FURTHER RESULTS ON MEAN CORDIAL LABELING FOR THREE STAR GRAPH

V. MAHESHWARI¹, L. VINOTHKUMAR², AND V. BALAJI³

ABSTRACT. A vertex labeling $h:V(G)\longrightarrow\{0,1,2\}$ is said to be a mean cordial labeling of G if it induces an edge labeling h^* given by $\left\lceil\frac{h\left(r\right)+h\left(s\right)}{2}\right\rceil$ such that $|v_h\left(b\right)-v_h\left(p\right)|\leq 1$ and $|e_h\left(b\right)-e_h\left(p\right)|\leq 1$, $b,p\in\{0,1,2\}$, where $v_h\left(r\right)$ and $e_h\left(r\right)$ denote the number of vertices and edges respectively labeled with $r\left(r=0,1,2\right)$. A graph G is said to be a mean cordial graph if it admits a mean cordial labeling. In this paper we proved that three star graph is a mean cordial labeling. If r=s< t, the three star graph $K_{1,r}\wedge K_{1,s}\wedge K_{1,t}$ is a mean cordial graph if and only if $|s-t|\leq 3r+6$ for $3r+s-7\leq t\leq 3r+s+6$; $r=1,2,3,\cdots$ and $s=1,2,3,\cdots$.

2010 Mathematics Subject Classification. 05C78.

KEYWORDS AND PHRASES. Wedge, Three star graph and Mean cordial labeling.

1. Introduction

All graphs G=(V(G),E(G)) considered here are simple, connected, finite, undirected with no loops and multiple edges [2]. In [4] Raja Ponraj et.al., introduced mean cordial labeling and they investigated the behavior for some graphs. R. Ponraj and S. Sathish narayanan further investigated mean cordial labeling behavior of prism, $K_2 + K_m$, $K_n + 2K_2$, book B_m and some snake graphs [5]. Moreover, Albert William et al., [1] studied mean cordial labeling behavior of several graphs like banana tree, caterpillar, subdivision of ladder, $S(B_n, n)$. In [6] and [7], Balaji et al proved that the two star is a mean cordial graph if and only if $|2g - h| \le 4$ for $g \le h$ and also they have proved that three star is a mean cordial graph if and only if $|\beta_2 - \beta_3| \le 3\beta_1 - 7$ for $3\beta_1 + \beta_2 - 7 \le \beta_3 \le 3\beta_1 + \beta_2 + 7$ if $\beta_1 < \beta_2 < \beta_3$. Then the symbol $\lfloor x \rfloor$ for the largest integer less than or equal to x and $\lceil x \rceil$ stands for the smallest integer greater than or equal to x. A general reference for ideas of graph theory can be seen from [3].

2. Preliminaries

Definition 2.1. Wedge

When a disconnected graph's are connected by an edge in order to form a single connected graph is known as wedge. It is denoted by the symbol \wedge , $\omega(G\wedge) < \omega(G)$.

Definition 2.2. Mean cordial graph

A vertex labeling $h:V\left(G\right)\longrightarrow\left\{ 0,1,2\right\}$ is said to be a mean cordial labeling of G if it induces an edge labeling h^{*} given by $\left\lceil \frac{h\left(r\right)+h\left(s\right)}{2}\right\rceil$ such that $\left|v_{h}\left(b\right)-v_{h}\left(p\right)\right|\leq1$ and $\left|e_{h}\left(b\right)-e_{h}\left(p\right)\right|\leq1$, $b,p\in\left\{ 0,1,2\right\}$, where $v_{h}\left(r\right)$ and $e_{h}\left(r\right)$ denote the number

of vertices and edges respectively labeled with r(r = 0, 1, 2). A graph G is said to be a mean cordial graph if it admits a mean cordial labeling.

Note: In this paper, we have been specifically discussing about the star graph with wedge.

Definition 2.3. Star Graph

A graph of form $K_{1,n}$ is said to be star graph.

Definition 2.4. Two Star Graph

Two star graph is a graph obtained by joining the wedge to two copies of star $K_{1,n}$ by an edge.

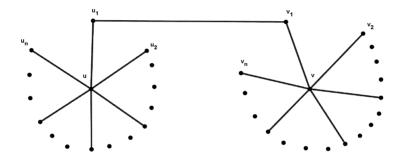


FIGURE 1. General representation of two star graph

Definition 2.5. Three Star Graph

Three star graph is a graph obtained by joining the wedge to three copies of star $K_{1,n}$ by an edge.

3. Results

Lemma 3.1. [7] The two star $K_{1,g} \wedge K_{1,h}$ is mean cordial graph if and only if $|2g - h| \le 4$ for $g \le h$ and g = 1, 2, 3, .

Lemma 3.2. [6] If $\beta_1 < \beta_2 < \beta_3$, the three star graph $K_{1,\beta_1} \wedge K_{1,\beta_2} \wedge K_{1,\beta_3}$ is a mean cordial graph if and only if $|\beta_2 - \beta_3| \le 3\beta_1 + 7$ for $3\beta_1 + \beta_2 - 7 \le \beta_3 \le 3\beta_1 + \beta_2 + 7$; $\beta_1 = 1, 2, ...$ and $\beta_2 = 2, 3, ...$

Theorem 3.3. If r = s < t, the three star graph $K_{1,r} \wedge K_{1,s} \wedge K_{1,t}$ is a mean cordial graph if and only if $|s-t| \le 3r+6$ for $3r+s-7 \le t \le 3r+s+6$; $r=1,2,3,\cdots$ and $s=1,2,3,\cdots$.

