proof. Using the Binet formula of Pell and balancing numbers and using a; — as = 2v/2,
ajoo = —1, we have

1[( n+k n+k)2 - (an—k n—k)2]

(a) Py — Py

n—k = gl = =@ [ )
_ é[a§n+2k +a2mhk  q2n2k 202k 90 00)nK(1 — (ana)?)]
_ %[a%nﬁk + a2 022 (0 00)2% — 02 (g a0)]
_ %[ Q2 4 G2k g3ng3k 20 2k)

1
= gllat" - a3")(af* — a3")] = 4B, By

and
(d) 2P Posk—1 + 2Pk Ppjo1 — (-1)"F

1
= Z[(Q?M N L T (o o L e | G
1 k-1
e
4
1

+ a§n+2k—1 + a%n—2k—1 +a§n—2k—1]

2

[a%n+2k—l +a§n+2k—l +a%n—1 2k +a2n—1a%k]

Qg

(03! + 3" )0 + a3)

PPN

1
= —=l(o1 — a2)(ed" ! + a3 (o} +a3h)]

8\/5[(01 a2)(

1
= [0 + 03 (03" — 03" + 02" — 03"%] = Cy(By + Bu-1).

8v2
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The proof of (b) and (c) follows similarly. O

Lemma 2.2. If k and n are natural numbers, then

(a) Pn+Pn71 = Qn, Pn*Pn71 = dqn-1 (d) Qn+Qn71 :2Pn7 dn — qn—-1 :2Pn71
(b) 2Bn - P2ny Cn = Qq2n, Bn = I'nQn (e) b2n = P2nq2n—1a b2n+1 = P2nq2n+1
(c) 4B, (B, £1) +1 = (P, £1)? (f) dbpbptr +1= P2 .

These identities can be obtained by using the recurrence relations and Binet forms of Pell,
associated Pell, balancing and cobalancing numbers.

3. EVEN-ODD BALANCING NUMBERS AND EVEN-ODD BALANCERS

Definition 3.1. We call a natural number n, an even-odd balancing number, if it satisfies the
Diophantine equation

2444+ +2n-2)=2n+ 1)+ 2n+3)+---+(2n+2r — 1) (3.1)
for some natural number r, which we call an even-odd balancer corresponding to n.

Example 3.2. The following summations hold.
(i) 24+4+---4+(2-25-2)=(2-25+1)+(2-25+3)+---+(2-25+2-10— 1) = 600
(i) 2444+ (2:841—2) = (2-841+ 1)+ (2-841+3) +-- -+ (2-841+2-348 — 1) = 706440

The above example suggests that 25 and 841 are even-odd balancing numbers with 10 and
348 as corresponding even-odd balancers.

3.1. Even-Odd Balancing Numbers. Solving Eq. (3.1) for n and r, we get
1
nzi[(1+27‘)—|— 82+4r+1] and r=-n+vV2n?—n. (3.2)

Thus, n is an even-odd balancing number with even-odd balancer r if and only if 2n? — n and
872 4 41 + 1 are perfect squares.

We denote the kth even integer by Ej = 2k, kth odd integer by Op =2k — 1, k =1,2,...
and the sequence of even-odd balancing numbers by {EODB,},>1. In view of (2.1), 2n? —n =
M(QQLI) is a perfect square and hence, v2n2 — n is a balancing number, say 2n% —n = B?n,
which imply n = %Cm. Since n is a positive integer and Cy,, = (—1)™ (mod 4), it follows that
m is odd. Letting m =2 -1, EFOB,, = HC;%. Using the recurrence Cy,+1 = 6C,, — Cy,_1 of
Lucas-balancing numbers, one can verify that Coj11 = 34C9_1 — Cy_3. Thus, the sequence
of even-odd balancing numbers { EOB,, },,>1 satisfy the non homogeneous binary recurrence

EOBp+1 =34EOB,, — EOB,_1 — 8 (3.3)
with EOB; = 25 and EOBy = 841.

