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Abstract: In this article, we derive a new continued fraction d(q) by using a general
continued fraction in Ramanujan’s lost notebook. By using this continued fraction
d(q), we establish modular relation between d(q) and d(q™), where n = 2,3,4,5,7,11.
We also establish some explicit values of d(¢q) by using Ramanujan’s class invariant.
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1. INTRODUCTION

In Chapter 16 of his second notebook [3], Ramanujan developed the theory of
theta-function, defined by

(1.1) fla,b) := Z P B | ab|< 1,

= (—a; ab)oo(—b; ab) oo (ab; ab)
where (a;q)o =1,
(1.2)
(a:q)n = (1=a)(1—aq)(1—ag?) - (1—ag" ") and (a; @)oo = (1-a)(1-aq)(1—ag’)---

Following Ramanujan, we define

o Q)oo
(1.3) o(q) = f(g:q) n;ooq —*q,_q) )
_ not) (6%6%)oo
(1.4) () = f(a:q) Zq T
(1.5) F=0) = fa - = 3 (1" T = (@)
and

(1.6) X(@) = (~4:¢%)
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Now we define a modular equation in brief. The ordinary hypergeometric series
2F1(a, b; c; z) is defined by

oo
) e S @nO)n g
2F1((L, b, Cy J,) = Z: W.L

n=0
where (a)o =1, (a), =ala+1)(a+2) - (a+n—1) for any positive integer n, and
| z|< 1.

)

Let
(1.7) z:=z(x) = oF} (1, l; 1;x>
2°2
and
(1.8) ¢ = q(z) = exp (— 2, 311~ )> 7
2F1(2, 271,1)

where 0 < z < 1.
Let r denote a fixed natural number and assume that the following relation holds:
T2F1 (2,2,1,1—04) 2F1(27271a1 ﬁ)

2F1(272a17(y) 2F1(2727 ) )
Then a modular equation of degree r in the classical theory is a relation between «
(a

2(6’

is called the multiplier. We also use the notations z; := z(«) and z, := z(8) to
indicate that 8 has degree r over «.

The function x(q) is intimately connected to Ramanujan’s class invariants G,, an
gn which are defined by

(1.9)

~—

0

and 8 induced by (1.9). We often say that 3 is of degree r over o and m :

~—

(1.10) Gn =277V (q), gn =274y (—g),

where ¢ = e~ ™" and n is a positive rational number. Since from [3, Entry
124(v),(vi), p.56]

(1.11) x(@) = 2% {a(l = a)g™} 7 = (—g; D),

(1.12) X(—q) = 2/°(1 — a) /20 2 = (447w

The most famous of them is the celebrated Rogers-Ramanujan continued fraction
R(q), defined as

(1.13) R(q) == gl <1
1+ 5
q
1+ ———
q
14 —1
+ 1+,
In his Lost Notebook [7,pp 365] as well as in his letters to Hardy [6], he provided
five beautiful identities connecting the continued fraction R(q) with the five contin-

ued fractions R(—q), R(¢%), R(¢®), R(q*), andR(¢°). He also provided some explicit
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values of the continued fraction R(q). An account of this can be found in [2] and
[5]-

Ramanujan recorded the following general continued fraction in his Lost Notebook
[7] or [1, p. 144, Entry 6.2.1]: For any complex numbers a, b, \, and ¢ with |¢q| < 1,

G(ag, A\g; b3 q) 1
(1) Gla, \ibig) N (ag + A\q) ’
o (bat )
1+ M
1+ M
1+ ,
where
(1.15) G(a, \; b; q) == i qu(nﬂ)/;

(¢ ODn(=bg; )n

In [1] C. Adiga and D. D. Somashekara gave some special result on Rogers-
Ramanujan type continued fraction identities.Recently [10] Nipen Saika and Chanyanika
Boruah gave special case of a general continued fraction of Rogers-Ramanujan type.
They established several new modular identities and also proved general theorems
for the explicit evaluation of the continued fraction by using Ramanujans class in-
variants.

n=0

In this paper, we derive a new special case d(q) of the general continued fraction
(1.2), which is defined by

(1.16) d(q) = ., gl < 1.