Proof. Let the graph $G = K_{1,r} \wedge K_{1,s} \wedge K_{1,t}$.

Let V(G) be the node set of G and E(G) be the link set of G. Then G is given by,

$$V(G) = \{u, q, w\} \cup \{u_{\psi} : 1 \le \psi \le r\} \cup \{q_{\psi} : 1 \le \psi \le s\} \cup \{w_{\psi} : 1 \le \psi \le t\}$$

$$E(G) = \{uu_{\psi} : 1 \leq \psi \leq r\} \cup \{qq_{\psi} : 1 \leq \psi \leq s\} \cup \{ww_{\psi} : 1 \leq \psi \leq t\}$$

$$\cup \{u_{\psi}q_{\psi} \text{ for any } \psi, u_{\psi} : 0 \leq \psi \leq r \text{ and } q_{\psi} : 0 \leq \psi \leq s\}$$

$$\cup \{q_{\psi}w_{\psi} \text{ for any } \psi, q_{\psi} : 0 \leq \psi \leq s \text{ and } w_{\psi} : 0 \leq \psi \leq t\}.$$

Then G has r + s + t + 3 nodes and r + s + t + 2 links.

To prove that G is a mean cordial graph for all r = s < t; $h: V(G) \to \{0, 1, 2\}$ and $h^*: E(G) \to \{0, 1, 2\}$.

Then, we shall consider the following cases:

Case (i): t = 3r + s + 6

Consider the graph $G = K_{1,r} \wedge K_{1,s} \wedge K_{1,t}$ where r = s < t.

Defining the vertex labeling as follows:

$$h(u) = 0; h(q) = 0; h(w) = 1$$

$$h(u_{\psi}) = 0 \text{ for } 1 \leq \psi \leq r$$

$$h(q_{\psi}) = 0 \text{ for } 1 \leq \psi \leq s$$

$$h(w_{2\psi-1}) = 1 \text{ for } 1 \le \psi \le \frac{t}{2} - 1$$

$$h(w_{2\psi}) = 2 \text{ for } 1 \le \psi \le \frac{t}{2}$$

$$h(w_{n\psi}) = 0.$$

Then, we obtain the link label as follows:

$$uu_{\psi} = 0 \text{ for } 1 \leq \psi \leq r; \ qq_{\psi} = 0 \text{ for } 1 \leq \psi \leq s; \ ww_{2\psi-1} = 1 \text{ for } 1 \leq \psi \leq \frac{t}{2} - 1; \ ww_{2\psi} = 2 \text{ for } 1 \leq \psi \leq \frac{t}{2}; \ ww_{n\psi} = 1.$$

The wedge labeling of $u_{\psi}q_{\psi}$ is 0 for any ψ .

The wedge labeling of $q_1 w_{n\psi}$ is 0.

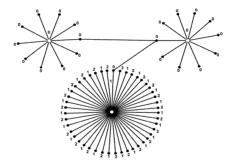


FIGURE 2. t = 3r + s + 6 when r = 10, s = 10, then <math>t = 46

Case (ii): t = 3r + s + 5

Consider the graph $G = K_{1,r} \wedge K_{1,s} \wedge K_{1,t}$ where r = s < t.

Defining the vertex labeling as follows:

$$h(u) = 0; h(q) = 0; h(w) = 1$$

$$h(u_{\psi}) = 0 \text{ for } 1 \leq \psi \leq r$$

$$h(q_{\psi}) = 0 \text{ for } 1 \le \psi \le s$$

$$h(w_{2\psi-1}) = 1 \text{ for } 1 \le \psi \le \left\lfloor \frac{t}{2} \right\rfloor$$

$$h(w_{2\psi}) = 2 \text{ for } 1 \le \psi \le \left\lfloor \frac{t}{2} \right\rfloor$$

$$h(w_{2d}) = 2 \text{ for } 1 < \psi < |\frac{t}{2}|$$

$$h(w_{n\psi}) = 0.$$

Then, we obtain the link label as follows:

$$uu_{\psi} = 0 \text{ for } 1 \le \psi \le r; \ qq_{\psi} = 0 \text{ for } 1 \le \psi \le s; \ ww_{2\psi-1} = 1 \text{ for } 1 \le \psi \le \left\lfloor \frac{t}{2} \right\rfloor;$$

 $ww_{2\psi} = 2 \text{ for } 1 \leq \psi \leq \left| \frac{t}{2} \right|; ww_{n\psi} = 1.$

The wedge labeling of $u_{\psi}q_{\psi}$ is 0 for any ψ .

The wedge labeling of $w_{n\psi}q_1$ is 0.

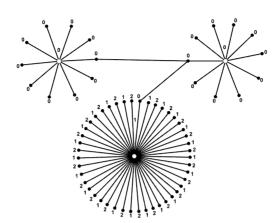


FIGURE 3. t = 3r + s + 5 when r = 10, s = 10, then <math>t = 45

Case (iii): t = 3r + s + 4

Consider the graph $G = K_{1,r} \wedge K_{1,s} \wedge K_{1,t}$ where r = s < t.