Note 2n? — n is a perfect square for n = 1, we accept EOBy = 1. With a1 = 1+ /2 and

ag =1-— \/5, the Binet formula for the even-odd balancing numbers can be written as
4n+2 An+2
«a + 1
EOB, = +——2 | _.
" 8 "1
The Binet form of even-odd balancing numbers imply

1
EOBy = 1(@int2 +1) = PonPonyz + 1 = P2,y = (Bpt1 — Bn)> = 4B, By + 1.
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Theorem 3.3. The generating function for the sequence EOB,, is given by

(5) = 1—10s + s°
IS = A1 =345 + 52)°

Proof. Let the generating function of FOB,, be ¢(s Z EOB,s". From (3.3), we have
n=0

o0 o0 o0 o0
> EOB, 125" =34)  EOBu15"? =Y EOB,s"™ -8 5"

n=0 n=0
o0 o0 o0 o0
Z EOBn+25”+2 = 34s Z EOB,H_lsn+1 — s Z EOB,s" — 85> Z s"
n=0 n=0 n=0
2 852
g(s) — EOB1s — EOBy = 34s(g(s) — EOBy) — s“g(s) — s
2
g(s)(1 =345 +5%) =1 —9s — 188
(s) = 1—10s + s*
I = M1 - 315 + 82)°
O
Theorem 3.4. If n is any non negative integer, then
n
Z E()Bn+2 — 33EOBy,41 + 8n — 16).

Proof. The proof of this theorem follows from the recurrence relation of even-odd balancing
numbers by using method of mathematical induction. Hence, we omit the proof. O

The folllowing theorem is the Catalan’s Identity for EODB,,.
Theorem 3.5. If n and r are positive integers, then the even-odd balancing numbers satisfy
EOB,,,-EOB,_, = (EOB, + 4B?)%.
In particular, EOB, ;1 - EOB,_1 = (EOB, +4).
The following theorem generates even-odd balancing numbers.

Theorem 3.6. If x is an even-odd balancing number and m is any non negative integer, then

fn(x) = Coma + 2Bom\/ 222 — & — AB2,

is also an even-odd balancing number. Moreover, if t = EOBy, then f,(x) = EOByqm,.
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Proof. Using the Binet formula of even-odd balancing numbers along with the Binet formula
of balancing and Lucas-balancing number, we have

fm(EOBy)

= C9, EOB,, + 2Boy,\/2EOB2 — EOB,, — 4B2,

= ComEOBy, + 2Boy, Bopy1 — AB2,

_ <o/11m —|—o/21m> (a‘f’”2 + 0/21""'2 N l) . 2(0/1“” — 0/2“"> (0/11"'"2 — oé”“) B 4<a%m - a%'")g
2 8 4 442 442 42

1

(@™ +ad™) (@l +af"*? +2) + (ol — a3™) (@] — ") — 2af” + af" ~ 2)

_ % (2 alntimt2 4 gpdntimt2 | 4)7

this completes the proof. O

Theorem 3.7. Even-odd balancing numbers are neither triangular nor perfect.

Proof. If EODB,, is triangular, then 8EOB,, + 1 is a perfect square and thus, VEODB, =
Bp+1— By, is a balancing number say By for some t > 1. Since B,, < By4+1— B, < Bpy1, the dif-
ference of two consecutive balancing number is not a balancing number and so By = By, 1 — By,
has no solution for ¢,n > 1. Hence, no even-odd balancing number is a triangular number.

Furthermore, EOB,, = (Bp+1 — Bn)2 is odd perfect square and perfect squares are not
perfect numbers. 0

Theorem 3.8. The even-odd balancing numbers satisfy

(a) EOBm+2n+1 — EOBm
EOBm+n+1 - EOBm+n

= DBont1; n>1

EOBp 130 — EOBy,
EOBm+2n - EOBern

2E0Bm+3n + QEOBm -1
=Bopt1 —Bay1—1;n>1

(C) 2E0Bm+2n + ZEOBm+n —1 2n+1 2n—1 yn=2
6EODBy+2n+1 + 6EODB,, — 3

2EOByini1+ 2EOB 1y — 1

(b)

=DBoyy1 —Bop—1+1; n>1

(d) =Copy1; n> 1
Proof. Since EOB,, = PQQnJr1 and P, satisfies P’r%+k: - ngk = 4By B,, (see Lemma 2.1), we have

2 2
EOBp o041 — EOBy  Pomioni2)s@nrt) ~ Domioant2)—@nt1)

_ - 2 — p2
EOBmint1 — EOBpin P(2m+2n+2)+1 P(2m+2n+2)71
Bomyont2Bant1
= ——"—""— = DBopy1,
Bomtont2B1

this completes the proof of (a).

