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THE GROWTH RATE OF RANDOM BALANCING SEQUENCE

ASIM PATRA*, TAKAO KOMATSU, AND GOPAL KRISHNA PANDA

ABSTRACT. In the present paper, a random sequence is defined by the binary recurrence
Zn+1 = AaZn — qZn—1, where « is a random variable which assumes the values +1 and
—1 with probability 1/2 each where A is a positive integer and ¢ is a non-zero integer.
Furthermore by taking A = 6 and ¢ = 1, the random balancing case has been defined and
the remaining cases for A and ¢ have been further tackled. Apart from that an elementary
proof regarding the bounds of the expected value for the absolute value of the n-th term in
the random balancing sequence has been provided. Moreover, the bounds for the variance of
the absolute value of the n-th term has also been obtained. Furthermore, the growth rate of
the random sequence has been graphically depicted.
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1. INTRODUCTION

The binary recurrence of the type z,+1 = Az, — qx,—1 has been studied by several re-
searchers (e.g., [4]). In this paper, we tackle the random case of such sequences. In other
words, we consider the three term random binary sequence of the form

Zn+1 = AaZn - anfh (11)

where A is a positive integer and ¢ is a non-zero integer and

o= 1, wztﬁp— 2
=1, with p= 3

where p stands for probability and initial values Zy = 0, Z; = 1. Furthermore, in matrix form,

the proposed random sequence can be given by

Zn—l o 0 1 Zn—2
Zn | |mq EA| |Zna]’
where one of the two matrices

0 1 0 1
= {—q A}’ = {—q —A}

is picked independently with probability 1/2 at each step. Furthermore, the balancing number
B,, is defined by the binary recurrence relation By, 1 = 6B,, — B,_1([1], [7]) with initial values
By =0 and B; = 1, and which is expressed in the form of matrices in [8]. So, by taking A = 6
and ¢ = 1, we define the random balancing sequence Z,, as

6Zn — Zn-1, with p= ;

—6Zy — Zp 1, with p =1, (1.2)

Zn+l =6aZ, — Zp_1= {

with initial values Zy = 0, Z; = 1 and « is a random variable as in (1.1). The sequence (1.2)
can be graphically shown as
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In 1999, Viswanath [9] proposed the concept of random Fibonacci sequence and proved that

the sequence grows exponentially at the rate of a named constant which he called Vishwanath
constant. His proof involved certain complex floating point computer calculations. Moreover,
Embree and Trefethen [2] provided numerical evidence for some general random sequence for
the dividing line between sequences which grow and those which decay. In [3], Furstenberg
studied regarding the noncommuting random products. Furthermore, in [5], Makover et al.
gave a basic proof regarding the growth rate of random Fibonacci sequences.
Panda and Rout [6] studied a class of binary recurrences of the form z,1; = Bz, — z,_1 for
B = 6 with initial terms zp = 0,21 = 1. The sequence {z,}32; coincides with the natural
numbers when B = 2 and represents the class of even indexed Fibonacci numbers when B = 3.
In this research article, we define the random balancing sequence. we evaluate the bounds of
the expected value for the absolute value of the n-th term in the proposed random sequence
via an elementary technique. Furthermore, we also obtain the bounds on the variance for z,.
Apart from this, we obtain the approximate value of A below which the proposed random
sequences decay and also provide a graph to validate the arguments and theorems.

2. BOUNDS OF EXPECTED VALUE OF n‘" LABEL OF THE PROPOSED SEQUENCE

In this section we consider the sequence

_ 1,
Zpir = { AZp — qZn_1, with p 35 (2.1)

_AZn - an—17 with p= %7

where A is a positive integer. Here the set of possible random sequences has been considered
as a binary tree structure where each leaf Z; have two branches leading to the child leaves
|AZ; — qZi—1| and | — AZ; — qZ;—1]. Such a tree lists the 2" such sequences of length n.
Furthermore, let the expected value for the absolute value of the n-th term in the random
sequence (2.1) is taken as E(|Z,]).

In general, the binary tree has been constructed beginning with an element a at label n = 0
which give rise to two children b; and by at label n = 1 which subsequently have four grand-
children in the subsequent labels following the sequence as in (2.1) and so on. The basic set
in Fig 1 displays the binary random recurrence in (2.1). The detailed setup of the binary tree
has been depicted in the following figure.
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by ba

/N /

c1 = |Aby — qa dy = Aby + qa co = |Abs — qal dy = Aby + qa

|Acy — gby| Aci + gby |Ady — gbi| Ady + qby |Aca — gqba| Aca + gba |Ada — qba| Ada + gba

Fig. 1. Binary tree for the seq. (2.1)

2.1. Expectation bounds for the random sequence in general. By referring the binary
tree structure in Fig 1, the sum of the row in label 3 of the binary tree has been utilized to
find the upper and lower bounds of the expected value E(|Z,|)"/" of the absolute value of the
n-th term in the proposed random sequence in Eq. (2.1).