Defining the vertex labeling as follows:

h(u) = 0; h(q) = 0; h(w) = 1

 $h(u_{\psi}) = 0 \text{ for } 1 \le \psi \le r$

 $h(q_{\psi}) = 0 \text{ for } 1 \le \psi \le s$

 $h(w_{2\psi-1}) = 1 \text{ for } 1 \le \psi \le \frac{t}{2} - 1$

 $h(w_{2\psi}) = 2 \text{ for } 1 \le \psi \le \frac{t}{2}$

 $h(w_{n\psi}) = 0.$

Then, we obtain the link label as follows:

 $uu_{\psi} = 0$ for $1 \le \psi \le r$; $qq_{\psi} = 0$ for $1 \le \psi \le s$; $ww_{2\psi-1} = 1$ for $1 \le \psi \le \frac{t}{2} - 1$; $ww_{2\psi} = 2$ for $1 \le \psi \le \frac{t}{2}$; $ww_{n\psi} = 1$.

The wedge labeling of $u_{\psi}q_{\psi}$ is 0 for any ψ .

The wedge labeling of $q_1 w_{n\psi}$ is 0.

For Example: Refer Figure 4.

Case (iv): t = 3r + s + 3

Consider the graph $G = K_{1,r} \wedge K_{1,s} \wedge K_{1,t}$ where r = s < t.

Defining the vertex labeling as follows:

h(u) = 2; h(q) = 2; h(w) = 0

 $h(u_{\psi}) = 2 \text{ for } 1 \leq \psi \leq r$

 $h(q_{\psi}) = 2 \text{ for } 1 \leq \psi \leq s$

 $h(w_{2\psi-1}) = 1 \text{ for } 1 \leq \psi \leq \left\lceil \frac{t}{2} \right\rceil$

 $h(w_{2\psi}) = 0$ for $1 \le \psi \le \left| \frac{t}{2} \right|$

Then, we obtain the link label as follows:

 $uu_{\psi} = 2$ for $1 \leq \psi \leq r$; $qq_{\psi} = 2$ for $1 \leq \psi \leq s$; $ww_{2\psi-1} = 1$ for $1 \leq \psi \leq \left\lceil \frac{t}{2} \right\rceil$; $ww_{2\psi} = 0$ for $1 \leq \psi \leq \left\lceil \frac{t}{2} \right\rceil$.

The wedge labeling of $u_{\psi}q_{\psi}$ is 2 for any ψ .

The wedge labeling of q_1w_1 is 2.

Case (v): t = 3r + s + 2

Consider the graph $G = K_{1,r} \wedge K_{1,s} \wedge K_{1,t}$ where r = s < t.

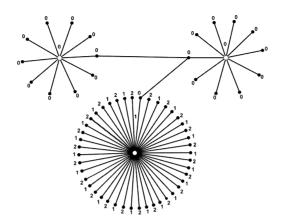


FIGURE 4. t = 3r + s + 4 when r = 10, s = 10, then t = 44

Defining the vertex labeling as follows:

$$h(u) = 2$$
; $h(q) = 2$; $h(w) = 0$

$$h(u_{\psi}) = 2 \text{ for } 1 \le \psi \le r$$

$$h(q_{\psi}) = 2 \text{ for } 1 \le \psi \le s$$

$$h(w_{2\psi-1}) = 1 \text{ for } 1 \le \psi \le \frac{t}{2}$$

$$h(w_{2\psi}) = 0$$
 for $1 \le \psi \le \frac{t}{2}$

Then, we obtain the link label as follows:

$$uu_{\psi} = 2$$
 for $1 \le \psi \le r$; $qq_{\psi} = 2$ for $1 \le \psi \le s$; $ww_{2\psi-1} = 1$ for $1 \le \psi \le \frac{t}{2}$; $ww_{2\psi} = 0$ for $1 \le \psi \le \frac{t}{2}$.

The wedge labeling of $u_{\psi}q_{\psi}$ is 2 for any ψ .

The wedge labeling of q_1w_1 is 2.

Case (vi):
$$t = 3r + s + 1$$

Consider the graph $G = K_{1,r} \wedge K_{1,s} \wedge K_{1,t}$ where r = s < t.

Defining the vertex labeling as follows:

$$h(u) = 2$$
; $h(q) = 2$; $h(w) = 0$

$$h(u_{\psi}) = 2 \text{ for } 1 \leq \psi \leq r$$

$$h(q_{\psi}) = 2 \text{ for } 1 \leq \psi \leq s - 1$$

$$h(q_{n\psi}) = 1$$

$$h(w_{2\psi-1}) = 0 \text{ for } 1 \le \psi \le \left\lceil \frac{t}{2} \right\rceil$$

$$h(w_{2\psi}) = 1 \text{ for } 1 \le \psi \le \left| \frac{t}{2} \right|$$

Then, we obtain the link label as follows:

$$uu_{\psi} = 2 \text{ for } 1 \leq \psi \leq r; \ qq_{\psi} = 2 \text{ for } 1 \leq \psi \leq s-1; \ qq_{n\psi} = 2; \ ww_{2\psi-1} = 0 \text{ for } 1 \leq \psi \leq \left\lceil \frac{t}{2} \right\rceil; \ ww_{2\psi} = 1 \text{ for } 1 \leq \psi \leq \left\lceil \frac{t}{2} \right\rceil.$$

The wedge labeling of $u_{\psi}q_{\psi}$ is 2 for any ψ .

The wedge labeling of $q_{n\psi}w_2$ is 1.

Case (vii): t = 3r + s

Consider the graph $G = K_{1,r} \wedge K_{1,s} \wedge K_{1,t}$ where r = s < t.