2 3
+
I S

q
14—+
+1+...7

and prove some results analogous to those of R(q). In Sect. 2 we record some
preliminary results which will be used in the subsequent sections. In Sect. 3 we
establish several new modular identities of the continued fraction of d(q) and in Sect.
4 we establish some explicit values of d(g) by using Ramanujans class invariants.

2. PRELIMINARY RESULTS
Lemma 2.1. [2, Entry 17.3.1, p.385].If 8 is of degree 2 over «, then
(2.1) (1-VI=a)(1- VB) = 2Bl —a).

Lemma 2.2. [3, Entry 5(xiii), p.231] If P = (a8)"/® and Q = (8/a)'/* and B has
degree 3 over «, then

(2.2) Q—%:Z(P—%).
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Lemma 2.3. [2, Entry 17.3.2, p.385] If 8 has degree 4 over «, then

(2.3) (1—vVi—a)1—YB)=2¥p01—a).

Lemma 2.4. (3, Entry 13(xv), p.282] If P = (a3)"/* and Q = (3/a)'/® and B has
degree 5 over «, then

N ]

Lemma 2.5. (3, Entry 19(xv), p.315] If P = (a3)'/? and Q = (3/a)'/? and B has
degree 7 over «, then

LR 1 /s po1ss)®

(2.5) <P+P)_<Q+Q>+(P18 P1s) .
Lemma 2.6. [5, Entry 7, p.363].If 8 is of degree 11 over «, then

(26) (@B +{(1-a)(1 - B} +2{16aB(1 - a)(1 - B)}/ =1

Lemma 2.7. [6, 7, Baily’s and Daum formulal.If [¢| < 1, |#| < 1 and |¢| <
min{l, |b|}, then

(2.7) i}m<;>n(aqq) oo( =€ @)oo <b2, >

Lemma 2.8. [3, Entry 12(vii), p.124] We have
(28) X(-%) = 231 — ) 24011247 = (% )
Lemma 2.9. [8, Theorem 3.5, p.107] We have

(2.9) 4G8 45 — 4G 8gl8 —4=0.
Lemma 2.10. [9, Theorem 3.5, p.107] We have
2
1 2
(2.10) G =V2 < +2f>

3. GENERAL THEOREMS ON d(q)

Proposition 3.1. For |¢q| <1, We have

1G(1,1;0:q9) 458 1
31)  d(q) =~ i) s
) 2G(1,4;0;q) 18 g8

q 2q

1+ .
1+ qQ+
1+ 41
1+ 2
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Proof. Putting a = 1,A =1 and b =0 in (1.14), we obtain

G(q,¢:059) 1
3.2 — < 1.
(3:2) GLL0g) 4 2612  ldl
1+ qz+3
1414 qq4
1
+1+...7

where by putting a = ¢, A=¢,b=0and a =1,A=1,b=0 in (1.15), we obtain

o0

_1; n " n(n
(3.3) G(q,¢:0;q) == CLigag ,Q) 4 grnn/f2,
0 (Q7Q)n
and
IR N G £) Ry
(3.4) G(1,1;0;q) == E : q .
= (@

respectively, and also putting a =1, A = ¢,b =0 in (1.15), we get

(3.5) G(1,q;0;q) := Z ((q(.t;;)nqn(wrl)ﬂ'

n=0

Equation (1.2) can be written as

(3.6) 2(—¢;@)n = (~1;@)ng" + (=1 @)n-
n(n2+1)

Multiplying (3.6) by Céq' o we get

—(. n(n —1' m n(n —1' n(n
3.7) o ?7Q)nq% _ ,.q)nq i .,q)nq%.