The proof of (b) is similar to that of (a) and hence omitted. Similarly, the proofs of (c)
and (d) follows from the identity 2PT%+,c + 2P3_k + (=1)"F = CLCy, Crgr + Cp_i = 2C4Ch,
Bn+1 - Bn_l = 2071, D
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3.2. Even-Odd Balancers. The even-odd balancers satisfy many results similar to that of

even-odd balancing numbers. Now, r is an even-odd balancer if and only if 82 + 4r + 1 = 22

Equivalently, (4r +1)? — 222 = —1, which is a Pell’s equation. With the fundamental solution
(1,1), the total solution of (4r +1)? — 222 = —1is given by

1
47'n +1= 2( 4n+1 + a2n+1) 2 = ( An+1 421n—|—1)

2f
where oy = 14+ V2, agzl—\/iandthus

Iy = EOR,, = ( it gt 2y,
which is the Binet formula for the even—odd balancers.

As like EOBy = 1, we consider FORy = 0. Further, the even-odd balancers satisfy the non
homogeneous linear binary recurrence

EOR,+1 = 34EOR,, — EOR,_1 + 8 (3.4)
with EORy = 0 and FOR; = 10. Using the Binet formula of even-odd balancers, we have

1
EOR, = (Q4n+1 1) = Py Popy1.

Theorem 3.9. The generating function for the sequence EOR,, is given by
2s(5 — s)
(1 —5)(1—34s +s2)°

Theorem 3.10. For every non negative integer n,

9(s) =

Z EOR; = EORn+2 — 33EORy+1 — 8n — 18).

Proof. The proof of this theorem follows from the recurrence relation of even-odd balancers
by using method of mathematical induction. Hence, we omit the proof. (]

Theorem 3.11. For every positive integer n and r, the even-odd balancers satisfy
EOR,, - EOR, _, + B3 = (EOR,, — 4B?%)%.

Proof. Using the Binet formula of even-odd balancers, the proof is similar to that of Theorem
3.5. O

Theorem 3.12. If x is an even-odd balancer and m is any non negative integer, then
fn(z) = Coma + Bow /822 + 4+ 1 + 4B2,
is also an even-odd balancer. Moreover, if t = EOR,,, then fm(x) = EORyqm,.

Proof. Using the Binet formula of even-odd balancers, the proof is similar to that of Theorem
3.6. O

Theorem 3.13. The even-odd balancers are not perfect.

Proof. Since EOR,, = P, Pop+1, every even-odd balancer is even. Let us assume that, FOR,,
is perfect. Hence, EOR,, = 2P~1(2P — 1) with p and (2 — 1) both primes. Since EOR; = 10
is not a perfect number, r must be greater than 1. Now,

EORn = P2nP2n+1 = 2Pn‘]np2n+1 — annP2n+1 == 2[)—2(217 - 1)
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Since ged (P, gn) = 1 and ¢p, Pont1 are odd, either ¢, = 1 or Py = 1. Thus, r = 1, which
contradicts the fact that r > 1. O

Theorem 3.14. The even-odd balancers satisfy
(a) EOR19n+1 — EOR,,
EORynt1 — EORpin
EORy 43, — EOR,,
EOR; 490 — EORpy iy,
2EOR 43, +2EOR,, +1
2EOR+9n + 2EORp4n + 1
(@) 6EOR 42041 + 6EOR,, + 3
2EORyn41 +2EOR 4 + 1
Proof. Since EOR,, = Py, Pop+1 and P, satisfies Py Pyik—1—Ppn—p Po—k—1 = 2Br(Bn—Bp—1)
(see Lemma 2.1), we have