Here we assume that ¢ is a positive integer and since the calculations for the negative assump-
tions of ¢ is similar, it is omitted. Furthermore, let the sum of the row values in the label 3
be denoted by p. Then,

p=[Ac1 — qbi| + Acy + qb1 + |Ady — gbi| + Ady + qby + [Aca — by
+ Aca + qba + |Ady — gba| + Adz + gba,
which can be simplified as
w=2q(b1 + bo) + A(c1 + co + dy + da) + |Acy — qbr| + |Ady — gby|
+ |Acg — qba| + |Ads — gba|.
Now assuming that Ab; > ga and Abs > ga, we obtain

1 =2q(by + bo) + A(c1 + o + dy + do) + | A%b1 — Aga — gby| + |A%b1 + Aga — gby|
+ |A%by — Aqa — qba| + | A%by + Aqa — gbs|.
which can be rewritten as
w=2gby + A(cy + dp) + |A%b) — Aqa — qbi| + \A2b1 + Aga — gb1| + 2qbs + A(ca + da)
+ |A%by — Aga — gbo| + |A%by + Aga — gbs|.
Furthermore, assuming

1 = 2gb1 + A(cr + dr) + |A%by — Aga — gbi| + |A%by + Aga — gb|

and
to = 2qbs + A(co + da) + |A2b2 — Aga — gbs| + |A2b2 + Aga — qbs|,
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we have

= p1 + pa. (2.2)
So for p1, we need six conditions.
Case 1. Ab; < qa, Aqa+ A%by > gby. Then puy = A(c1 +d1) +2qby +2A%b;, provided A% < %.
Case 2. Ab; < qa, A%b; > Aqa + qby. Then py = A(cy + dy) + 2qby + 24%0;.
Case 3. Ab; < qa, Aqa+ A?b; < gby. Then py = A(cy + dy) + 2qby + 24%0,.
Case 4. Ab; > qa, Aga+ A?by > gby. Then py = A(cy +dy) + 2qby + 242Dy, provided A% > 4
Case 5. Ab; > qa, Aqa + A%by < gby. Then p1 = A(cy + dy) + 4qby — 2Aa, provided A < q.
Case 6. Ab; > qa, Aqa > A%by + qby. Then p; = Acy + dy) + 2gb1 + 2Aa, provided A > q.
Remark: Since ps is just a replication of iy i.e. symmetrical where b; is replaced by be, hence
the similar conditions for uy are omitted.

Hence substituting the values of p; and pg in (2.2), we obtain p for the six cases as
A(er + ea +dy + do) + (242 + 29) (b1 + ba),
Aler + ca + dy + da) + (24% + 2¢) (b1 + by),
A(er + eo + di + do) + (242 + 2¢) (by + bo),
Aler + ea + dy + da) + (24% +2)(by + by),
A(er + o+ dy + da) +2Aa + 2q(by + ba),

and

Acr + co +dy + do) — 2Aa + 2q(by + ba).

Now, if we denote the sum of row values in label n by S[n|, then we get the six recurrence
relations corresponding to each of the above sums as

S[n] = AS[n — 1] + (242 +2)S[n — 2], ccoe..... (Case 1, Case 2, Case 3, Case 4),
S[n] = AS[n — 1] +2¢S[n — 2] + 2AS[n — 3], ......... (Case 5)
and
S[n] = AS[n — 1] +2¢S[n — 2] — 2AS[n — 3], ......... (Case 6).

These recurrence relations can be solved in terms of cubic and quadratic equations respectively.

2.2. Bounds for the Expectation of random balancing sequence. Let us assume A =6
and ¢ = 1 in (1.1) in which the random sequence in Eq. (1.1) takes the form

Zn+1 - 6(VZTL - anla (23)

which we call as the random balancing sequence where « takes the value 1 with probability %
and value -1 with probability % In this case, starting from initial value a and its two branches
by and by which proceeds in the subsequent labels as in the case of Fig 1 but following (2.3).
So, the binary tree takes the following form.
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by b
¢y = |6b1 — al dy = 6b1 +a co = |6ba — al do = 6ba + a
[6¢1 — bi|  6cy + by |6dy —by|  6dy + by [6c2 — ba| 6o + ba [6ds — ba|  6da + bo

Fig. 2. Binary tree for the seq. (2.3)

Similar to the previous case, the sum of the 3-rd row is denoted by p. Furthermore, the
sum of third row of the binary tree in Fig. 2 is utilized to find the upper and lower bounds of
E(|Zn|)Y™. So, we have

= 6c1 — b1| + 6¢1 + b1 + |6d1 — b1| + 6d1 + b1 + |6¢ca — ba| + 6c2 + ba
+ |6da — ba| + 6da + bo
which can be simplified as
1="T72by + 6(c1 + ca + di + da) + 37bg + 6a + |6|6by — a| — bal. (2.4)

Now assuming that 6by > a, we get
|6|6b2 — a| — be| = |35by — 6a| = 35be — 6a.