Defining the vertex labeling as follows:

$$h(u) = 2$$
; $h(q) = 2$; $h(w) = 0$

$$h(u_{\psi}) = 2 \text{ for } 1 \leq \psi \leq r$$

$$h(q_{\psi}) = 2 \text{ for } 1 \le \psi \le s - 1$$

$$\begin{array}{l} h(q_{n\psi})=1\\ h(w_{2\psi-1})=1 \text{ for } 1\leq\psi\leq\frac{t}{2}\\ h(w_{2\psi})=0 \text{ for } 1\leq\psi\leq\frac{t}{2}\\ \\ Then, \text{ we obtain the link label as follows:}\\ \\ uw_{\psi}=2 \text{ for } 1\leq\psi\leq r; \ qq_{\psi}=2 \text{ for } 1\leq\psi\leq s-1; \ qq_{n\psi}=1; \ ww_{2\psi-1}=1 \text{ for } 1\leq\psi\leq\frac{t}{2}; \ ww_{2\psi}=0 \text{ for } 1\leq\psi\leq\frac{t}{2}.\\ \\ The wedge labeling of \ u_{\psi}\psi_i \text{ is } 1.\\ \\ \textbf{Case (viii):} \ t=3r+s-1\\ \\ \textbf{Consider the graph } G=K_{1,r}\wedge K_{1,s}\wedge K_{1,t} \text{ where } r=s< t.\\ \\ \textbf{Defining the vertex labeling as follows:}\\ \\ h(u)=0; h(q)=0; h(w)=1\\ \\ h(u_{\psi})=0 \text{ for } 1\leq\psi\leq r\\ \\ h(q_{\psi})=2 \text{ for } 1\leq\psi\leq s-1\\ \\ h(q_{\psi})=1 \text{ for } 1\leq\psi\leq\left[\frac{t}{2}\right]\\ \\ h(w_{2\psi})=1 \text{ for } 1\leq\psi\leq\left[\frac{t}{2}\right]\\ \\ h(w_{2\psi})=1 \text{ for } 1\leq\psi\leq\left[\frac{t}{2}\right].\\ \\ Then, \text{ we obtain the link label as follows:}\\ \\ uu_{\psi}=0 \text{ for } 1\leq\psi\leq\left[\frac{t}{2}\right].\\ \\ The \text{ wedge labeling of } u_{\psi}q_1 \text{ is } 0.\\ \\ The \text{ wedge labeling of } q_{\eta\psi}w_2 \text{ is } 1.\\ \\ \textbf{Case (ix): } t=3r+s-2\\ \\ \textbf{Consider the graph } G=K_{1,r}\wedge K_{1,s}\wedge K_{1,t} \text{ where } r=s< t.\\ \\ \textbf{Defining the vertex labeling as follows:}\\ \\ h(u)=2; h(q)=2; h(w)=0\\ \\ h(u_{\psi})=2 \text{ for } 1\leq\psi\leq r-1\\ \\ h(u_{n\psi})=1\\ \\ h(q_{\psi})=2 \text{ for } 1\leq\psi\leq r-1\\ \\ h(u_{n\psi})=0 \text{ for } 1\leq\psi\leq\frac{t}{2}\\ \\ \\ \text{Then, we obtain the link label as follows:}\\ \\ uw_{2\psi-1}=1 \text{ for } 1\leq\psi\leq\frac{t}{2}\\ \\ \\ \text{Then, we obtain the link label as follows:}\\ \\ uv_{2\psi-1}=1 \text{ for } 1\leq\psi\leq\frac{t}{2}\\ \\ \\ \text{Then, we obtain the link label as follows:}\\ \\ uv_{2\psi-1}=1 \text{ for } 1\leq\psi\leq\frac{t}{2}\\ \\ \text{Then, we obtain the link label as follows:}\\ \\ uv_{2\psi-1}=1 \text{ for } 1\leq\psi\leq\frac{t}{2}\\ \\ \text{Then, we obtain the link label as follows:}\\ \\ uv_{2\psi-1}=1 \text{ for } 1\leq\psi\leq\frac{t}{2}\\ \\ \text{Then, we obtain the link label as follows:}\\ \\ uv_{2\psi-1}=1 \text{ for } 1\leq\psi\leq\frac{t}{2}\\ \\ \text{Then, we obtain the link label as follows:}\\ \\ uv_{2\psi-1}=1 \text{ for } 1\leq\psi\leq\frac{t}{2}\\ \\ \text{Then, we obtain the link label as follows:}\\ \\ uv_{2\psi-1}=1 \text{ for } 1\leq\psi\leq\frac{t}{2}\\ \\ \text{Then, we obtain the link label as follows:}\\ \\ uv_{2\psi-1}=1 \text{ for } 1\leq\psi\leq\frac{t}{2}\\ \\ \text{Then, we obtain the link label as follows:}\\ \\ uv_{2\psi-1}=1 \text{ for } 1\leq\psi\leq\frac{t}{2}\\ \\ \text{Then, we obtain the li$$

 $h(w_{2\psi-1}) = 2 \text{ for } 1 \le \psi \le \lceil \frac{t}{2} \rceil$ $h(w_{2\psi}) = 1 \text{ for } 1 \le \psi \le \lceil \frac{t}{2} \rceil$

```
Then, we obtain the link label as follows:
```

$$uu_{\psi} = 0 \text{ for } 1 \leq \psi \leq r - 1; \ uu_{n\psi} = 1; \ qq_{\psi} = 0 \text{ for } 1 \leq \psi \leq s - 1; \ qq_{n\psi} = 1;$$

 $ww_{2\psi-1} = 2 \text{ for } 1 \leq \psi \leq \left\lceil \frac{t}{2} \right\rceil; \ ww_{2\psi} = 1 \text{ for } 1 \leq \psi \leq \left\lceil \frac{t}{2} \right\rceil.$

The wedge labeling of u_1q_1 is 0.