=DBopt1; n>1

(b)

=DBop41 —Bop—1+1;n>1

()

=DBopt1 —Bop—1 —1;n>1

=Co41 ;3 n > 1

EORyi2n+1 — EORy, Poyyant3Pomyany2 — Poms1Pom

EORm+n+1 - EORm+n P2m+2n+3P2m+2n+2 - P2m+2n+1P2m+2n
_ (Bam+tont2 — Bomyont1) Bong1
(Bam+an+t2 — Bamson+t1) B

= Bopy1,

this completes the proof of (a).

The proof of (b) is similar to that of (a) and hence omitted. Similarly, the proofs of (c)
and (d) follows from the identity 2P, 4k Ppik—1 + 2Pk Pr—k—1 — (_1)n—k = Ck<Bn + Bn—1)7
Chtk + Chp = 2CChy, Bpy1 — Bp1 = 2C,,. O

4. SOME LINKS BETWEEN EVEN-ODD BALANCING(COBALANCING) NUMBERS WITH
EVEN-ODD BALANCERS(COBALANCERS)

Definition 3.1 can be modified slightly to define even-odd cobalancing number.

Definition 4.1. We call a natural number n, an even-odd cobalancing number, if it satisfies
the Diophantine equation

2444+ +2n=02n+ 1)+ 2n+3)+ -+ (2n+2r —1) (4.1)
for some natural number r, which we call an even-odd cobalancer corresponding to n.

Many results similar to even-odd balancing numbers and even-odd balancers can be estab-
lished. One can check that, the binary recurrence relation for even-odd cobalancing num-
bers and even-odd cobalancers are same as the recurrence relation for even-odd balancers
and even-odd balancing numbers respectively with initial terms EOby = 0, EOb; = 4 and
EOrg=0,EO0r =2.

Now, we represent these numbers in terms of Pell, associated Pell, balancing and cobalancing
numbers.

Theorem 4.2. If n is any non negative integer, then
() EOBn = (qins2 +1)/4= Pj, 1 = (But1 = Bn)* = (2bn41 +1)?

(b) EOR,, = (q4n+1 — 1)/4 = Py, Popt1 = QBn(Bn_H — Bn) = 2Bn(2bn+1 + 1)

391
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(¢) EOb, = (qan — 1)/4 = P}, =4DB2 = (by, — by 1)?

(d) EOr, = (Q4n_1 + 1)/4 =Py, Pop_1 = QBn(Bn — Bn_1) = QBn(2bn + 1).

By looking at the above representation, it is easy to state the following result involving
these numbers obtained in the balancing process of even and odd natural numbers.

Corollary 4.3. The square of a Pell number is either an even-odd balancing number or an
even-odd cobalancing number. Further, the product of two consecutive Pell number is either
an even-odd balancer or an even-odd cobalancer.

Corollary 4.4. The sequence of associated Pell numbers can be written as the union of
four disjoint sequences involving even-odd balancing(cobalancing) numbers and even-odd bal-
ancers(cobalancers). In other words,

{gn} ={4EOB,, — 1} U{4EOR,, + 1} U{4EOb,, + 1} U{4EOr,, — 1}.

In the following theorems we establish some relations involving Pell and associated pell
numbers with even-odd and odd-even balancing(cobalancing) numbers and even-odd and odd-
even balancers(cobalancers).

Theorem 4.5. If n is any natural number, then

(a) P5, = EOb, (i) Pany1 = EOBy,

(b) ¢3, = 2EOb, + 1 (k) ¢3,41 =2EOB, — 1

(¢) Pangon—1 = EOb, — EOmry, (1) Pangon = EOb, + EOT,

(d) Pop+1gon = EOB,, — EOR,, (m) Pop+ti1gon+1 = EOB,, + EOR,,
(e) Popn—192n, = EOb, — EOry, + 1 (n) Papgon+1 = EOB,, — EOR, — 1
() PonPop_1 = EOR, — 2EOb, (0) PonPons1 = EOry + 2EOb,