Now the bounds of 3565 — 6a can be written as
35by — Ta < 35by — 6a < 35by — ba,
which provides a bound for (2.4) as
T72b1+6(c1+co+d1+d2)+37ba+6a+35b2—Ta < p < 72b1+6(c1+ca+di1+d2)+37ba+6a+35b2—5a,
which on further simplification gives
72(by +b2) +6(c1 +ca+di +da) —a < pu < 72(by + b2) +6(c1 + c2 +di + da) + a.

Now, if we denote the sum of the n-th row by S[n], then the lower bound of x can be written
in the form of a recurrence relation as

Sin] =6S[n — 1] + 725[n — 2] — S[n — 3],

which reduces to the cubic equation 23 — 622 — 72z + 1 = 0, which renders the value approx-
imately as x = 11.99537. Similarly the upper bound of p, can be written as a recurrence
relation

Sn] = 6S[n — 1] + 725[n — 2] + S[n — 3],
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which reduces to the cubic equation 23 — 622 — 722 — 1 = 0, which renders the value approxi-
mately as x = 12.00463.

2.3. Generalization of the bounds of Expectation.

[[Cases | Recurrence relations [ Equations ]
n=3 S[n] = 6S[n — 1] + 72S[n — 2] + S[n — 3] 2? — 62 —T2x £ 1 =0,
n =4 S[n] = 6S[n — 1] + 2S[n — 2] + 840S[n — 3] + S[n — 4] 27 — 6x° — 227 — 840z + 1 =0

n=>5 | S[n]=6S[n— 1]+ 2S[n — 2] + 10080S[n — 4] + S[n — 5] 2” — 627 — 22° — 10080z + 1 =0
n =6 | S[n]=6S[n— 1]+ 2S[n — 2] + 120960S[n — 5] + S[n — 6] | 2° — 62° — 22" — 120960z + 1 = 0

Cases | Lower bound of E(|z,|)'/™ | Upper bound of E(Jz,[)'/™ |

n=3 T —5.00768 - T = 6.00231 -
n=4 T =5.0998 - T =6.00014 -
n=>5 T =5.0999 T =6.0000 -
=06 7 = 5.99999 - 7 =6.00000 -

Table 1. Table for the bounds of Expectation

For n = 7,8,9, ..., applying the similar procedure, we get the bounds for expectation of the
respective sequences. Now the growth rate of S[n] will be again given by the real roots divided
by 2 and proceeding in a similar way, we get the theorem as

Theorem 2.1. For any positive integer n,
5.99- - < (E(|Zn])Y" < 6.000-- - .
In the succeeding section, we find the bounds of the variance and state it as a theorem as

Theorem 2.2. For any positive integer n,
(12(]Zn])V/™ = 36 + 10V/13,

lim

n—oo
where ps(|Zy|) is the variance of the sequence (Z,) in (2.3).
Proof. We begin the proof by denoting the sum of squares of a given row by V[n] and consid-
ering the same Fig 2. By the definition of variance say ma, we have my = my — (m})?, where
my = B(|Z|?) and m} = E(|Z,|). Now for the case of my, we take the sum of the squares of
the values in the row at label 3 as

|6b; — a|? + (6by + a)? + |6by — a|® + (6by + a)? = 4a® + 72(b? + b3), (2.5)

which can be clearly seen as the sum of four times the square of first row plus seventy two
times the sum of squares of second row. So (2.5) can be expressed in the form of a recurrence
relation as

Vin] =72Vin— 1] +4V[n — 2],
from which we get the quadratic equation

y? — T2y — 4 =0,

which provides the solution in the form of a growth factor for m'2 as y = 36 + 10v/13. Now

for mll, as already calculated, in the previous case and we found that as lz’m,,_><x,(,u/1)2 = 0.
Hence we obtain the desired result.

Note: From the conditions succeeding (2.2) and from the subsequent results, it has been
very much clear that both the successors of a will satisfy one set of conditions, for which the
square of growth factor A% must be less than ¢/2, which implies that A < %. So, if we let

_ 1
q—l,thenA<ﬁ.
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3. ADDITIONAL REMARK

For A =17,8,9,... and ¢ = 2,3,4,... and so on, we follow the similar procedure to obtain
the results and hence are omitted here.

4. GRAPH

In this section the graphical representation have been depicted regarding possible growth
and decay of the random balancing sequence. The third and sixth cases succeeding (2.2) have
been graphically depicted taking ¢ = 1 in the following figure.

05 ——

\

FIGURE 1. Growth rate for the Random balancing sequence

CONCLUSION

In this paper, we have studied a random sequence {Z,} defined by the binary recurrence
In+1 = AaZy, — qZ, 1, where a = £1, to evaluate the bounds of the expected value for the
absolute value of the n-th term. Exact bounds can be calculated in the case of a random
balancing sequence as an example where A is replaced by 6 and ¢ is replaced by 1. Following
the similar technique, other cases are also obtained.
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