$L_d(1)$ IS $\bigcirc(logloglogd)$ FOR ALMOST ALL SQUARE FREE d

G SUDHAAMSH MOHAN REDDY, S SRINIVAS RAU

ABSTRACT. Let d be a square free integer. Using Hardy-Ramanujan's value of normal order of $\omega(d)$ we show that $L_d(1) = \bigcap (logloglogd)$ except on a negligible set. We note that the proof verifies Robin's inequality $\sigma(n) < e^{\gamma} n loglogn$ (equivalent form of Riemann Hypothesis) for such numbers.

Let d be a square free integer with $K = Q(\sqrt{d})$ the corresponding quadratic field. The Legendre symbol $(\frac{d}{n})$ helps us to define the L-series $L_d(s) = \sum_{n=1}^{\infty} \frac{(\frac{d}{n})}{n^s}$. This series converges for Re s > 0 and defines an analytic function [3], [7]. The value $L_d(1)$ is of great importance because $L_d(1) = hk$, h = Class number of K and k = structure constant of K. The estimation of $L_d(1)$ (or its exact value) is of interest [3]. Our main result is

Proposition 1. $L_d(1) = \bigcap (logloglogd)$ except for d in a negligible set (i.e., a set of natural density zero)

To prove this we recall an earlier result of ours ([5]). It is the analogue of density computation for square free integers[2]: density= $\frac{1}{\zeta(2)} = \frac{6}{\pi^2}$

Lemma 1. The natural density of square free ideals of θ_K (the ring of integers of K) is given by

$$\lim_{s \to 1^+} \frac{(s-1)\zeta_K(s)}{\zeta_K(2s) \prod_{p \mid d} (1+\frac{1}{p})} = \frac{L_d(1)}{\zeta(2)L_d(2) \prod_{p \mid d} (1+\frac{1}{p})} \le 1$$

Hence
$$L_d(1) \le \zeta(2)L_d(2) \prod_{p|d} (1 + \frac{1}{p}) \le \zeta^2(2) \prod_{p|d} (1 + \frac{1}{p})$$

(Here ζ_K is the Dedekind Zeta function and ζ the Riemann Zeta function [7])

In view of Lemma 1 our task is to estimate the finite product $\prod_{p|d} (1 + \frac{1}{p})$ as $\bigcap (logloglogd)$ for almost all d.

Lemma 2. $\prod_{p \le x} (1 + \frac{1}{p}) = c_1 log x + \bigcirc (1)$

Proof. We imitate the proof ([1], Thm 13.13) for $\prod_{p \le x} (1 - \frac{1}{p}) = \frac{k}{\log x} + \bigcirc(1)$

Let
$$P(x) = \prod_{p \le x} (1 + \frac{1}{p})$$

So

$$log P(x) = \sum_{1 \le x} log(1 + \frac{1}{p})$$

Key words and phrases. L-series; Divisor functions; Normal order; Hardy-Ramanujan estimate.

²⁰¹⁰ Mathematics Subject Classification. 11M20, 11M26.

But we have

$$log(1+t) = t - \frac{t^2}{2} + \frac{t^3}{3} - \dots + (-1)^{n+1} \frac{t^n}{n} + \dots$$

for $(0 \le t < 1)$. Taking $t = \frac{1}{p}$ we have, for each prime p,

$$log(1+\frac{1}{p}) = \frac{1}{p} - \frac{1}{2p^2} + \frac{1}{3p^3} - \dots + \frac{(-1)^{n+1}}{np^n} + \dots$$

Setting

$$b_p = \frac{1}{p} - \log(1 + \frac{1}{p})$$

we have

$$b_p = \frac{1}{2p^2} - \frac{1}{3p^3} + \dots + \frac{(-1)^n}{np^n} + \dots \le \frac{1}{2p^2} + \frac{1}{3p^3} + \dots + \frac{1}{np^n} + \dots$$

$$< \frac{1}{2p^2} (1 + \frac{1}{p} + \frac{1}{p^2} + \dots + \frac{1}{p^n} + \dots)$$

$$= \frac{1}{2} \frac{1}{p^2} \frac{1}{(1 - \frac{1}{p})} = \frac{1}{2p(p-1)}$$

So

$$B = \sum_{p} b_{p} < \sum_{p} \frac{1}{p(p-1)} < \sum_{n=2}^{\infty} \frac{1}{n(n-1)} = \sum_{n=2}^{\infty} (\frac{1}{n-1} - \frac{1}{n}) = 1$$