(¢ @)n (¢:0)n (¢ @)n

Combining the above equations (3.3),(3.4),(3.5) and (3.7), we obtain
(3.8) 2G(1,4;0:9) = G(q,¢:0;:9) + G(1,1;0; ).
Equivalently
G(L.¢;0;q) G(q,4:0:9)

3.9 22— =14 —x.
39 G 10g) G L0

Employing (3.2) in (3.9), we obtain

G(1,4;0;q) 1
3.10 2 =1+ < 1.
(310 G(1,1;0;q) 1+ 2q lal
q2
1+ o
7 +q
1+ /i
1
1 ¥

Taking the reciprocal of (3.10), we obtain
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1G(1,1;0;9) 1
(3.11) - - . gl < 1.
2G(1,¢:0;9) 1+ 12q
1+ -
1+ (’2+ .
1+ 171
q
1
+1+...’

Multiplying (3.11) by ¢'/%, we arrive at the desired result.

O

Lemma 3.1. Let d(q),x(q) and x(—q?) are as defined in (1.6), (1.11), (2.6) and

(1.16) respectively. Then, we have

x(@)x(=¢*) 1
12 = = .
(3.12) d(q) Ve T3alls
Proof. Baily’s formula (2.7) can also be written as
(3.13)

i (a5 )n <% - 1) (% - q) - <% - q"‘l) e (443 ¢%)oo (— a3 @)oo (

ag’. qz)
b
b2 0o

n=0 (¢ @)n (a—bq;q)n (%;q) (_Tq;q>oo

Letting b tends to oo in the above equation (3.13), we obtain

oo

(G;Q)n n(n+1)/2 _ (00 o2 .
(3.14) nzz:o—(q;q)nq (aq; ¢%)oo(—; @)oo

Putting @ = —q in (3.14) and employing (3.5), we get

(3.15) G(1,q:0;59) ==Y %q”("“)” = (=¢% 6" oo (= Q)oo-

n=0

Again, putting a = —1 in (3.14) and employing (3.4), we get

(3.16) G(1,1;0:q) =) %q”(nﬂw = (=4 ") (4 Q) o-

n=0

Employing (3.15) and(3.15) in Proposition (3.17) and simplifying , we obtain

(3.17)
1G(1,1;059) _y/8
dlq) = == 204
@ 2G(1,4;0:q) Sy 2

Using (1.11) and (2.6) in (3.17), we obtain required result (3.12).

:l (_q;qg)oo -1/8 _ 1
2

Theorem 3.1. If z = d(q) and y = d(q?), then

1
1 2y =40t
(3 8) Y —|—4y2 T

(=4 ¢*)oo(a% ¢V )ooq™

1/8
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Proof. Employing the Lemma’s 2.1 and 3.1 we get
(3.19) (—4y* — 1+ 162" (49" + 1 + 16%z") = 0.

By examining the behavior of the above factors near ¢ = 0, we can find a neigh-
borhood about the origin, where the first factor is zero; whereas other factors are
not zero in this neighborhood. By the Identity Theorem second factor vanishes
identically. This completes the proof. O

Theorem 3.2. If z = d(q) and y = d(¢®), then
2 2
1
(3.20) L
Proof. Using the Lemma’s 2.2 and 3.1, we obtain required result (3.20). O
Theorem 3.3. If x = d(q) and y = d(q*), then
1 1
(3.21) <4y +7 4) +6 =2(322% - 1) <4y2 + F) )

Proof. Employing the Lemma’s 2.3 and 3.1, we obtain required result (3.21). O
Theorem 3.4. If v = d(q) and y = d(q°), then

3 Ty 1 9 9
3.22 ol )45 (22 )=(——16 .
(3.22) <y3 13) - (y 1) (l’ng vy )

Proof. Using the Lemma’s 2.4 and 3.1,, we obtain required result (3.22). O
Theorem 3.5. If z = d(q) and y = d(q"), then
(3.23)

(?*y—> = <ﬁ“4””y)3) 7(@2) + o) ) ”8< 5 ).