(8) @2ngen—1 = EOb, — EOB,_; (P) ¢2n@2n+1 = EOB,, — EOb,

(h) ¢2nq2n-1 = EOR,, + EOry, — 2EOb,, — 1

(1) ¢2ng2n+1 = EORy, + EOrpy1 —2EOB, + 1

Proof. From Theorem 4.2, (a) and (b) can be viewed directly. Further, (c¢) and (d) follows
from (a) and (b) by using the identities 2P3, + 1 = ¢3, and 2P3,_, — 1 = ¢, respectively.
In a similar fashion, the proof of other results follow from Theorem 4.2 and Lemma 2.2. [

Theorem 4.6. If n is any natural number, then

(a) (EOB, + EOb,)? = EOBa, (e
(b) (EOB,_1 + EOb,)? = EOBa,_; (f
(¢) EOB,, - EOb, = EOR? (g
(d) EOB,, - EOr} = EOB,,_1 - EOR? (h

) (EOR,, + EOry)? = EOby,

) (EOR,—1 + EO’I”n)2 = EQObyy,_1

) EOB,,_1 - EOb, = EOr?

) EOB,, - EOR?_| = EOb,_ - EOr2.
Proof. Using Lemma 2.2 and Theorem 4.2, the results of this theorem can be proved easily
and hence, we omit the proof. 0

Corollary 4.7. If n is any natural number, then (2EOR,, EOB,, — EOb,,, EOB,, + EOb,)
and (2EOry, EOb, — EOBy,_1, EOby,, + EOB,,_1) forms Pythagorean triples.



Even-odd balancing and cobalancing numbers 393

Proof. Since,
(EOB,, + EOb,)* — (EOB,, — EOb,)* = 4EOB,, - EOb,,
and
(EOb,, + EOB,,_1)? — (EOb,, — EOB,,_1)* = 4EOb,, - EOB,, 1,

the result follows immediately from the above theorem. O

Theorem 4.8. If n is any natural number, then

4dn+1 4n—1
) Y Pi+1=2E0B, (d) Y P =2EOb,
=1 i=1
8n+3 8n—1
) Y Pi+1=(4EOB, - 1)? () 3" Pi+1=(4EOb, +1)*
i=1 i=1
8n+1 8n—3
¢) Y Pi=(2EOB, — 2EOb, — 1)* (f) Y Pi=(2EOB, — 2EOb, +1)*.

Proof. Using Theorem 4.2 and the properties of Pell numbers, it is easy to establish the desired
summation results. Hence, we omit the proof. O

Theorem 4.9. If n is any natural number, then EOb, + EOr, and EOB, + EOR, are
balancing numbers. Similarly, EOb, — EOr,, and FOB, — FEOR,, —1 are cobalancing numbers.
In particular, the sequence of balancing and cobalancing numbers can be written as

{By} = {EOb,+ EOr,} U{EOB, + EOR,}, {b,} = {EOb, — EOr,} U{EOB,, - EOR,, — 1}.
Proof. Since,

[EOb,, + EOr,)? = @ and [EOB,, + EOR,)> = y(yTH)

for
x=FOB,_1+ EOb, +2EOr, and y = FOB,, + EOb, + 2EOR,,,

it follows that EOb, + EOry, and EOB, + EOR,, are balancing numbers. Further,

[EOby, — EOr,|[EOb, — EOr, + 1] = @
and
[EOB,, — EOR,][EOB, — EOR, — 1] = y(y2— )
for
xr=FOB,_1+ EOb, + EOR,,_1 — EOry, and y = EOB,, + £EOb, — EOR,, + EOr,
proves that £Ob, — EOr, and EOB, — EOR,, — 1 are cobalancing numbers. 0