Now

$$B - \sum_{p < x} b_p = \sum_{p > x} b_p < \sum_{n > x} \frac{1}{n(n-1)} = \bigcirc (\frac{1}{x})$$

So

$$B - (\sum_{p} (\frac{1}{p} - \log(1 + \frac{1}{p}))) = \bigcirc (\frac{1}{x})$$

Hence $\sum_{p \leq x} log(1 + \frac{1}{p}) = \sum_{p \leq x} \frac{1}{p} - B + \bigcirc(\frac{1}{x}) = loglogx + A - B + \bigcirc(\frac{1}{logx}) + \bigcirc(\frac{1}{x})$ ([1], Theorem 4.12) Taking exponentials

$$\begin{split} P(x) &= \prod_{p \leq x} (1 + \frac{1}{p}) = e^{(A-B)}.logx.e^{\bigcirc(\frac{1}{logx})} e^{\bigcirc(\frac{1}{x})} \\ &= e^{(A-B)}.logx(1 + \bigcirc(\frac{1}{logx}))(1 + \bigcirc(\frac{1}{x})) \\ &= e^{(A-B)}logx\{1 + \bigcirc(\frac{1}{xlogx}) + \bigcirc(\frac{1}{x}) + \bigcirc(\frac{1}{logx})\} \\ &= e^{(A-B)}logx + \bigcirc(\frac{1}{x}) + \bigcirc(\frac{logx}{x}) + \bigcirc(1) \\ &= e^{(A-B)}logx + \bigcirc(1). \end{split}$$

Lemma 3. $\prod_{p|d} (1 + \frac{1}{p}) \leq \prod_{p \leq p_{\omega(d)}} (1 + \frac{1}{p}) = c_1 log(p_{\omega(d)}) + \bigcirc (1)$ $(\omega(n) \ denotes \ the \ number \ of \ distinct \ prime \ divisors \ of \ n)$

Proof. Use Lemma 2 with $x = p_{\omega(d)}$ together with the fact that all prime divisors of d are between 2 and $p_{\omega(d)}$.

Lemma 4. $log p_{\omega(d)} = \bigcap (log \omega(d))$

Proof. $p_n \leq 12(nlogn + nlog(\frac{12}{e}))$ by Cheybshev ([1], Th 4.7) so $logp_n$ $\bigcirc(log n)$. Choose $n = \omega(d)$

Lemma 5. Given $\epsilon > 0$, $|\omega(n) - loglogn| < \epsilon loglogn$ for n in a set of density 1. Hence $\omega(n) < (1+\epsilon) \log\log n$ for almost all n (the exceptional set is negligible i.e., of density zero)

Proof. This is the famous result on normal order of $\omega(n)$ of Hardy-Ramanujan: see [2],[6] for several proofs.

Lemma 6. $log p_{\omega(d)} = \bigcap (log log log d)$ for almost all d. Hence $L_d(1) = \bigcap (logloglogd)$ for almost all square free d.

 $\mathit{Proof.\ logp}_{\omega(d)} = \bigcirc(log\omega(d))$ by Lemma 4. Let $\epsilon > 0$.

$$\begin{split} log\omega(d) &< log[(1+\epsilon)loglogd] \\ &= log(1+\epsilon) + logloglogd\ for\ almost\ all\ d\ by\ Lemma\ 5 \end{split}$$

Hence $log p_{\omega(d)} = \bigcirc (log log log d)$

Proof of Proposition1: Combining Lemmas 1-6, we have

$$L_{d}(1) \leq \zeta^{2}(2) \prod_{p|d} (1 + \frac{1}{p})$$

$$\leq c \prod_{p \leq p_{\omega(d)}} (1 + \frac{1}{p})$$

$$= c_{1} log(p_{\omega(d)}) + \bigcirc (1)$$

$$= \bigcirc (log\omega(d))$$

$$= \bigcirc (logloglogd) \text{ for almost all square free } d$$

Corollary 1. $\prod_{p|d} (1 + \frac{1}{p}) = \frac{\sigma(d)}{d} < e^{\gamma} log log d$ for almost all d. For such d, therefore,

Robin's inequality $\frac{\sigma(n)}{n} < e^{\gamma} log log n$ is valid: the validity for all n > 7! is equivalent to the Riemann Hypothesis $[4](\sigma(n))$ = sum of divisors of n). Since the density of square free integers d is $\frac{6}{\pi^2}$, Robin's inequality is valid for a large subset of positive integers.