The wedge labeling of $q_{n\psi}w_2$ is 2.

Case (xi): t = 3r + s - 4

Consider the graph $G = K_{1,r} \wedge K_{1,s} \wedge K_{1,t}$ where r = s < t.

Defining the vertex labeling as follows:

$$h(u) = 2$$
; $h(q) = 2$; $h(w) = 0$

$$h(u_{\psi}) = 2 \text{ for } 1 \le \psi \le r - 1$$

$$h(u_{n\psi}) = 1$$

$$h(q_{\psi}) = 2 \text{ for } 1 \le \psi \le s - 1$$

$$h(q_{n\psi}) = 0$$

$$h(w_{2\psi-1}) = 1 \text{ for } 1 \le \psi \le \frac{t}{2}$$

$$h(w_{2\psi}) = 0$$
 for $1 \le \psi \le \frac{t}{2}$

Then, we obtain the link label as follows:

$$uu_{\psi} = 2 \text{ for } 1 \leq \psi \leq r - 1; \ uu_{n\psi} = 2; \ qq_{\psi} = 2 \text{ for } 1 \leq \psi \leq s - 1; \ qq_{n\psi} = 1; \ ww_{2\psi-1} = 1 \text{ for } 1 \leq \psi \leq \frac{t}{2}; \ ww_{2\psi} = 0 \text{ for } 1 \leq \psi \leq \frac{t}{2}.$$

The wedge labeling of u_1q_1 is 2.

The wedge labeling of $q_{n\psi}w_2$ is 0.

Case (xii):
$$t = 3r + s - 5$$

Consider the graph $G = K_{1,r} \wedge K_{1,s} \wedge K_{1,t}$ where r = s < t.

Defining the vertex labeling as follows:

$$h(u) = 0$$
; $h(q) = 0$; $h(w) = 1$

$$h(u_{\psi}) = 0$$
 for $1 \le \psi \le r - 1$

$$h(u_{n\psi})=2$$

$$h(q_{\psi}) = 0$$
 for $1 \le \psi \le s - 1$

$$h(q_{n\psi}) = 1$$

$$h(w_{2\psi-1}) = 2 \text{ for } 1 \le \psi \le \left\lceil \frac{t}{2} \right\rceil$$

$$h(w_{2\psi}) = 1 \text{ for } 1 \le \psi \le \left\lfloor \frac{t}{2} \right\rfloor$$

Then, we obtain the link label as follows:

$$uu_{\psi} = 0 \text{ for } 1 \leq \psi \leq r - 1; \ uu_{n\psi} = 1; \ qq_{\psi} = 0 \text{ for } 1 \leq \psi \leq s - 1; \ qq_{n\psi} = 1;$$

 $ww_{2\psi-1} = 2 \text{ for } 1 \leq \psi \leq \left\lceil \frac{t}{2} \right\rceil; \ ww_{2\psi} = 1 \text{ for } 1 \leq \psi \leq \left\lfloor \frac{t}{2} \right\rfloor.$

The wedge labeling of u_1q_1 is 0.

The wedge labeling of $q_{n\psi}w_1$ is 2.

Case (xiii):
$$t = 3r + s - 6$$

Consider the graph $G = K_{1,r} \wedge K_{1,s} \wedge K_{1,t}$ where r = s < t.

Defining the vertex labeling as follows:

$$h(u) = 2$$
; $h(q) = 2$; $h(w) = 0$

$$h(u_{\psi}) = 2 \text{ for } 1 \leq \psi \leq r - 1$$

$$h(u_{n\psi}) = 1$$

$$h(q_{\psi}) = 2 \text{ for } 1 \le \psi \le s - 2$$

$$h(q_{n\psi-1}) = 1$$

$$h(q_{n\psi}) = 0$$

$$h(w_{2\psi-1}) = 1 \text{ for } 1 \le \psi \le \frac{t}{2}$$

$$h(w_{2\psi}) = 0$$
 for $1 \le \psi \le \frac{t}{2}$

Then, we obtain the link label as follows:

 $uu_{\psi} = 2 \text{ for } 1 \leq \psi \leq r - 1; \ uu_{n\psi} = 2; \ qq_{\psi} = 2 \text{ for } 1 \leq \psi \leq s - 2; \ qq_{n\psi-1} = 2; \ qq_{n\psi} = 1; \ ww_{2\psi-1} = 1 \text{ for } 1 \leq \psi \leq \frac{t}{2}; \ ww_{2\psi} = 0 \text{ for } 1 \leq \psi \leq \frac{t}{2}.$

The wedge labeling of $u_{n\psi}q_{n\psi}$ is 1.

The wedge labeling of $q_{n\psi}w_2$ is 0.

Case (xiv): t = 3r + s - 7

Consider the graph $G = K_{1,r} \wedge K_{1,s} \wedge K_{1,t}$ where r = s < t.