Theorem 4.10. If n is any natural number, then

( ) 4[EOb,, + EOr,][EOB, + EOR,| +1= P} .,
(b) A[EOb, + EOr,][EOb, + EOr, +1] 4+ 1 = (P, + 1)*
( ) 4[EOb,, — EOr,)|[EOB, — EORy] +1 = (Py, —1)?
(d) 4[EOb,, — EOr,][EOb, — EOry, + 1]+ 1= P2 _,.
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Proof. The proof of (a) and (d) follows from the fact that £Ob,, — EOry, = be, and EOB,, —
EOR,, — 1 = bay41 using Lemma 2.2, whereas the proof of (b) and (c) follows from the fact
that EOb,, + EOr, = Ba, and EOB, + EOR,, = B4 using the Binet form of Pell and
balancing numbers. O

Now, we state few Diophantine equations for which the solutions are expressible in terms
of numbers induced in the balancing process of even and odd natural numbers. Some of these
Diophantine equations has been solved in [5, 6, 7, 14] and others can be solved in a similar
fashion. We start with the following theorem.

Theorem 4.11. The Diophantine equations x> — 2xy —y?> +x =0 and 2> —2zy — > —x =0
results in
(z,y) = (EOby,, EOry,) and (z,y) = (EOB,, EOR,)
respectively, whereas the Diophantine equations 2 —2xy —y?+y =0 and 22 —2zy—y?> —y =0
results in
(z,y) = (EOry,, EOBy,_1) and (z,y) = (EOR,,, EOb,)

respectively withn =1,2,3, ...

In the following table, we give solution of the Diophantine equation az?+ by? + cx +dy = 0

for some particular values of a,b,c and d, expressible in terms of even-odd and odd-even
balancing(cobalancing) numbers and even-odd and odd-even balancers(cobalancers).

(a7 b7 G d) (.73, y)

(2,-1,1,0) (EOb,, EOb, + EOr,)
(2,-1,-1,0) (EOr,, EOB,_1 + EOR,_1)

(2,-1,0,1) (EOb, + EOry,2EOb, + 1) and (EOB, + EOR,,2EOB,)
(2,-1,0,—1) (EOb, + EOry,2EOb,) and (EOB, + EOR,,2EOB, — 1)
(2,-1,-2,1) | (EOB, — EOR,,2EOR,, + 1) and (EOb, — EOr,, + 1,2EOry,)

(2,-1,-2,-1)| (EOB, — EOR,,2EOR,) and (EOb, — EOry, + 1,2EOr,, — 1)

(2,-1,2,1) | (EOB, — EOR, —1,2EOR,, + 1) and (EOb,, — EOr,,,2EOr,)
(2,-1,2,—1) | (EOB, — EOR, —1,2EORy) and (EOb,, — EOry,2EOr,, — 1)
(8,-1,-2,1) | ([EOb, — EOr, + EOB,,_| + EOR, 1 +1]/4, EOb, — EOr,, + 1)

(8,-1,-2,~1) | ([EOb, — EOr, + EOB,, | + EOR, 1 + 1]/4, EOb, — EOr,)

(8,-1,2,1) (IEOB, — EOR,, + EOb, + EOr, —1]/4, EOB,, — EOR,,)

(8,-1,2,—1) | ([EOB, — EOR, + EOb, + EOr, —1]/4, EOB,, — EOR,, — 1)

In the following table, we give solutions of the Diophantine equation
22 — 2kzy — ly? + ma® =0

(a is any fixed integer) for some particular values of k,l and m, expressible in terms of
even-odd and odd-even balancing(cobalancing) numbers and even-odd and odd-even bal-
ancers(cobalancers).

(k7 l’ m) (:E’ y) (k'l7m) ($7 y)

(1,1,1) (ain,al,—1) (1,1,-1) (alp,aty)

(1,1,2) (afn,adn—1) (1,1,-2) (adn, ajn)

(2,-2,1 (ajn,alp—1) (2,-2,-1) (ady, aiy)
(3,-1,4) | (aln,aly—1) or (alp,_1,aly) | (3,—1,—4) | (ain,ain_1) or (ain_1,aiy,)
(3,—-1,8) | (ajn,ajn-1) or (ajn-1,ajn) | (3,=1,—8) | (aJn,an—1) or (aJn_1,aly)
(4,2,9) (adn,alpn_1) (4,2,-9) (a@jn, ain—1)
(—4,2,9) (adn-1,aly) (—4,2,-9) (@jn, @ins1)




Even-odd balancing and cobalancing numbers

where
I + EOR i2 + EO
I, = JEOB,, J, — 20T & EOb, G, = 2 93

I, n
In the following table, we give solution of the Diophantine equation

pr + qy2 +r22+ 2szyz+t=20
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for some particular values of p, ¢, r, s and t, expressible in terms of even-odd balancing(cobalancing)

numbers and even-odd balancers(cobalancers).