Proof. Employing the Lemma’s 2.5 and 3.1,, we obtain
(3.24)
(282%y® + Ta%y? + wy + 6427Ty" + 1122°9° + 702%y* + o + 28 + 11225y5)
(282313 4+ 7oy — xy — 64xy" — 11225y° 4 7024y* + o8 + 28 + 112254°)
(26 — 224215 4 4096y 421 — 1792212912 4 140212y* — 1421042 + 448y10 ;10
+ 7028y® — 2245128 + 28255 — Tyt 4+ 1409122t — 1491022 + 227 + 1) = 0.

By examining the behavior of the above factors near ¢ = 0, we can find a neigh-
borhood about the origin, where the second factor is zero; whereas other factors
are not zero in this neighborhood. By the Identity Theorem second factor vanishes

identically. This completes the proof. O
Theorem 3.6. If x = d(q) and y = d(q'!) then
(3.25)

6 2 2 5 5
<T’—6—1>+165<T —”—2>—44(T'—3 ”>+11< +U5>
yo b oz y> o xd Yy
1 1 1 1
=11 ——16z*) — 11 = — 164" ) +11 ——643: +66 ( — —4xy
zt yt x3y3 zy

335
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Proof. Using the Using the Lemma’s 2.6 and 3.1,, we obtain, we obtain

(—3801088220520 — 2938021212 4 222 — 1505428 — 3853824216410

+ 2413592'6¢® + 2413592596 — 58z y? + 15952%y% + 25822210410

+ 4131522y + 6533120218418 + 104857622292 — 90112422y

—901122My?? — 410688218910 — 41068820y*® + 242432220412

+ 242432212920 + 22 1y — 256682y% — 2566825y + 9321842
— 2221992 1+ 932218 — 222210 — 238220* 4+ 9472124 23&L4 20

+ 947212 + 14883c22y6 +148825y%%) (112y° — 442y + 70427y

+ 10242yt + 26427y 44:011 3119522 — ay + 112% — y

+ 1765210 — 11233 — 16552 — 176y'%25 + 112%¢° — 662°y

+ 2% 4 165y12%) (165y 128 176y10 6 —7042%° — 102421y
—26427y" + 442"y — 114522 — 112% + 17645210 — y'2 + 11233

—165y%2* + 2" + 2y + 1125 4 662°y° — 112y” + 4423y =0

(3.26)

By examining the behavior of the above factors near ¢ = 0, we can find a neigh-
borhood about the origin, where the second factor is zero; whereas other factors
are not zero in this neighborhood. By the Identity Theorem second factor vanishes
identically. This completes the proof. O

4. EXpLICIT EVALUATIONS OF d(q)

Theorem 4.1. For any positive real number n, we have

(4.1) d (e*’*ﬁ) = 27126 g4n.

Proof. Setting ¢ = e~ ™V™ in Lemma 3.1 and employing the definition of g,,G,, from
(1.10), we obtain required result (4.1). O
Corollary 4.1.

(4.2) d(e”™) =273/5

Proof. Setting n =1 in above Theorem 4.1 we obtain,

(4.3) d(e™™) =2712G1g4.

Several values of G, and g, are listed in [5], [11], and [13]. For example, from [5,
p. 189,200], we note that G; = 1. Employing Lemma 2.9 with n = 1, we can
find g4 = 2'/8. Substituting the values of G; and g4 in (4.3), we obtain required
result. 0

Theorem 4.2.

1
(44) Ging%ﬁn + ~2 2 2G$Lgin

2
G4n 16n

Proof. Employing the theorem (3.1) and (4.1) we get required result. O
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Corollary 4.2.

1/8
(4.5) (0 24 +17V2 /
. i = ——— ,
gie 16\/§
-1/8
(4.6) (ii) 24+ 172 4
. (2 = Ty .
g1/4 16v/2
Proof. Putting n =1 in the above Theorem 4.2, we obtain
1
(4.7 Giges + —— = 2G4
) 4916 gl 194

We know that the values of [5, p. 189] G1, G4 from the Lemma 2.10 and already
found that the g4 in the above corollary. Substituting these values in the above
equation (4.7), we get gis. We know that gongs/, = 1 with n = 8 from [13], we
obtain g1/4. O
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