Acknowledgements:

This work is supported by Department of Science and Technology(India) Research Project SR/S4/MS: 834/13 and the support is gratefully acknowledged. We thank Profs V. Kumar Murty and R.Balasubramanian for their interest and advice.

References

- [1] Tom Apostol, Introduction to Analytic Number Theory, Springer 1976
- [2] G H Hardy, Ramanujan Twelve lectures; Chelsea 1959
- [3] M. Hindry, Introduction to Zeta and L-functions from Arithmetic Geometry and some applications, (Mini curso, XXI Escola de Algebra, Brasilia, julho 2010)
- [4] J. Lagarias, An Elementary problem equivalent to the Riemann Hypothesis, Amer Math Monthly 109 (2002) pp 534-543
- [5] S. Srinivas Rau and B.Uma, Squarefree ideals in Quadratic fields and the Dedekind Zeta function, Vikram Math Journal Vol 13 (1993) pp 35-44
- [6] G.Tenenbaum, Introduction to Analytic and Probabilitic Number Theory, Cmbridge University Press 1995.
- [7] TIFR Pamphlet 4, Algebraic Number Theory, 1966
- [8] G Sudhaamsh Mohan Reddy, SS Rau, B Uma Applications of Tauberian Theorems to Dirichlet Series , (Lap Lambert Academic Publishing, Germany, ISBN:978-613-9-45507-2, 2019)
- [9] G Sudhaamsh Mohan Reddy, SS Rau, B Uma A remark on Hardy-Ramanujan's approximation of divisor functions, International Journal of Pure and Applied Mathematics 118 (4), 997-999, 2018
- [10] G Sudhaamsh Mohan Reddy, SS Rau, B Uma, Some Dirichlet Series and Means of Their Coefficients. Southeast Asian Bulletin of Mathematics 40 (4), 585-591, 2016
- [11] G Sudhaamsh Mohan Reddy, SS Rau, B Uma, Some arithmetic functions and their means. International Journal of Pure and Applied Mathematics 119 (2), 369-374, 2018
- [12] G Sudhaamsh Mohan Reddy, SS Rau, B Uma, A Bertrand Postulate for a subclass of primes, Boletim da Sociedade Paranaense de Matemtica 31 (2), 109-111, 2013
- [13] G Sudhaamsh Mohan Reddy, SS Rau, B Uma, Convergence of a series leading to an analogue of Ramanujan's assertion on squarefree integers, Boletim da Sociedade Paranaense de Matemtica 38 (2), 83-87, 2020
- [14] G Sudhaamsh Mohan Reddy, SS Rau, B Uma, A direct proof of Convergence of Euler product for $L_d(1)$, International Journal of Advanced Science and Technology, Vol. 28, No. 16, (2019), pp. 1308-1311
- [15] G Sudhaamsh Mohan Reddy, SS Rau, B Uma, Kronecker's lemma and a converse with applications, International Journal of Advanced Science and Technology, Vol. 28, No. 16, (2019), pp. 1312-1314
- [16] G Sudhaamsh Mohan Reddy, SS Rau, B Uma, An equivalent form of the Prime Number Theorem, (Accepted in Sarajevo Journal of Mathematics ANUBIH)
- [17] G Sudhaamsh Mohan Reddy, SS Rau, B Uma, A note on Dirichlet series connected to $\frac{L_d(1)}{L_d(2)}$ -I, (Accepted in AIP Conference Proceedings)
- [18] G Sudhaamsh Mohan Reddy, SS Rau, Bounds for special values of L_d for a Quadratic Field $Q(\sqrt{d})$, (Accepted in AIP Conference Proceedings)
- [19] G Sudhaamsh Mohan Reddy, SS Rau, An analogue of Landau-Walfisz Theorem, (Accepted in AIP Conference Proceedings)

G SUDHAAMSH MOHAN REDDY

FACULTY OF SCIENCE AND TECHNOLOGY
ICFAI FOUNDATION FOR HIGHER EDUCATION
DONTANAPALLI, SHANKARPALLI ROAD, HYDERABAD-501203, INDIA
E-mail address: dr.sudhamshreddy@gmail.com

S SRINIVAS RAU

FACULTY OF SCIENCE AND TECHNOLOGY
ICFAI FOUNDATION FOR HIGHER EDUCATION
DONTANAPALLI, SHANKARPALLI ROAD, HYDERABAD-501203, INDIA
E-mail address: rauindia@yahoo.co.in