(p,q,r,s,t) (x,y,z) (pv(LT’Svt) (Z‘ Y,z )
(17171 71771) (.]majna.jm-Fn) (17232’ 72371) ( maInvI’ﬂH—n)
(1,1,-1,1,1) (Jm»> Ins Jmnt1) (1,2,-2,2,1) (S Bns Imen)
(17 13177]-,1) (jm,JnaJm-‘rn) (2’27717271) (Zmﬂm]m-&-n)
(17 131771,1) (Jm,jn,Jm+n) (2’231’7 371) (ImaIna]m+n+1)

(1,-2,-2,2,-1) | Goosinsiman) | (22, —1,2,~1) | (T i Joncen)
(1,-2.2,-2.1) | (Jo Ipsimans) | (20—2.1,-2,1) | (ims Lns i)

Substituting = z and r = 0 in the above Diophantine equation, we have
px2 + qy2 + 23$2y +t=0.
Hence, for suitable choice of p, ¢, s and ¢, one can have the following result:

Corollary 4.12. The Diophantine equation 22> + y?> — 22%y — 1 = 0 has solution (x,y) =
(jns jon), whereas 20% — y% + 222y + 1 = 0 has solution (z,y) = (Jn,jons1). Similarly, the
Diophantine equations 4x* — y> + 42>y + 1 = 0 and 42% + y®> — 42%y — 1 = 0 has solutions
(z,y) = (in, Jon) and (z,y) = (In, jon+1) respectively.

5. SOME LINKS BETWEEN BALANCING(COBALANCING) NUMBERS WITH
BALANCERS(COBALANCERS) CORRESPONDING TO EVEN AND ODD NATURAL NUMBERS

Similar to even-odd balancing numbers, we can define odd-even balancing numbers as fol-
lows.

Definition 5.1. We call a natural number n, an odd-even balancing number, if it satisfies the
Diophantine equation

1434+ +2n=-3)=2n+2)+2n+4) +---+ (2n+2r)
for some natural number r, which we call an odd-even balancer corresponding to n.

Further, one can check that 31 and 1045 are odd-even balancing numbers with 12 and 432
as odd-even balancers respectively. We can also define odd-even cobalancing numbers just by
replacing the summation in the left side of Definition 5.1 with 14+ 3+ -4 (2n — 1). One can
establish many results about these balancing numbers, cobalancing numbers, balancers and
cobalancers.

Though the binary recurrence relation for all of these eight numbers obtained in the balanc-
ing process of even and odd natural numbers are different, they satisfy the following ternary
recurrence (linear and homogeneous) relation:

Tpto = 35Tpy1 — 35Ty + Tp—1 5n > 1

with the initial values: EOBy 12 = 1,25,841, EORy 12 = 0,10,348, EOby 12 = 0,4,144,
EOrg12 = 0,2,60, OEBy12 = 1,31,1045, OERg 15 = 0,12,432, OEbg 12 = 0,10, 348,
OFErp,12 = 0,4, 144 respectively.
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In Theorem 4.2, we have already presented even-odd balancing(cobalancing) numbers and
even-odd balancers(cobalancers) in terms of Pell, associated Pell, balancing and cobalancing
numbers. In the following theorem, we present a similar result for the odd-even balanc-
ing(cobalancing) numbers and odd-even balancers(cobalancers).