Defining the vertex labeling as follows:

$$h(u) = 0; h(q) = 0; h(w) = 1$$

$$h(u_{\psi}) = 0 \text{ for } 1 \leq \psi \leq r - 1$$

$$h(u_{n\psi}) = 1$$

$$h(q_{\psi}) = 0$$
 for $1 \le \psi \le s - 2$

$$h(q_{n\psi-1}) = 1$$

$$h(q_{n\psi}) = 2$$

$$h(w_{2\psi-1}) = 2 \text{ for } 1 \le \psi \le \left\lceil \frac{t}{2} \right\rceil$$

$$h(w_{2\psi}) = 1 \text{ for } 1 \le \psi \le \left| \frac{t}{2} \right|$$

Then, we obtain the link label as follows:

$$uu_{\psi} = 0 \text{ for } 1 \leq \psi \leq r - 1; \ uu_{n\psi} = 1; \ qq_{\psi} = 0 \text{ for } 1 \leq \psi \leq s - 2; \ qq_{n\psi-1} = 1; \ qq_{n\psi} = 1; \ ww_{2\psi-1} = 2 \text{ for } 1 \leq \psi \leq \lceil \frac{t}{2} \rceil; \ ww_{2\psi} = 1 \text{ for } 1 \leq \psi \leq \lceil \frac{t}{2} \rceil.$$

The wedge labeling of u_1q_1 is 0.

The wedge labeling of $q_{n\psi}w_2$ is 2.

Nature of t	$v_f(0)$	$v_f(1)$	$v_f(2)$	$e_f(0)$	$e_f(1)$	$e_f(2)$
t = 3r + s + 6	r+s+3	r + s + 3	r + s + 3	r+s+2	r + s + 3	r + s + 3
t = 3r + s + 5	r+s+3	r + s + 3	r+s+2	r+s+2	r + s + 3	r+s+2
t = 3r + s + 4	r + s + 3	r+s+2	r+s+2	r + s + 2	r + s + 2	r+s+2
t = 3r + s + 3	r + s + 2	r + s + 2	r+s+2	r + s + 1	r + s + 2	r+s+2
t = 3r + s + 2	r + s + 2	r + s + 1	r+s+2	r + s + 1	r + s + 1	r+s+2
t = 3r + s + 1	r+s+2	r + s + 1	r + s + 1	r + s + 1	r + s + 1	r+s+1
t = 3r + s + 0	r + s + 1	r + s + 1	r+s+1	r + s	r + s + 1	r+s+1
t = 3r + s - 1	r + s + 1	r + s + 1	r + s	r + s	r + s + 1	r + s
t = 3r + s - 2	r + s + 1	r + s	r + s	r + s	r + s	r + s
t = 3r + s - 3	r + s	r + s	r + s	r+s-1	r + s	r + s
t = 3r + s - 4	r + s	r+s-1	r + s	r+s-1	r+s-1	r + s
t = 3r + s - 5	r + s	r+s-1	r+s-1	r+s-1	r+s-1	r+s-1
t = 3r + s - 6	r + s - 1	r + s - 1	r + s - 1	r+s-2	r + s - 1	r+s-1
t = 3r + s - 7	r + s - 1	r+s-1	r+s-2	r+s-2	r+s-1	r+s-2

Hence, G is mean cordial graph if $|s-t| \le 3r+6$ for $3r+s+6 \le t \le 3r+s-7$.

Conversely, we have to prove that |s-t| > 3r + 6 is not a mean cordial graph.

Let us take the first graph $K_{1,1} \wedge K_{1,1} \wedge K_{1,11}$.

Then, G has 16 nodes and 15 links.

Case (i): Let us fix the node label as given below:

$$h(u) = 0$$
; $h(q) = 0$ and $h(w) = 0$

Then,
$$h(u_{\psi}) = 2$$
 for $1 \leq \psi \leq r$

$$h(q_{\psi}) = 2 \text{ for } 1 \leq \psi \leq s$$

$$h(w_{2\psi-1}) = 0 \text{ for } 1 \le \psi \le \left\lceil \frac{t}{2} \right\rceil$$

$$h(w_{2\psi}) = 1 \text{ for } 1 \le \psi \le |\frac{t}{2}|$$

Then, we obtain the link label as follows:

$$uu_{\psi} = 1$$
 for $1 \leq \psi \leq r$; $qq_{\psi} = 1$ for $1 \leq \psi \leq s$; $ww_{2\psi-1} = 0$ for $1 \leq \psi \leq \left\lceil \frac{t}{2} \right\rceil$; $ww_{2\psi} = 1$ for $1 \leq \psi \leq \left\lceil \frac{t}{2} \right\rceil$.

The wedge labeling of $u_{\psi}q_{\psi}=2$ for any ψ .

The wedge labeling of $q_{\psi}w_2 = 2$ for any ψ .