Theorem 5.2. If n is any non negative integer, then
(3') OEBn = (3q4n+1 + 1)/4 - 3P2nP2n+1 +1= 6Bn(Bn+1 - Bn) +1= 6Bn(2bn+1 + 1) +1

(b) OER, = (3qan — 3)/4 = 3P3, = 12B2 = 3(b, — by—1)?
(C) OFEb, = (Q4n+1 — 1)/4 = P2nP2n+1 = 2Bn(Bn+1 — Bn) = QBn(an+1 + 1)

(d) OEr, = (qan — 1)/4 = P2, =4B2 = (b, — b,_1).

Note: The greatest common divisor of the nth terms of any two of the eight numbers
induced in the balancing process by considering the sequence of even(odd) and odd(even)
natural numbers is either 1 or P, or P, or P22n or P, Popy1.

Using the properties of Pell and associated Pell numbers, one can easily derive many more
identities (e.g, the closed form expressions for the sum formulas, Catalan type identities, etc.)
involving these numbers.

The following two corollaries are direct consequences of Theorem 4.2 and 5.2.

Corollary 5.3. Every odd-even cobalancing number is an even-odd balancer and every even-
odd cobalancing number is an odd-even cobalancer.

Corollary 5.4. Three times of even-odd cobalancing number or three times of odd-even cobal-
ancer is an odd-even balancer. Further, three times of odd-even cobalancing number or three
times of even-odd balancer is one less than an odd-even balancing number.

In the following theorem we establish results similar to Theorem 4.5-4.8.

Theorem 5.5. If n is any natural number, then
(a) Ponqon+1 = OEb, + OFEr, = (OEBn + OFR,, — 1)/3
(b) Pap+t1g2n = OEb, — OEr, +1 = (OEB, + OER, + 2)/3
(c) OEb, - (OEB, —1) = 30EL2
(d) OEb, - OER?,, = (OEBp41 — 1) - OEr?
(e) EOB, - EOb, = OEb?
(f) (OEB, —1)-OEb, = 3EOR2
(g) 35", Pi = 20EB,, = 60EDb,.

Proof. The proofs of (a)-(b) is similar to that of Theorem 4.5 using Lemma 2.2, where as the
results (c)-(f) can be proved as in Theorem 4.6. The proof of (g) is similar to that of Theorem
4.8. Hence, we omit them. O

Theorem 5.6. If n is any natural number, then
(a) EOB, + EOR,, + OEb, + OFEr, = EOB, + EOb, + OEB,, — OEb, — 1 =¢3,,,
(b) EOb, + EOr,, + OEb, + OEr,, + 1 = EOB,, + EOb, — OEB,, + OEb, + 1 = ¢3,
(¢) EOR,, — EOry, — OER,, + OEr,
= EOR,, + EOb,, — OEb,, — OEr, = EOb,, + EOry,, — OEb, + OEr, = 0.
The following are some links between the sums and differences of balancing(cobalancing)

numbers and the balancers(cobalancers) coressponding to even and odd natural numbers with
the balancing and cobalancing numbers.
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Theorem 5.7. If n is any natural number, then

2n+1 1 4An+1 1 1
(a) Bong1 = Poic1 = 3 > ai+ 5 = EOBy + EORy = EOB, + 5(OEB, — 1)
=1 i=1
2n 1 An—1 1 1
(b) Ban = Py = 5 > ai+ 5 = EOby + EOry, = OEby, — OEry = EOR, — SOER,
=1 =1

1
= OEry + EOry, = OEby — EOby = 5(OEDBy, — OER, — 1)
2n—1 1 4n—2
(c) bay = Z; Py = 5 2; gi = EOb, — EOr,, = OEr,, — EOr,
1= 1=

2n 4n
1 1
d) bop+1 = Py =— ¢ = OEb, + EOb, = OEb, + OFEr, = -(OEB, + OFR,, — 1
2 3
i=1 i=1

— EOB, — EOR, — 1 = EOR,, + %OERn — EOB, - %(OEBn +9),

Proof. Using respective Binet forms of balancing, cobalancing, Pell, associated Pell and the
numbers obtained in the balancing process of even and odd natural numbers, it is easy to
proof the stated results. Hence, we omit it. O

Acknowledgement: The authors are thankful to the anonymous referee for his valuable
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