Hence, we get $|v_h(b) - v_h(p)| > 1$ but $|e_h(b) - e_h(p)| > 1$ where $b, p \in \{0, 1, 2\}$, which is a contradiction.

```
Case (ii): Let us fix the node label as given below:
h(u) = 1; h(q) = 1 and h(w) = 1
h(u_{\psi}) = 0 \text{ for } 1 \leq \psi \leq r
h(q_{\psi}) = 0 for 1 \le \psi \le s
h(w_{2\psi-1})=2 \text{ for } 1 \leq \psi \leq \left\lceil \frac{t}{2} \right\rceil
h(w_{2\psi}) = 1 \text{ for } 1 \le \psi \le |\frac{t}{2}|
Then, we obtain the link label as follows:
uu_{\psi} = 0 \text{ for } 1 \leq \psi \leq r; \ qq_{\psi} = 0 \text{ for } 1 \leq \psi \leq s; \ ww_{2\psi-1} = 2 \text{ for } 1 \leq \psi \leq \left[\frac{t}{2}\right];
ww_{2\psi} = 1 \text{ for } 1 \le \psi \le |\frac{t}{2}|.
The wedge labeling of u_{\psi}q_{\psi}=0 for any \psi.
The wedge labeling of q_{\psi}w_1 = 1 for any \psi.
Hence, we get |v_h(b) - v_h(p)| > 1 but |e_h(b) - e_h(p)| > 1 where b, p \in \{0, 1, 2\}.
which is a contradiction.
Case (iii): Let us fix the node label as given below:
h(u) = 2; h(q) = 2 and h(w) = 2
h(u_{\psi}) = 0 \text{ for } 1 \leq \psi \leq r
h(q_{\psi}) = 0 for 1 \le \psi \le s
h(w_{2\psi-1}) = 2 \text{ for } 1 \le \psi \le \left\lceil \frac{t}{2} \right\rceil
h(w_{2\psi}) = 1 \text{ for } 1 \le \psi \le \left| \frac{t}{2} \right|.
Then, we obtain the link label as follows:
uu_{\psi} = 1 \text{ for } 1 \leq \psi \leq r; \ qq_{\psi} = 1 \text{ for } 1 \leq \psi \leq s; \ ww_{2\psi-1} = 2 \text{ for } 1 \leq \psi \leq \left[\frac{t}{2}\right];
ww_{2\psi} = 2 \text{ for } 1 \le \psi \le |\frac{t}{2}|.
The wedge labeling of u_{\psi}q_{\psi}=0 for any \psi.
The wedge labeling of q_{\psi}w_1 = 1 for any \psi.
Hence, we get |v_h(b) - v_h(p)| > 1 but |e_h(b) - e_h(p)| > 1 where b, p \in \{0, 1, 2\},
which is a contradiction.
Case (iv): Let us fix the node label as given below:
h(u) = 0; h(q) = 1 and h(w) = 2
h(u_{\psi}) = 1 \text{ for } 1 < \psi < r
h(q_{\psi}) = 1 \text{ for } 1 \leq \psi \leq s
h(w_{2\psi-1}) = 2 \text{ for } 1 \le \psi \le \left\lceil \frac{t}{2} \right\rceil
h(w_{2\psi}) = 0 \text{ for } 1 \le \psi \le |\frac{t}{2}|.
Then, we obtain the link label as follows:
uu_{\psi} = 1 \text{ for } 1 \leq \psi \leq r; \ qq_{\psi} = 1 \text{ for } 1 \leq \psi \leq s; \ ww_{2\psi-1} = 2 \text{ for } 1 \leq \psi \leq \left[\frac{t}{2}\right];
ww_{2\psi} = 1 \text{ for } 1 \le \psi \le |\frac{t}{2}|.
The wedge labeling of u_{\psi}q_{\psi}=1 for any \psi.
The wedge labeling of q_{\psi}w_1 = 2 for any \psi.
Hence, we get |v_h(b) - v_h(p)| > 1 but |e_h(b) - e_h(p)| > 1 where b, p \in \{0, 1, 2\},
which is a contradiction.
Case (v): Let us fix the node label as given below:
h(u) = 0; h(q) = 0 and h(w) = 2
h(u_{\psi}) = 0 \text{ for } 1 \leq \psi \leq r
h(q_{\psi}) = 0 \text{ for } 1 \leq \psi \leq s
h(w_{2\psi-1}) = 2 \text{ for } 1 \le \psi \le \left| \frac{t}{2} \right|
h(w_{2\psi}) = 1 \text{ for } 1 \le \psi \le \left| \frac{t}{2} \right|
h(w_{n\psi}) = 0.
Then, we obtain the link label as follows:
```

```
uu_{\psi} = 0 \text{ for } 1 \leq \psi \leq r; \ qq_{\psi} = 0 \text{ for } 1 \leq \psi \leq s; \ ww_{2\psi-1} = 2 \text{ for } 1 \leq \psi \leq \left| \frac{t}{2} \right|;
ww_{2\psi} = 2 \text{ for } 1 \le \psi \le \left| \frac{t}{2} \right|; ww_{n\psi} = 1.
The wedge labeling of u_{\psi}q_{\psi}=0 for any \psi.
The wedge labeling of q_{\psi}w_{n\psi}=0.
Hence, we get |v_h(b) - v_h(p)| \le 1 but |e_h(b) - e_h(p)| > 1 where b, p \in \{0, 1, 2\},
which is a contradiction.
Case (vi): Let us fix the node label as given below:
h(u) = 1; h(q) = 1 and h(w) = 0
h(u_{\psi}) = 1 \text{ for } 1 \leq \psi \leq r
h(q_{\psi}) = 1 \text{ for } 1 \leq \psi \leq s
h(w_{2\psi-1}) = 0 \text{ for } 1 \le \psi \le \left| \frac{t}{2} \right|
h(w_{2\psi}) = 2 \text{ for } 1 \le \psi \le |\frac{t}{2}|
h(w_{n\psi}) = 1.
Then, we obtain the link label as follows:
uu_{\psi} = 1 \text{ for } 1 \leq \psi \leq r; \ qq_{\psi} = 1 \text{ for } 1 \leq \psi \leq s; \ ww_{2\psi-1} = 0 \text{ for } 1 \leq \psi \leq \left| \frac{t}{2} \right|;
ww_{2\psi} = 1 \text{ for } 1 \le \psi \le \left| \frac{t}{2} \right|; ww_{n\psi} = 1.
The wedge labeling of u_{\psi}q_{\psi}=1.
The wedge labeling of q_{\psi}w_2=2 for any \psi.
Hence, we get |v_h(b) - v_h(p)| \le 1 but |e_h(b) - e_h(p)| > 1 where b, p \in \{0, 1, 2\},
which is a contradiction.
Case (vii): Let us fix the node label as given below:
h(u) = 2; h(q) = 2 and h(w) = 1
h(u_{\psi}) = 2 \text{ for } 1 \leq \psi \leq r
h(q_{\psi}) = 2 \text{ for } 1 \le \psi \le s
h(w_{2\psi-1}) = 1 \text{ for } 1 \le \psi \le \left| \frac{t}{2} \right|
h(w_{2\psi}) = 0 \text{ for } 1 \le \psi \le |\frac{t}{2}|
h(w_{n\psi}) = 2.
Then, we obtain the link label as follows:
uu_{\psi} = 2 \text{ for } 1 \leq \psi \leq r; \ qq_{\psi} = 2 \text{ for } 1 \leq \psi \leq s; \ ww_{2\psi-1} = 1 \text{ for } 1 \leq \psi \leq \left| \frac{t}{2} \right|;
ww_{2\psi} = 1 \text{ for } 1 \le \psi \le \left| \frac{t}{2} \right|; ww_{n\psi} = 2.
The wedge labeling of u_{\psi}q_{\psi}=2 for any \psi.
The wedge labeling of q_{\psi}w_{n\psi}=2 for any \psi.
Hence, we get |v_h(b) - v_h(p)| \le 1 but |e_h(b) - e_h(p)| > 1 where b, p \in \{0, 1, 2\},
which is a contradiction.
Case (viii): Let us fix the node label as given below:
h(u) = 2; h(q) = 2 and h(w) = 0
h(u_{\psi}) = 2 \text{ for } 1 \leq \psi \leq r
h(q_{\psi}) = 2 \text{ for } 1 \leq \psi \leq s
h(w_{2\psi-1}) = 0 \text{ for } 1 \le \psi \le \left\lfloor \frac{t}{2} \right\rfloor
h(w_{2\psi}) = 1 \text{ for } 1 \le \psi \le |\frac{t}{2}|
h(w_{n\psi})=2.
Then, we obtain the link label as follows:
uu_{\psi} = 2 \text{ for } 1 \leq \psi \leq r; \ qq_{\psi} = 2 \text{ for } 1 \leq \psi \leq s; \ ww_{2\psi-1} = 0 \text{ for } 1 \leq \psi \leq \left| \frac{t}{2} \right|;
ww_{2\psi} = 1 \text{ for } 1 \le \psi \le \left| \frac{t}{2} \right|; ww_{n\psi} = 1.
The wedge labeling of u_{\psi}q_{\psi}=2 for any \psi.
```

Hence, we get $|v_h(b) - v_h(p)| \le 1$ but $|e_h(b) - e_h(p)| > 1$ where $b, p \in \{0, 1, 2\}$,

The wedge labeling of $q_{\psi}w_{n\psi}=2$.

which is a contradiction.

Since, we have checked in all possible ways by fixing different node labeling to satisfy the condition for mean cordial labeling. The graph fails to satisfy the condition when t = 3r + s + 7. So, we conclude that mean cordial graph does not exist from t = 3r + s + 7 and above.

We conclude,G is not a mean cordial graph if |s-t| > 3r + 6.

Therefore, the three star graph $K_{1,r} \wedge K_{1,s} \wedge K_{1,t}$ is a mean cordial graph iff $|s-t| \le 3r+6$ for $3r+s-7 \le t \le 3r+s+6$; r=1,2,... and s=2,3,...

References

- [1] Albert william, Indra rajasingh and S. Roy, Mean Cordial Labeling of Certain Graphs, J. Comp. & Math. Sci. 4 (2013), 274-281.
- [2] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of combinatorics. (2017), #DS6
- [3] F. Harary, Graph Theory, Addison-Wisely, Reading, MA. 1969.
- [4] Raja Ponraj, Muthirulan Sivakumar and Murugesan Sundaram, Mean Cordial Labeling of Graphs, Open Journal of Discrete Mathematics. 2 (2012), 145-148.
- [5] R. Ponraj, S. Sathish narayanan, Existence and Non-Existence of Mean Cordial labeling of certain graphs, Journal of Prime Research in Mathematics. 11 (2015), 123-136.
- [6] V. Shendra Shainy, L. Vinothkumar, and V. Balaji, Mean Cordial Labeling for Three Star Graph, 2019 J. Phys.: Conf. Ser. 1362 (2019) 012036, 1-17.
- [7] S. Sudhakar, V. Maheshwari, J. Dharani and V. Balaji, Mean Cordial Labeling for Two Star Graphs, "Journal of Computational Mathematica". 3 (1), 6-14.

¹Department of Mathematics, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai - 600117, India.

E-mail address: 1maheswari.sbs@velsuniv.ac.in

 $^2\mathrm{Department}$ of Mathematics, Sacred Heart College, Tirupattur, Tirupattur District - 635601, India.

E-mail address: 2drvinophd@gmail.com

 $^3\mathrm{Department}$ of Mathematics, Sacred Heart College, Tirupattur, Tirupattur District - 635601, India.

E-mail address: ³pulibala70@gmail.com